static OSStatus SSLVerifySignedServerKeyExchange(SSLContext *ctx,
bool isRsa,
SSLBuffer signedParams,
uint8_t *signature,
UInt16 signatureLen)

OSStatus err;

i.f“((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

’
goto fail; - v/ ‘
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0) —
goto fail; \/
OOPS!

if ((err = SSLHashSHA1 final(&hashCtx, &hashOut)) = 0)
goto fail;

fail: About the sec urity content of i0S 7.0.6
SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

Impact: An attacker with a \ e
privileged network position may
capture or modify data in sessions
protected by SSL/TLS

CVE 2014-1266

Before getting started with the course, we want to talk about a interesting story that
came out of Apple in February related to code in iOS 7. The issue became public while
we were working on this course and our immediate thought was how a code review
could have played a role in helping identify this issue before it found its way into
production code.

When a browser on your iPhone makes an SSL/TLS request to a website, the website
presents a cryptographic “certificate” chain identifying itself and the authority which
issued the certificate. Your device already has a list of issuing authorities which are
trusted, and it will check the name of the site and the certificate it presents with that
authority. If an invalid or fake certificate is provided, (e.g., one that has the wrong
name for the site, or which hasn’t been issued by the authority, or which is out of date)
then the browser won’t trust it and you will get a warning saying that there’s
something wrong and that you shouldn’t proceed or your data could be at risk. To fully
trust a site, it is important to verify the authenticity of the certificate.

Part of the validation code during a SSL/TLS key exchange in iOS is shown here on the
slide. This code goes through a number of checks against the certificate that was
provided. If any of them fail, then it jumps down to the end and returns the failed
result. On Feb 21 Apple released a security alert and provide an update to iOS. The
alert didn't give many details but it quickly caught the interest of the security
community.

Secure Code Review

Drew Buttner
Mark Davidson

w

All materials is licensed under a Creative
Commons “Share Alike” license.

http://creativecommons.org/licenses/by-sa/3.0/

You are free:

to Share — to copy, distribute and transmit the work
to Remix — to adapt the work

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or

your use of the work)

Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible

license

Attribution condition: You must indicate that derivative work "Is derived from Andrew Buttner and Mark Davidson's
‘Secure Code Review' class, available at http:/OpenSecurityTraining.info/SecureCodeReview.htm!"

(E DG scoptunersctnrvise note tis work s censee e a reaive Commons Atiuion-ShareAks 3.0 License MITRE

Agenda

® |Introductions
= Background
— Application Security
— Microsoft Security Development Lifecycle
— Common Weakness Enumeration (CWE)
= Secure Code Review
— Developer Interview
— Static Analysis Tools
— Manual Inspection
— Findings Report
= Exercises
® Closing Remarks

Schedule

8:30
9:00
9:30
10:30
10:45
12:00
1:00
2:45
3:00
4:15

9:00
9:30
10:30
10:45
12:00
1:00
2:45
3:00
4:15
4:30

Introduction
Background

Secure Code Review
Break

Exercises #1 #2 #3
Lunch

Exercises #4 #5 #6 #7
Break

Exercises #8 #9 #10
Closing Remarks

[EROO cxceptunee tneuiss ot this work i ensed undor a Greative Commons At SharsAlke 3.0 License

MITRE

Exercises

Bulk of the class will be hands-on as together we will perform a

full review of The INSQR Application.

& v ¢ &) [[)] http:nocalhosticgi-bin/dostatus.cgi

B Most Visited v (@) Getting Started

@) http://localhosty.. bin/dostatus.cgi | 4

ISOR Home Create Account Reports

Status Results

Completed server validation: Server is functioning properly.

© 2010-2011, The MITRE Corporation

The InSQR Application

[EROO cxceptunee tneuiss ot this work i ensed undor a Greative Commons At SharsAlke 3.0 License

MITRE

Background

EIOTIL contaee omsetes o wr rsso rt aes stsrce Lss MITRE

Cost of Fixing Defects

Minimiziny g code defects to
improve software quality and
Tower costs.

Design and Integration Customer Postproduct
architecture Implementation testing beta test release

x* 5X 10X 15X 30X

1 NIST, The Economic Impacts of Inadequate
Infrastructure for Software Testing, May 2002

Minimizing code defects to improve software quality and lower development costs. October 2008, ftp:/ftp.software.ibm 14109USEN.pdf

The Economic Impacts of Inadequate Infrastructure for Software Testing. May 2002, hitp://http:/fwww.nist.g 02-3.pdf

MITRE

One compelling reason for spending the time and effort to find defects earlier in the
development lifecycle is that the cost of fixing a defect increases significantly as the
development lifecycle progresses. Research, like the reports from IBM and NIST, have
shown over and over that the cost of fixing a defect rises the later in the lifecycle it is
found. The NIST report is diagramed in the slide and shows the cost of fixing a defect at
each stage of the development lifecycle. The cost is expressed as “X”, a normalized unit
of cost that can be expressed in terms of person-hours, dollars, etc. The post product
release cost of fixing a defect is shown to be thirty times more than the cost of fixing a
defect in the design and architecture phase. This makes sense when you think about
the additional activities that have to be performed on code that has been released vs.
code that is being designed. Code that has been released has the added cost of
integration with other products and services, multiple deployments that must be
updated, and the code must repeat the entire release process from start to finish. The
return on investment for fixing a defect at the beginning of the software development
lifecycle instead of after the code has been released is 30x.

In addition to the cost savings, fixing a defect early can provide other benefits. Fixing
defects early improves the security and functionality of the code base, keeping your
company’s name out of the news and your customers happy. All too often a simple and
unnoticed error — a single equals instead of a double equals in an IF statement,
duplicative GOTO statements, or statements outside of the intended scope - can have
catastrophic results. C-level executives resign, the public perception of a product shifts

Microsoft Security Development Lifecycle

http://www.microsoft.com/security/sdl/default.aspx

Training J Requirements Design Implementation ~ » Verification Release) Response

» Build security in early during the development process
* Focus on security throughout the development process
* Never stop thinking about security

[EEBO] st o st s om0 s MITRE

Microsoft has a published, well known high level security development lifecycle, which
we use to model our own thinking about secure coding. The Microsoft Security
Development Lifecycle defines 17 practices spread across the 7 phases that, when
followed, improve the security of software. The Microsoft SDLC includes privacy
components as well.

* Inthe Training phase, foundational concepts like secure design, threat modeling,
secure coding, security testing, and best practices surrounding privacy are taught to
developers. You are participating in the Training phase right now.

* |Inthe Requirements phase, security and privacy requirements are established to
help identify key milestones and minimize disruptions to plans and schedules,
minimum acceptable levels of security and privacy are defined, and security and
privacy risk assessments are performed to help a team identify which parts of a
project will require threat modeling and security design reviews.

* In the Design phase, design requirements are established to help minimize schedule
disruptions, the attack surface is analyzed and possibly reduced, and threat
modeling is performed in order to help a team more effectively identify security
vulnerabilities.

* Inthe Implementation phase, approved tools and associated security checks help a

Microsoft Security Development Lifecycle

http://www.microsoft.com/security/sdl/default.aspx

Training Requirements / Design |mp|.mmuuon> Verification / Release Response

» Build security in early in the development process
» Focus on security throughout the development process
» Never stop thinking about security

Introduction to Secure Coding

Secure Code Review

(DG cen e it i o' e e retiveGormons At SareAns 5 L MITRE

The Intro to Secure Coding class focuses on the Implementation phase where the

coding actually happens. That class teaches developers how to maintain a security
mindset while writing software.

This course is a follow on and focuses on the Verification phase. We'll talk primarily
about peer reviews and how they can be used to identify potential weaknesses in

software. The lessons learned during this course can be applied to the Implementation
phase when you write your own software.

10

Application Security

Confidentiality
Integrity
Availability

Minimize Attack Surfaces
Establish Secure Defaults
Least Privilege

Defense in Depth

Fail Securely

Authentication
Authorization
Data Validation

Don't Trust Services
Separation of Duties

Avoid Security by Obscurity
Keep Security Simple

Fix Issues Correctly

Error Handling
Logging
Encryption

Session Management

This is a review slide from the Intro to Secure Coding class. In the Introduction to
Secure Coding class we talked about the thee high level goals of application security:

* Confidentiality is ensuring that the application only grants data access to the users
that are authorized to see it.

* Integrity is ensuring that data has not been modified during storage or
communication.

* Availability is ensuring that the application is available to perform its function when
needed.

These three high level goals help improve application security. You might notice that at
this point I've talked about how you can take actions that help improve security, but |
haven’t told you what you can do to guarantee security. That is because there is
nothing absolutely guarantees security. You can, however, maximize security. In order
to meet the goals of Confidentially, Integrity, and Availability, there are 10 principles
that you can follow.

* Minimize Attack Surfaces — Reduce the number of ways users and/or third party
services interact with your application. Removing duplicate functionality, removing
unnecessary form fields, and removing unnecessary functionality altogether all help
minimize the attack surface.

* Establish secure defaults — Never assume that the user/installer of an application

11

Security Mechanisms to Achieve Goals

Authentication _—>

Authorization 7 (i :onﬁdentiality
Session Management
Data Validation

Error Handling I ntegrity

Logging A
Encryption " \ailability

Reminder on how mechanisms help achieve goals. We have arrows there, but really all
mechanisms apply to all goals.

12

Security Mechanisms

The gears that drive the
engine of application security.

All mechanisms must be used
correctly to ensure proper
security functionality.

In the end, secure coding really comes down to the different mechanisms that are
available to ensure adherence to the previously mentioned application security
principles. Our job as code reviewers is to assess the implementation of these
mechanisms in the product. Make sure that implementation was done properly, etc.

13

Secure Coding Words to Live By

Authentication

+* Enforce basic password security

+“* Implement an account lockout for failed logins

+* “Forgot my password” functionality can be a problem
“* For web applications, use and enforce POST method

Authorization

+* Every function (page) must verify authorization to access
«“+ Every function (page) must verify the access context

“* Any client/server app must verify security on the server

Error Handling

+“+ Don't disclose information that should remain private
+“* Remember to cleanup completely in an error condition

Encryption
“* If storing passwords — hash with a salt value

«“ If you're using authentication — encrypt in transmission
+* Properly seed random number generators

Data Validation

B

“* Validate data before use in SQL Commands

+* Validate data before sending back to the client

%* Validate data before use in ‘eval’ or system commands
%* Validate all data lengths before writing to buffers

o ol e

Session Management

<+ Enforce a reasonable session lifespan
“* Leverage existing session management solutions
** Force a change of session ID after a successful login

Logging

% Avoid logging sensitive data (e.g., passwords)

** Beware of logging tainted data to the logs
<+ Beware of logging excessive data
% Beware of potential log spoofing

.

Reminder of the words to live by from the previous class. It’s a good idea, even for the
secure code review team, to go back and look at these. Focus on what the developer is
trying to do.

(.F CWE - CWE-36: Absolute | x

« C nttps://cwe.mitre.org =
e C’/SS
\ / Common Weakness Enumeration ‘ T

0 CWE-36: Absolute Path Traversal

Absolute Path Traversal
Weakness ID: 36 (Weakness Sase Status: Draft
v Description

Description Summary
The software uses external input to construct a pathname that should be within a restricted directory, but it does not properly
neutralize absolute path sequences such as "/abs/path” that can resolve to a location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of the restricted directory.
¥ Time of Introduction
« Architecture and Design
« Implementation
v Applicable Platforms
Languages
All
» Common Consequences
» Demonstrative Examples
» Observed Examples
» Relationships
» Taxonomy Mappings
v References

[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 9, "Filenames and Paths",
Page 503.. 1st Edition. Addison Wesley. 2006.

» Content History

Page Last Updated: February 18, 2014

MITRE

One project that everyone should be aware of, and a project we will mention a lot
throughout this course, is the Common Weakness Enumeration (CWE). This is a
MITRE-run initiative to enumerate and provide standard identifiers for the different
coding-level security-related mistakes that developers often make. This standard
identifier enable security personnel to share information about weaknesses and for
tools to report findings in a way that review teams can easily grasp. There’s a lot of
good description information on weaknesses, which is a benefit to both the reviewer
and the developer. The reviewer doesn’t have to spend time duplicating a description
that has been used many times over, and the developer doesn’t have to rely on the
communication skills of the developer. Many static analysis tools use CWEs to report
the weaknesses they find.

It’s important to note that a CWE describes a weakness, but not a vulnerability. In
order for a weakness to become a vulnerability, it has to be exploitable. For example, |
reviewed one application where the developer had made a mistake by allowing SQL
Injection. | knew the developer of the application and got permission to attempt to
exploit the weakness in a non-production system. It turns out that the weakness was
not a vulnerability because the database was fully public, meaning | couldn’t get access
to any information | didn’t already have, and the permissions were set to read only and
therefore my “drop tables” command didn’t have any effect. While, in this case, the
weakness turned out to not be a vulnerability, it was still a weakness that the
developer fixed.

15

CWE Top 25

CWE-89 Improper Neutralization of Special Elements used in an SQL Command (‘SQL Injection’)
CWE-78 Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection’)
CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
CWE-306 Missing Authentication for Critical Function

CWE-862 Missing Authorization

CWE-798 Use of Hard-coded Credentials

CWE-311 Missing Encryption of Sensitive Data

CWE-434 Unrestricted Upload of File with Dangerous Type

CWE-807 Reliance on Untrusted Inputs in a Security Decision

CWE-250 Execution with Unnecessary Privileges

CWE-352 Cross-Site Request Forgery (CSRF)

CWE-22 Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')
CWE-494 Download of Code Without Integrity Check

CWE-863 Incorrect Authorization

CWE-829 Inclusion of Functionality from Untrusted Control Sphere

CWE-732 Incorrect Permission Assignment for Critical Resource

CWE-676 Use of Potentially Dangerous Function

CWE-327 Use of a Broken or Risky Cryptographic Algorithm

CWE-131 Incorrect Calculation of Buffer Size

CWE-307 Improper Restriction of Excessive Authentication Attempts

CWE-601 URL Redirection to Untrusted Site (‘Open Redirect’)

CWE-134 Uncontrolled Format String

CWE-190 Integer Overflow or Wraparound

CWE-759 Use of a One-Way Hash without a Salt

The CWE team also compiles a Top 25 list each year that helps identify the 25 most
dangerous and prevalent software errors that we see today. This list is a great way to
keep the most common issues in the forefront of a developer's mind and help focus
effort to make sure that these errors are not introduced. This is a good list to be
familiar with, in part because this list is largely composed of weaknesses that should
never ever happen anymore. SQL injection is the top weakness found in software
today. Prepared Statements have been around as long as | can remember — the only
reason SQL injection exists is because developers don’t take care to use them.

We've done 25 reviews over the last 2 years, and all of them have these kinds of
errors. We have yet to review a single application that doesn’t have a single finding,
and very few that don’t have at least one top 25. Many of these are well known things
that shouldn’t exist anymore.

16

Requiring Secure Code Review

= For those working with contractors, the following language is

often part of contracts ...

= Government policies that require it

[EROO cxceptunee tneuiss ot this work i ensed undor a Greative Commons At SharsAlke 3.0 License

MITRE

17

Secure Code Review

[CDO eccoptners omenwise nota, s work i cansad undr a Crastiva Commons At ShareAlks 3.0 Licanse

MITRE

18

What is a Secure Code Review

A Secure Code Review is a specialized task with the goal
of finding instances of many different types of security
related weaknesses (flaws) that may exist within a given
code base. The task involves developer interviews,
automated static analysis, manual review of the
underlying source code, and a final report to present
findings.

= an important part of the Security Development Lifecycle
= usually performed as part of verification

= does not replace typical peer reviews

= not a silver bullet ... rather, it is a tool in the tool box

A secure code review is a task at the end of the SDLC that attempts to find any security
related flaws that came about during the coding process. This could be due to mistakes
by the developers, or maybe a change from the intended design due to coding
challenges.

It involves an interview, static analysis, manual analysis, and a final report.

A secure code review does not replace the developer peer reviews that should be
taking place during the coding phase. Both activities offer something different and
each should be leveraged accordingly. We will talk more about this in the coming

slides.

19

Five Types of Peer Reviews

A heavy-process review with multiple participants meeting together in single room. A
Formal “moderator” and keeps everyone on task, controls the pace, and acts as arbiter of
disputes. Everyone reads through the materials beforehand to properly prepare.

A reviewer standing over the author's workstation while the author walks the reviewer
through a set of code changes. Typically the author “drives” the review by sitting at the

OVer'the'ShOUIder ‘ keyboard and mouse, opening various files, pointing out the changes and explaining why
it was done this way.

E ma” Pass_ Whole files or changes are packaged up by the author and sent to reviewers via e-mail.
Reviewers examine the files, ask questions and discuss with the author and other
Arou nd ‘ developers, and suggest changes.

Two developers writing code at a single workstation with only one developer typing at a

Pair Prog ramming ‘ time and continuous free-form discussion and review.

A process where specialized tools are used in all aspects of the review: collecting files,
. transmitting and displaying files, commentary and defects among all participants,
TOOI ASSISted J collecting metrics, and giving product managers and administrators some control over
the workflow.

Cohen, J. (2013). Best Kept Secrets of Peer Cade Review. Beverly, MA: SmartBear Software

TG e nrss s o o s oo et s st e s MITRE

Although the goals of a secure code review often differ from those of your typical peer
review, there is a lot to be gained by looking at the well established methodologies for
peer reviews. Peer reviews have evolved into 5 distinct types, each for a target
audience and goal. Formal, over-the-shoulder, email pass-around, pair programming,
and tool assisted all bring something different to the table.

20

A Combined Approach

Formal

7N

Over-the-

Tool Assisted | Shoulder |
/ /
_~ Secure Code - 4
'—1" - |
\ Review
\\ /,‘
‘\\ //
/
Pair } — Email Pass-
Programming | Around
/
EIOOU v e v s s ot e i et o o S 0 MITRE

A Secure Code Review looks to leverage elements from each of the different types of

peer reviews.

21

Secure Code Review Benefits

A project can realize a number of benefits as a results of a Secure
Code Review:

— Different perspective
— Security Experts

— Less Rework

— Fewer Bugs

— Better Code

Mossing, B. (2001, June 26). Developer's Guide to Peer Reviews. Retrieved from http:/i

GO ot erso s o e G oo 30 MITRE

What benefits can you expect from a Secure Code Review? A few of the benefits
include:

* Adifferent perspective. “Another set of eyes” adds objectivity. Similar to the
reason for separating your coding and testing teams, secure code reviews
provide the distance needed to recognize problems.

* Security Experts. The developers have enough on their plates trying to stay
current with the latest frameworks and coding practices. They also are often
tasked to get thing finished quickly to meet an unrealistic deadline. A Secure
Code Review allows a team that focuses on secure coding to look at the
code.

* Less rework. Do it right the first time. Changes cost more later in the life
cycle. The secure code review process catches many errors before they go to
production.

* Fewer bugs. It’s better to discover your own problems than to have
someone (like a user) point them out to you.

* Better Code. At the end of the process, the application being developed is
better, and that is the ultimate goal of everyone involved in its development.

22

Secure Code Review Challenges

Of course secure code reviews have their challenges as well:

— Time
— Preparation
— Initial frustration

— The need to show commitment

MITRE

It can’t all be roses. A few of the issues you will need to balance when you implement
secure code reviews include:

* Time. Some secure code reviews take a long time. But like other types of
meetings, focusing on the topic, being familiar with the process, and
establishing solid ground rules can help keep the time reasonable. Secure
Code Reviews invest your time; bugs waste it.

* Preparation. Reading unfamiliar code and correlating that code to unfamiliar
documentation inevitably means questions for the programmers which
takes them away from coding. However, it’s a necessary evil. Over time,
however, proper preparation for the meeting should take less time, as
reviewers learn what to look for and become familiar with the process.

* Initial frustration. If team members are not familiar with secure code
reviews, the experience can be frustrating for all participants. Teams need to
devise a process for secure code reviews, implement it, and modify it only
when the situation dictates. In time, members will grow accustomed to the
process.

* The need to show commitment. The benefit of a secure code review is
sometimes hard to see. If it is not done correctly, or if the code was in good

How to Conduct Better Reviews

The next few slides will present a some guidelines
for performing more effective and efficient
Secure Code Reviews.

[EROO cxceptunee tneuiss ot this work i ensed undor a Greative Commons At SharsAlke 3.0 License

24

MITRE

24

25

How to Conduct Better Reviews

1) Don’t create a battleground.
— The goal is better software, not who's right.

Mossing, B. (2001, June 26). Developer's Guide fo Peer Reviews. Relrieved from hitp:/1 guid

Map image licensed under the Creative Commons Altribution 2.0 Generic license, author is Kevin King, retrieved April 8, 2014, from https:/icommons.wikimedia.org/wiki/
File:Blakeley_Batlleground_plan1.jpg

DO e vt o o e s st Coes A i3 MITRE

The review team is there to support the developers, not to prove that they are smarter
than the developers. The developer are there to help the review team, not to show
how the review team doesn't know what they are talking about.

25

How to Conduct Better Reviews

2) Lay out the ground rules.

— Establish clear expectations about how the review will be performed,
including how long it will take, how much it will cost, and what role
everyone is playing.

Mossing, B. (2001, June 26). Developer's Guide to Peer Reviews. Retrieved from http:/i ide-t

Clock image licensed under the Creative Commons Attribution - Share Alike 3.0 Unported license, author is Penubag, retrieved April 8, 2014, from https:/jcommons.wikimedia.org/
wikifFile:Wall_clock.png

Money image depicts a unit of currency issued by the United States of America. It is solely a work of the United States government, is ineligible for copyright, and is therefore in
the public domain.

The $100,000 Series 1934 Gold Certificate feature a portrait of Woodrow Wilson.
These notes were printed from December 18, 1934, through January 9, 1935, and were
issued by the Treasurer of the United States to Federal Reserve Banks only against an
equal amount of gold bullion held by the Treasury Department. The notes were used
only for official transactions between Federal Reserve Banks and were not circulated
among the general public.[®/Photographic records show that at least seven 1934
$100,000 Gold Certificates are still in existence (#s AOOO0O0001A, AO0020102A,
A00020106A, A00020108A, AO0020109A, A00020110A, A00020113A)

26

How to Conduct Better Reviews

3) Maintain professionalism.

— Don'’t take the criticism personally and offer only technical advice that
will improve the code. Respect others’ opinions, comments, and
suggestions.

Mossing, B. (2001, June 26). Developer's Guide to Peer Reviews. Retrieved from http:/i guide-to-p

Tie image licensed under the Creative Commons Attribution - Share Alike 3.0 Unported license, original uploader was Plasmafire, retrieved April 10, 2014, from https://
commons.wikimedia.org/wiki/File:Suit_tie.JPG

27

28

How to Conduct Better Reviews

4) Be careful with the scope of the review.

— Determine the size and scope of the code being reviewed. Don't bite
off more than can be chewed.

Mossing, B. (2001, June 26). Developer's Guide to Peer Reviews. Retrieved from http:/A Quide
Hamburger image retrieved April 10, 2014, from co.uk/going-out food th-york
[EROO cxceptunee tnevise ot this work i ensed undor a Creativs Commons Atsbuton SharsAlke 3.0 License MITRE

28

29

How to Conduct Better Reviews

5) Document what happens.
— Write everything down, especially decisions and action items.

Mossing, B. (2001, June 26). Developer's Guide to Peer Reviews. Retrieved from http:/A i guide-to-pe

Notes image licensed under the Creative Commons Attribution - Share Alike 3.0 Unported license, author is Tony Webster, retrieved April 11, 2014, from https://
commons.wikimedia.org/wiki/File:CityCamp_Idea_Board_with_sticky_notes_4297872645_0.JPG

DO v serc et i i s s s Cormrers i s 10 MITRE

29

How to Conduct Better Reviews

6) Take a class on software inspection.

— Maybe you have an in-house code review expert, or perhaps one
team member could read a book and then train the rest of the team.
Consider using the local college/university or contact corporate
training institutions to bring a trainer on-site.

) //’_\
The MITRE Institute

Stay ahead of the curve

Mossing, B. (2001, June 26). Developer's Guide to Peer Reviews. Retrieved from http:/i quid

TG e nrss s o o s oo et s st e s MITRE

30

How to Conduct Better Reviews

7) Commit to the process.

— Maybe you tried conducting a review and it didn’t work. Try it again.
And again. Commit to the process and you will reap the benefits.

Mossing, B. (2001, June 26). Developer's Guide fo Peer Reviews. Relrieved from hitp:/1 guide-to-p

Wedding image licensed under the Creative Commons Attribution 2.0 Generic license, author is Jason Hutchens, retrieved April 11, 2014, from https://commons.wikimedia.org/wiki/
File:Bride_and_groom_signing_the_book.jpg

TG e nrss s o o s oo et s st e s MITRE

31

Secure Code Review Process

Static
Analysis
Tools

Manual
Inspection

Developer
Interview

[E®OH €;copt wnere otrerwise noted, this work s licensed under a Creative Commons Atirbution-ShareAike 3.0 Licenss.

32

Findings

Report

MITRE

32

Developer Interview

The first step of a Secure Code Review is to meet with a developer
of the application and try to get an understanding of what the
code is attempting to do.

— saves the review team time

— determine high risk areas of the source code

— understand developer trends

— develop respect between the developers and the reviews

33

Developer Interview - Role Play

a Firefox

€

BMost Visitedv @

@ http:/focalhosty...bink

Status Results

Completed server validation: Server is functioning properly.

© 20102011, The MITRE Corporation

Project

~ivcnd PurpleRain

Report s Cards

Name:

Report Ensure that all team members of project Purple Rain come to the head office on Thursday to
P ; Pick up their new Access Cards. These will have the new aliases in place, so make sure to

destroy your old cards once you receive the new one.

MITRE Intern

IO o chr i st i s Conmor ot e, MITRE

Mark and Drew give an example interview

34

Develop Interview - Worksheet

= Authentication
— Are users of the application authenticated or is everyone treated as an anonymous user?
— What factors are being used for authentication? For example, passwords, certificates, biometrics.
— If passwords are being used, then are there any policies in place regarding complexity or age?
— Are there any ways to bypass the authentication for testing? Are there any alternate authentication paths?
= Authorization
— Are there different roles that users can be assigned based upon the context of the job being performed?
— Do you cache the authorization information? Or do you check authorization with each request?
— Are there any sensitive data files stored under the web root, hence under no authorization?
— Is authorization always checked on the server?
= Session Management
— Is session state being managed / stored at all within the application and how is this being done?
— How is the session id being generated?
— If instead of passing a session id you are passing all the session data, is this data encrypted and signed?
— If auser logs into the site, is the original session deleted upon login and a new session created?
— Do sessions timeout at all?
— Is there a logout function available?
— If cookies are used, are there path and domain restrictions in the cookie?
= Data Validation
— s data received from the user validated?
— s data validated as soon as it comes in from the user or when it is used by the code?
— How is the data validation being accomplished? (whitelisting, blacklisting, min/max, etc.)
— Are you using a database? If so, are you using prepared statements?
— Are you using HTML encode before user data goes back to the browser?
— Are regular expressions used at all during data validation?

35

Develop Interview - Worksheet (cont.)

= Error handling
— What approach(s) to error handling is being used?
— What type of information about an error is presented to the user?
— Are stack traces ever sent back to the user? Or are they sent to logs only?
— If the database throws an error, is the error message sent to the user or is it passed to a log?
= Logging
— s any type of logging is being used within the code?
— Where are log messages that are generated being sent?
— Are the log files accessible by users that shouldn't have access to them?
— Are you ever logging any input that is not validated first, or data that has failed validation?
— Are log messages time stamped?
— Is any sensitive data written to a log (e.g. password, SSN)?
= Encryption
— Is there any encryption algorithms used within the code at all? (SSL?)
— What implementation of the library is being used and where did you get it?
— What are the policies surrounding the keys being used?
— If using 3DES or AES (any block cipher) then what encryption mode is being used?
— Is there is a central function in the code that handles encryption? Where is it?

— Does the application generate and use a random number? If so, what PRNG is used? How is it seeded?

[EROO cxceptunee tneuiss ot this work i ensed undor a Greative Commons At SharsAlke 3.0 License

MITRE

36

Static Analysis Tools

The second step in the process is to use static analysis tools.

They model the source code and automatically find potential
flaws. However, they are NOT a silver bullet.

— Strengths — Costs
= \olume = Price
= Speed = Training
= Time
— Limitations
= Breadth
= Coverage Best leveraged for an initial,
= False Positives quick review of an application

[EROO cxceptunee tneuiss ot this work i ensed undor a Greative Commons At SharsAlke 3.0 License

MITRE

37

Manual Inspection

The third step in the Secure Code Review Process is manual
inspection. This can be a challenging, slow, tiring task, but it also
produces the more accurate and useful results.

— Dedicate the time to doing the job right

— Embrace the challenge
= reviewing really well coded / secure code can make you want to rip your eyeballs out
= butitis still extremely valuable
= that one little place is where everything can go wrong
= others will never understand why you're so damn proud of finding an obscure coding flaw

— Don't be afraid to ask questions of the original developer / coder

— (repeat) Dedicate the time to doing the job right

[EEBO] st o st s om0 s MITRE

If it's going to take you a few hours digging through a
manual to figure out if a Framework does something...
that's likely a bad choice. Go ask someone who already
knows the language/framework/etc. well enough to be
coding in it. They may not know the answer, and then
you have to look it up. But often, they can save you a ton
of time and point you right at the info you need or tell
you what the system does or does not do.

38

"Security Concept" vs. "Syntactical Language"

Security Concept

— You don't need to be an expert in a specific language to provide
real value. For example, one can review TCL/TK code having
never touched the language before. Meaningful value can still be
provided covering the security concept bugs.

= Authentication issues, Authorization issues, DV issues, etc.

Syntactical Language

— If there's an obscure framework implementation that magically
handles some aspect of logging or output encoding... then
experience with the language/framework is needed or that's going
to get missed.

In a perfect world, both areas covered.

One of the things that will become apparent very quickly doing a manual review is the

difference between knowledge of security concepts and the syntactical language.

39

Findings Report

The final step of a Secure Code Review is documenting the
findings and presenting them to the development team in a way
that they can understand and take action against.

— Finding Description
- CWE
— File Name & Line Number (if appropriate)

These reports are sensitive, protect them as such.

a reminder, that especially if they're doing a review on code that may already be in
production, that finding a security flaw is sensitive info. Yes, you have to document
and share that info with those who need-to-know to get it fixed. But that information
should be protected, provided only to those who have a need to have the details,
findings documents should likely be encrypted as they're sent around, etc.

40

Finding Descriptions

When writing the description, put yourself in the developer's
shoes and try to provide the information that they would want.

— show the data/control flow related to the finding
— show why the finding is an issue
— briefly suggest a way to address it

BAD = XSS on line 102.

GOOD = A string is created on line 101 that uses an non-validated value from the request. This
message is then used to create a StatusMessage on line 102 and eventually is part of the page that is
sent back to the user. If a malicious header value is sent in the request, it may be possible to perform
a cross-site scripting attack. It is recommended that the supplied header value not be part of the
message sent back to the user. If the value must be part of the message, then ensure proper
validation and leverage appropriate output encoding.

=)

41

Go Forth and Review!

"Code reviews can be a fun and interesting
part of the development process. There may
be a few drawbacks, but the end result is

usually , and better code is good
for everyone. Additionally, you may even find
that as the reviewer or the reviewed, your

Mossing, B. (2001, June 26). Developer's Guide to Peer Reviews. Retrieved from http:/i

(E DG scoptunersctnrvise note tis work s censee e a reaive Commons Atiuion-ShareAks 3.0 License MITRE

Go forth and review

Peer reviews can be a fun and interesting part of the development process. There may
be a few drawbacks, but the end result is usually better code, and better code is good
for everyone. Additionally, you may even find that as the reviewer or the reviewed,
your skills as a developer will grow.

42

Exercises

[CDO eccoptners omenwise nota, s work i cansad undr a Crastiva Commons At ShareAlks 3.0 Licanse

MITRE

43

44

How this will work

The following exercises will walk us through a secure code review
of The InSQR Application.

1. Pair up into teams of 2
2. Choose afile to review
3. Record findings
4. Discussion
Secure Code Review is best learned through
practice. Consider this your first review!
[T oo s vt i i nsa o e Commors At Srrsin 30 Lors MITRE

44

Story #1 : Know what you are agreeing to

Jack: Can you review some code for us?

Jill: Sure! But | need to balance that with
some other work, can | get you the findings
by the end of the week?

Jack: No problem with the extra time.
Thank you so much for helping me out!
We need to get this code

checked in.

[World of Warcraft > News & Foatures

Jill: Before you go, where |Blizzard outlines massive effort
can | get a copy of the behind World of Warcraft

Code? Austin GDC 2009: Frank Pearce explains what it takes

some 4,000 employees, 13,250 server blades, and'7
MMORPG running.

by Brendan Sinclair on September 17, 2009

Sinclair, Brendan. (September 17, 2009) Retrieved March 31, 2014, from
hitp://wwvaw.gamespot tl ffort-behind-world-of 1100-6228615/

(E DG scopthere civrvise notet thiswerk s cnsed udera Creatve Commans Atsbuion-ShareAske 3.0 Liense MITRE

45

Prioritize and Focus

If you get stuck reviewing more code than you can possibly get
through, then prioritize the code and focus on impact areas.

= Start with files pertaining to high value targets
— authentication / authorization (e.g., login page)
— database handler
— sensitive data
— shared libraries

= Set for "special” strings
— password
— key
— connection
— session
— todo
— exec / system

46

Exercise #1 : Where to Start?

Name Size
admin

|_| approve.cgi 2KB
|| createreport.cgi 2KB
|| doapprove.cgi 2KB
|| groupuser.cgi 2KB
[indexcgi 2KB
|| authenticate.cgi 3KB
|| create.cgi 2KB
| dostatus.cgi 1KB
| login.cgi 2Ke
| logout.cgi 1KB
| reports.cgi 2KB
reset.cgi 1KB
|| resetaccount.cgi 2KB
| resetchallenge.cgi 2KB
resetpassword.cgi 2KB
status.cgi 1KB
|_| viewreport.cgi 2KB

[EROO cxceptunee tneuiss ot this work i ensed undor a Greative Commons At SharsAlke 3.0 License

Knowing very little about the codebase, which file(s) would you
look at first? What would some other files of interest be?

MITRE

47

Worksheet #1

[CWE__|File _______|Line# [Description |

GO ot erso s o e G oo 30 MITRE

48

Findings #1

[CWE__|File______|Line# [Description |

login.cgi
authenticate.cgi
create.cgi
admin/index.cgi
admin/approve.cgi
admin/doapprove.cgi
reports.cgi

reset.cgi (and others)
dostatus.cgi

logout.cgi

icense.

MITRE

49

Story #2 : Ubercart Session Fixation

Ubercart, the Free Open S x

€« cnH

About Downloads Documentation Forums Contributions Issue Tracker Demo Donate | Affiliates | Sponsors

= | B [

Ubercart is an exciting open source e-commerce shopping cart that fully integrates your

QUbercart - oninesorevitn bupat.ne s SA-CONTRIB-2013-098 - Ubercart - Session Fixation Vulnerability

mbination for anyone looki

Killes
premium content, offer paid file downloads, and much much|
more, check out our answer to the question, "What is Uberc{ * Ad

But | was told not to
"re-invent the wheel"?

CVE identifier(s) issued
CVE-2013-7302

Our second story is related to an open source e-commerce shopping cart. A session
fixation vulnerability was identified in December that allowed attackers to gain control
of a user's session and access to their payment information. Remember back to the
secure coding class about session fixation ... one of the biggest issues is when an
existing session id is used after a successful login. This allows an adversary to set the id
and then trick/wait for the user into logging in. In this case, the "log in new customers
after checkout feature" missed this detail. The application set up the new user and
logged them in, but never invalidated the existing session.

Now you might be saying to yourself ... but we were taught in the secure coding class
to use existing solutions and not to re-invent the wheel. Yes, we did say that, and in
this case you would still be burned. This just shows why you still need to know about
these issues, and if practical you should talk to the developers or test the code that you

are brining into your application. Unfortunately, as of today nothing is perfect.

https://drupal.org/node/2158651

Mark to tie in with story about Wordpress.

50

Secure Coding ...

33

1 public int authenticate (HttpSession session)

2 {

3 string username = GetInput ("Enter Username");

4 string password = GetlInput ("Enter Passw

5

6 Check maximum login ttempts

7 if (session.getValue ("lc nAttempts") > MAX LOGIN ATTEMPTS)
8 {

9 lockAccount (username) ;

10 return (FAILURE) ;

11 }

12

13 if (ValidUser (username, password) == SUCCESS)

14 {

15 Kill the current session it can no longer be
16 session.invalidate();

17

18 Create an entirely new session for the logged in user
19 HttpSession newSession = request.getSession(true);
20

21 newSession.putValue ("login", TRUE);

22 return (SUCCESS) ;

23 }

24 else return(FAILURE) ;

25 }

[EROO cxceptunee tnevise ot this work i ensed undor a Creativs Commons Atsbuton SharsAlke 3.0 License

MITRE

this code is just to refresh about session fixation. This is how it is supposed to work.

51

52

Secure and HTTP Only

= Secure Attribute
— cookie only sent via SSL/TLS

— ensure the cookie is always encrypted
when transmitting from client to server

= HTTP Only Attribute

— cookie only accessed when
transmitting HTTP (or HTTPS) requests

— thus restricting access from other,
non-HTTP APIs such as JavaScript

Cookie image licensed under the Creative Commons Attribution - Share Alike 3.0 Unported license, author is Tiia Monto, retrieved April 17, 2014, from https://
commons.wikimedia.org/wiki/File:Cookie.png

(E DG scoptunersctnrvise note tis work s censee e a reaive Commons Atiuion-ShareAks 3.0 License MITRE

There are two other things related to session ids and more specifically the cookies that

are often used to communicate these ids.

http://resources.infosecinstitute.com/securing-cookies-httponly-secure-flags/

52

Exercise #2 : login.cgi

53

1 Fusrbiniper-w 51 <-finchude vinuel="menu hinl" >

2 usesict 52 <

3 8 <p>Pizass oginto access he repots or stahs unctions <ip>
4 usecG 5 <form method="post”acton="lcg-bin/autentcate.cr>

5§ useCGESasson 5 <bie>

6 5 @

7 e < dlign=right><>User D:<03<g>

[58 <H<input name="user” typs="ext><hd>
9 myScgiznewCOl; E <>

0 & @

1 61 <t lign=right><t>Password <o><id>
12 # parame o i g &2 <H<input name="password” yps="password <>
13 Kot & @

" Ifthe 6 @

15 &t and. v i 3 < colspan=2 align=center><inpus type="Submif vaue="Logir><xt>
16 # mthe Amp drectory. 3 <

7 6 <table>

1 . . 3 6 P ¥ Please <a hret

19 6 <-finchade vinual="footer el >

2 o the user c nEND

21 #the session O to be ‘COISESSID'. v The cookie can n

2 0 72 #Theend himi() 0 HTML ending TP respanse. It ok ike:
2 no#

24 myScookie = Sogh>00okiel-name=>"COISESSL", vaue=>Ssessonid) MoK <BODY>

% B oA <HIL

2 Generate headerindormation hat wil be patof e HTTP respanse fom the server. I s case we are seting 7

7 77 peintend i

B 7

29 print Scgeoheader type => Yexthint, ook => Scookie |] e HTTP 0
o

31 #The star. hum) function generates a gensric KWL apening thet s en prined 1o e KTTP respanse. ookl

2 %

BoF <

Mo§ <HEAD>

B # <TITLE> Login Page <TITLE>

B # <HEAD>

7 & <BODY>

@

39 pentstathiml (Login Page")

o

oo s

42 #pagsthatwi be displayed 1 th user.

@

44 print <END:

s <table border=0>

® @

a <tip<ing sc="TmageslnSOR png” border=0 <d>

@ <8 valign="midk"><nt>The SQR Applcation<hi><id>

o @

50 <table>

[EROO cxceptunee tnevise ot this work i ensed undor a Creativs Commons Atsbuton SharsAlke 3.0 License

MITRE

53

Worksheet #2

[CWE__|File _______|Line# [Description |

GO ot erso s o e G oo 30 MITRE

54

Findings #2

__

CWE-523 login.cgi
CWE-614 login.cgi
n/a login.cgi
n/a login.cgi

E OO rcept ners ctharwis note this work s censed undora Creat

Not using SSL

24 Secure flag is not set for the cookie.
24 HttpOnly flag is not set for the cookie
n/a Missing copyright and license info

55

Story #3 : Tesla Motors SQL Injection

- ——
ca r Nquerkcouk = "This is a pretty nice tool which lets you
z K customize your Tesla before ordering. It also
Home iod Securtly Bl Bitquar gives you the option to share your creation with
R others by way of a unique URL which Tesla
Bafbeadalehlin et bhaly U generates then passes through a custom URL
Tesla Motors blind SQL injection shortener. It was in this shortener that | found
Pushshed Sun 2aFen 14 an SQL injection vulnerability, giving me access
toTesla's backend database, including access
extensive use Of to ,a”, online cus_tor?er records and ad[mr] o
N access to the-site." — =
Drupal with a .
handful of plugins ="~ access to back end database,

all online customer records,
and admin access to the site

"During testing | noticed that
the script behaved a little
differently depending on the
input and investigated by
Tesla Motors injecting some quoted strings.
o q After a bit of playing around |
DeSIgn Studio hadit, a fauiypst;ngard blind

'+ sleep(10) +'"

https://bitquark.co.uk/blog/2014/02/23/tesla_motors_blind_sql_injection

This is a vulnerability in the Tesla Motors Design Studio.

flaw in the URL shortener routine, not "main" functionality. But still database access,
so important.

https://bitquark.co.uk/blog/2014/02/23/tesla_motors_blind_sql_injection

56

Blind SQL Injection

** MySQL's primary functions for time delay are sleep() and benchmark(). **

mysql> SELECT * FROM sample WHERE id=1 AND sleep(15);
Empty set (15.00 sec)

So ... an injection string to test if the first character of the first table in the database is
between 'a' and 'p' would look like:

/vulnerable.ext?id= 1 AND sleep (cast ((SELECT (SELECT table_name from
information_schema.tables WHERE table_schema=database() LIMIT 1 offset 0) regexp
0x5e5b612d705¢c) AS signed) *15);

=

Sleeps (pauses) for the number of seconds given by the duration argument, then
returns 0. If SLEEP() is interrupted, it returns 1. The duration may have a fractional
part. This function was added in MySQL 5.0.12.

57

Blind SQL Injection

Return the name of the first table (i.e., LIMIT 1 offset 0) from the
current database

SELECT table_name from
information_schema.tables WHERE table_schema=database() LIMIT 1 offset O

[EROO cxceptunee tnevise ot this work i ensed undor a Creativs Commons Atsbuton SharsAlke 3.0 License

MITRE

58

Blind SQL Injection

Use a regular expression to compare the returned table name with
"0x5e5b612d705¢". (hex notation for "A[a-p]") The returned value
will be either O for no match or 1 for a match.

SELECT (SELECT table_name from
information_schema.tables WHERE table_schema=database() LIMIT 1 offset 0) regexp
0x5e5b612d705¢

TG e nrss s o o s oo et s st e s MITRE

59

Blind SQL Injection

Cast the value returned from regexp() as a signed int so we can
use it in the sleep command calculation.

cast ((SELECT (SELECT table_name from
information_schema.tables WHERE table_schema=database() LIMIT 1 offset 0) regexp
0x5e5b612d705¢c) AS signed)

TG e nrss s o o s oo et s st e s MITRE

60

Blind SQL Injection

Sleep for 15 seconds if the test statement is TRUE. If it is FALSE,
don't sleep at all.

sleep (cast ((SELECT (SELECT table_name from
information_schema.tables WHERE table_schema=database() LIMIT 1 offset 0) regexp
0x5e5b612d705¢c) AS signed) * 15)

(DG cen e it i o' e e retiveGormons At SareAns 5 L MITRE

61

Blind SQL Injection

The full string is passed as the parameter which is used to build
the SQL statement. Notice that no quotes were used!

1 AND sleep (cast ((SELECT (SELECT table_name from
information_schema.tables WHERE table_schema=database() LIMIT 1 offset 0) regexp
0x5e5b612d705¢c) AS signed) * 15)

TG e nrss s o o s oo et s st e s MITRE

62

Blind SQL Injection

Now that we can get each character and perform a TRUE/FALSE
test against it, we simply write a script that maps the database.

= |s the first character between 'a' and 'p'?
— If yes, then is the first character between 'a' and 'h'?
= |f yes, then is the first character between 'a' and 'd'?
— If yes, then is the first character between 'a' and 'b'?

o If yes, then is the first character 'a'?
— If yes, then the first character is 'a'.
— If no, then the first character is 'b'.

o If no, then is the first character 'c'?
— If yes, then the first character is 'c'.
— If no, then the first character is 'd'.

— If no, then is the first character between 'e' and 'h'?

63

Exercise #3 : authenticate.cgi

#usrbin/per -
use s

#
Copyight (c) 2011-2014, The MITRE Corporation
All nghis reserved.

#

permitied provided that the folowing condions are met:
#

thislist

ofconditons and the follawing discaimer.

#
#

#

listofcond

materaks provided with e dsirbution

*Niner the nams of The MITRE Corporation nor he names of s contbutors may be
#

#

#

¥

#

prcr wikten permission.

THE COPYRIGHT| 1S ANDANY
EXPRESS OR MPLIED WARRANTIES, INCLUDING, BUT NOT LIVWITED TO, THE IPLIED WARRANTIES
Y, AED. IN NO EVENT

SHALLTHE COPYRIGHT O/NER OR CONTRBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, NCIDENTAL

SPECIAL EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING. BUT NOT LIMITED T0, PROCUREMENT

OF SUBSTITUTE DATA.)
THEORY OF LIABILITY, STRICT LIABLITY, OR

#TORT (NCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTARE,

EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

¥
#File - authentcate cg
*

History - 19-sep-2011 (Larry Shieds) ntal version o s code
#

Summary. thenthey
ara directed back t the g page.
#

use CGl qa standard;
use CGLRequast

use CGL-Session

use CGH-Cookie

use DBL

use MIME :Bseb;

use ib “etclapache2modules’;
use DBAU,

100

10:Fle;
use URL:Esca
use Digest-MDS qu{mds_hex);

64

my Sogi = new CG;
tokokfor i
Iftne
asafie
#1 e hmp drectory.
= S
! fend) Sdohost Sabusar, and
#Sobow coms from e DBAUhom e
my $dsn = "DBlmysqtdatabase=Sdoname host=Sabhost’
= ! die

my Sth=new 0:Fie:
Sthoopent>> mpiacosssiog og):
my Sdate = scalarfocalme)

mySreq = naw CGLRequest

my Suname = Sreq->param{user);
my Soward = Srec->paramd password

(convert

Suname = i unescape{Suname):

#we wil bs comparing hese hashes to authenticate e user

myShashp = mdS_hex(Spmced);

and password

5 "SELECT
Sag-vexecute;

(ERDO rcontunece ctnrviss notc. s work s censed under a reatve Commons AtributonShareAske 3. Lcanse

MITRE

64

Exercise #3 : authenticate.cgi (cont.)

102 #Hinorow

2, then the login e
103 # usemams and password. Nobfythe user and ask them 1o ry agan. If a matching row was found, hen login
104 # suooseded. .

106 ifSsaborows =0)
108 # Print the cpsning pars of the HTML page.
110 print“Content-type texthimlaln';

" prnt <<END;

nead>
15 <terLogin<lite>

imageslinSOR pg” border=) (><d>
121 <td valign="middle"><n1>The 'SOR Appication<h1><d>

4 <I-#niude vetua="men b’ -
<t

125 <h>Login Falurech2>
2 END

132 Scheck>erecute(Suname);

140 if (Scheck->rows == 0) {

" print $fh "Sdate: Login as Suname failed - no such user'n’,

2 rint “<p>Invalid usend: Suname. Please check your userid and try again.</p>".
s s
i print $fh "Sdate: Login as Suname failed - incormect password (Spword). "
s e Posom

146)
18 # Close the repared satemen s we o longar nesd it

150 Scheck->drish

#Complets e HTML pags 1o be sent as he response.

footer Himi®

peint<l-#include vet
peintend b

Jelse (

4l name, and
can retrieve them later when nesded.

my (Sfst. Slast, Sadimin) = Ssq->fetchrowaay;
my Sname = Sérst Slast

Ssession->param(‘authuser, Suname);
Ssession->param(name, Sname)
Ssession->param(‘admin’, Sadmi

#is0 save the admin staus to the cooke.

my Sadmincoske = Sag->cookief name=>insqradmin’ alue=>'Sadmi')

aemi Ommerwiss,
#log the authentic

if(Sacmn) {
it S *Sdate: Login by admin user Suname.

Jesa (

pint S "Sdate: Login by normal user Suname.

Shocoss;
Ssgiofish
Sdoh->disconnsct,

IO o chr i st i s Conmor ot e, MITRE

65

Worksheet #3

[CWE__|File _______|Line# [Description |

GO ot erso s o e G oo 30 MITRE

66

Findings #3

[CWE__|File_______|Line# [Description |

CWE-20

CWE-328
CWE-89

CWE-117
CWE-79

CWE-532
CWE-204
CWE-391
CWE-384
CWE-807
CWE-117

e otherwise

authenticate.cgi 84-85 Missing Data Validation
authenticate.cgi 94 Reversible One-Way Hash
authenticate.cgi 99 SQL Injection

authenticate.cgi 141,144 Log Forging

authenticate.cgi 142 Cross-site Scripting
authenticate.cgi 144 Info Exposure Through Log File
authenticate.cgi 140-146 Response Discrepancy
authenticate.cgi 157 Unchecked Error Condition (e >1 case)
authenticate.cgi 158 Session Fixation

authenticate.cgi 171 Untrusted Input in Security Decision
authenticate.cgi 177,180 Log Forging

67

Story #4 : Heartbleed

The Heartbleed Bug was a serious vulnerability in the popular
OpenSSL cryptographic software library.

= April 7, 2014
= Steal info protected by SSL/TLS
— secret keys

— usernames and passwords
— sensitive content
®= Widespread

— high profile services were vulnerable

Nothing you could do as a user!

Heartbleed image licensed under the Creative Commons CCO 1.0 Universal Public Domain Dedication license, author is Leena Snidate, retrieved April 15, 2014, from https./
commons.wikimedia.org/wiki/File:Heartbleed.svg

The Heartbleed bug occurs because of a chain of two distinct mistakes in the code. The
first is an inconsistency in the stated length of the message body, and the body’s actual
length. This type of weakness is described in detail by CWE-130 : "Improper Handling
of Length Parameter Inconsistency". Following this weakness is an out-of-bounds
memory read which is described in CWE-125 : "Out-of-bounds Read".

68

CWE-125 : Out-of-Bounds Read

@ Heartbeat request
(normal)

If you are really there,
send me this 4 letter word: “blah”

"blah"

Heartbleed request
Attacker (attack)

If you are really there,

send me this4 letter word: "blah*

“blahSome_secret_info_that_only_
belongs_on_the_server_for_40000_letters

Server

Heartbleed Explanation image licensed under the Creative Commons Attribution - Share Alike 3.0 Unported license, original uploader was SomeUser953, retrieved April 15, 2014,

from https://commons.wikimedia.org/wiki/File:Heartbleed_bug_explained.svg

[EROO cxceptunee tnevise ot this work i ensed undor a Creativs Commons Atsbuton SharsAlke 3.0 License

MITRE

69

Don't Reuse Passwords

Even if you create the strongest password, never write it down,
and protect it via best-of-breed encryption ...

It just takes one bug in someone else's code to potentially leak it
to a thief ...

If you reuse that password across different sites, then all your
data/money/identity is at risk.

70

Exercise #4 : create.cqi

1 Asrbiper-w
2 usesict;

3

4

5 %

& #Copyright (c) 2011-2014, The MITRE Corporation

7 #Alnghis reserved

[

9 3

10 # permitted provided tha he folowing conditons are met:

0o

2 oK thslist

13 & of conditions and the folowing discaimer.

" oK his

15 & listofcond

16 # matersks provided wih e dsirbution.

17 & *Naifie the nams of The MITRE Corporation nar e names of s contrbutors may be

B

19 & piorwriten pamssion.

n #

0 & THE COPYRIGHT| 1S ANDANY
22 #EXPRESS OR MPLIED WARRANTEES, INCLUDING, BUT NOT LIMITED TO, THE PLIED WARRANTIES
7 v, AED. IN NO EVENT

24 # SHALLTHE COPYRIGHT OVWNER OR CONTREUTORS BE LIABLE FOR ANY DIRECT, INDIRECT. NCIDENTAL
25 #SPECIAL EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT IMITED TO, PROCUREMENT
2% #OF SUBSTITUTE DATA.)
27 THEORY OF LIABLLITY, STRICT LIABLITY, OR

28 #TORT (NCLUDING NEGLIGENCE R OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTIARE,

20 #EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

¥
3 #File: createcg
#

35 History - 19-sep-2011 (Larry Shilds) inifilversion of tis code
#

#
3B & Summary. Th Note th
30 # approved by an adminisirator befors it bscomes valc

#

43 use CGl quistandard’

44 use CGL-Request

45 useDBE

4 use MIVE:Basebi;

4T use ibleilapachedimodules”;
use DBAU,

print“Content-ypetexthimlain’

#Thestan N

71

#
#<HTML>
<HEAD>
<TTLE>Account Creation<TITLE>
#<HEAD>
#<800Y>

it stat e ("Account Cressio;

HTTP rasponse. It locks lke:

¥
pags thatwil be displayed tothe user.

print <<END:
<table border=0>
@
<t></d>
<t valign="middie"<h1>The InSOR Applicain<hnt>
<
1

menu el >

my Spword = rec->param(pwcrd ;.
$5q = Sreqparam{sa)
my $sa = reqoparamysa.

e DBAUN o fe.

my Sdsn = DB mysqt database=Sdoname host=Sdohost;

#Valdate that

admirisirato tht they wil have to approve the request.

(ERDO rcontunece ctnrviss notc. s work s censed under a reatve Commons AtributonShareAske 3. Lcanse

MITRE

71

Exercise #4 : create.cgi (cont.)

Oor engthislast)

Dorlenghissa)
print"<QoEror<Zon';

it <Al ks ara reqired and must contan data <fp>i”

) ergiSpword) < B)

prin*<hEror<hin’

print"<p>Password must beat east 8 characters i g i’
jese

iffength(Sirs)
engthiSo

my Shashp = mdS_hex(Spmcrd):
uriess (Scbh>dof INSERT INTO users (uname. pword, state, s, 5a, it ast. admin)
VALUES (Sunams''Shashp'0,Seq. Ssa' Sirst Slast 0))) {
pint“<h2>Database Enor<h2>ir
pint"<p>"Sdbhosmsr . “</pin’,

Yelse(

pint“ep>Your You y

Close up the SOL object and isconnect from the daiabase.

Ssqpiish
Sdoho>disconnact,

Print the bottom par of e HTML respanse.

peint<L-#ncude vetuai="Hootar A’ -
peintend b

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAike 3.0 License.

72

MITRE

72

Worksheet #4

[CWE__|File _______|Line# [Description |

GO ot erso s o e G oo 30 MITRE

73

Findings #4

[CWE__|File________|Line# [Description |

CWE-20

CWE-521
CWE-328
CWE-89

CWE-???
CWE-209
CWE-759
CWE-778

@NOION] [R—GE————

create.cqi
create.cgi
create.cqi
create.cqgi
create.cqi
create.cqi
create.cqgi
create.cqgi

101-102 Incomplete Data Validation
105-107 Weak Password Requirements
109 Reversible One-Way Hash
110-111 SQL Injection

110-111 Overwrite Existing Account

113 Info Exposure by Error Message
n/a No Salt

n/a Insufficient Logging

74

Story #5 : Denial of Gaming Services

New DosS attacks taking down game sites : Ewitch)
deliver crippling 100Gbps floods w b orIWItch

TSN 1yitch s the world's leading video platform and
‘community for gamers with more than 45 million
visitors per month. We want to connect gamers
around the world by allowing them to broadcast,
watch, and chat from everywhere they play.

Twitch Is Turning Into The Netflix
* OfSpectator Gaming

ed by Google and Apple. No. 4 on th

+ DDoS Amplification attacks
» Brings down the gaming server

» Player has nothing to broadcast
* Money isn't made

http://arstechnica.com/security/2014/01/new-dos-attacks-taking-down-game-sites-
deliver-crippling-100-gbps-floods/

http://www.twitch.tv/p/about
http://readwrite.com/2014/04/02/twitch-xbox-one-ps4#tawesm="0BIftGgykwW3wm

http://www.npr.org/blogs/alltechconsidered/2014/04/04/298775179/twitch-boosts-a-
new-pro-category-video-game-player

Different Types of DoS

@9 Sustained Engagement

[EROO cxceptunee tnevise ot this work i ensed undor a Creativs Commons Atsbuton SharsAlke 3.0 License

76

MITRE

This slide is used to bridge the conversation from the previous story about DDoS to the

code review exercise related to resource locking.

76

Exercise #5 : admin/index.cgi

#usrbin/per -
use s

#
Copyight (c) 2011-2014, The MITRE Corporation
All nghis reserved.

#

permitied provided that the folowing condions are met:
#

thislist

ofconditons and the follawing discaimer.

#
#

#

listofcond

materaks provided with e dsirbution

*Niner the nams of The MITRE Corporation nor he names of s contbutors may be
#

#

#

¥

#

prcr wikten permission.

THE COPYRIGHT 15" ANDANY
EXPRESS OR MPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
Y WED. INNO EVENT
SHALLTHE COPYRIGHT OYANER OR CONTRBUTORS BE LIABLE FOR ANY DRECT. INDIRECT. NCIDENTAL
SPECIAL EXEMPLARY, OR CONSEQUENTIAL DAMAGES (NCLUOING. BUT NOT LINITED T0. PROCUREMENT
#OF SUBSTITUTE DATA.)
THEORY OF LIABLITY, STRICT UABLITY, OR

#TORT (NCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTARE,

EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

¥
#File - admininex.og
*

History - 19-sep-2011 (Larry Shieds) ntal version o s code
#

#
Summary.
#

use CGl g standard;
use CGL-Session

the server wil ¥y toretieve

matches pros d

my Scgi = new CGI

77

e user back 1 the login page.
uniess (definedSssssion->param‘authusar))
peint Seg->redirec i focahostioghinogn.caf):

e,

Ganerate headar information
e contenttype o texthm,

prin Sgi>headerf-type => texihim,

#Thestan Hn HTTP response.

printstart_Feml (Report Page”)

sponse. This
#page that il be dispaped tothe user.

pint <<END:
<table border=0>
@
<ti></d>
midde*><h1>The InSCR Application<int><he>
<
<table>
<inchude vinuel="menu hanl" >
<
>
END
active ata tme. place alock fie
#
The code below
#otest Ithe fle axists, "

my: mpladminloglock'.
if (- Slockle)
print "<p>ERROR: Cannot securs admiricg lodc <poi’

e,

#Thelockis not place,so create .

cpen(FH,>mplacmaioglck).

(ERDO rcontunece ctnrviss notc. s work s censed under a reatve Commons AtributonShareAske 3. Lcanse

MITRE

77

Exercise #5 : admin/index.cgi (cont.)

101
102

Grab the vaus of the adimin flag rom the cookis, Tis value shauld be either 30 or a 1. it s ot then somsthing s wrong and
p Throw an err tnelock,

my Sacmin = cooki(nscradmin);

if(Sadmin 1= 'S
peint"<g>ERROR: nsqradiin cooke not passing an int valus7<ipoi™
peint end b

the user s not an admin, then do not rant them access 1 s page. Throw an ertr,femove th lock, and exitthis
#a
uness (Sadimin)

prnt*<p>You are not an admin. You cannot acosss thase pages. <P
peintend el

wnink(Siocidle);
et

dmn. Dispay Inks 1 the various admin

functionaity

print“Please select the admin fucton desred:
';
pint "<
int << eet=approve.cgi>Approve Pending Acoounts</>';
iAdd User to 8 Groupeie><lis”

print << fref=createreport ri>Add a New Report<ia><i>';
print <>,
pint<--fincude vitualfooter bl -
#The end i 0 HI espor
pint end_hei
eted. o the ock fomthe servec

o(FH).
wninkiSlockfie)

[EROO cxceptunee tnevise ot this work i ensed undor a Creativs Commons Atsbuton SharsAlke 3.0 License

78

MITRE

78

Worksheet #5

[CWE__|File _______|Line# [Description |

GO ot erso s o e G oo 30 MITRE

79

Findings #5

[CWE__|File_______|Line# [Description |

CWE-565 admin/index.cgi 105 Reliance on Cookie w/out Validation
CWE-625 admin/index.cgi 106 Permissive Regular Expression
CWE-460 admin/index.cgi 110 Incorrect Cleanup on Error Condition
® MITRE

80

Story #6 : Tinder Triangulation

If you have three (or more) distance measurements to a target from known
locations, you can get an absolute location of the target using triangulation.
This is similar in principle to how GPS and cellphone location services work.

= Tinder is a dating app tinder

= Shows singles in your area
= Gives distance to a potential match

The attack
— create 3 fake tinder accounts

— set locations around where the
target may be located

— plug the returned distances into
a common triangulation formula

(E DG scopthere civrvise notet thiswerk s cnsed udera Creatve Commans Atsbuion-ShareAske 3.0 Liense MITRE

http://blog.includesecurity.com/2014/02/how-i-was-able-to-track-location-of-any.html

Data Flow

Understanding data flow is an integral part of secure code review.
It enables you to know which data could be controlled by an
adversary and which data can be trusted.

" source to sink mapping o (O SRS poeen
()

= tainted data leads to exploitation

SOURCE
ﬁ strUser @getParameter(”w' >)
2 strPwd = request.getParameter ("pass
3
4| string strQuery = "SELECT * FE
5 WHERE 1 I
6 AND password !
7
o .
@WUery(strQuery, db connection); J
SINK
IETDIT o ctaris e, s o' e tr rsiveGommors At e 30 i MITRE

82

Exercise #6 : admin/approve.cgi

Hstioiperl
use stict
use CGl qutstandard,
use DB

2
3
4
5
6 useMME:Basebt;
7
8
9

use ib letclapacheinodules
use DBAun

0 pint <<END

1 Contentaypeitexthiminin

2 <>

3 <hea>

" <ttle>Account Creation<de>

15 <heat>

® <oy

7 <t borter=0>

1

19 <ttp<ing src="lmageslnSOR png” border=) <td>
» <8 valign="middl"><nt>The NSQR Applcation<hi><id>
2 @

2 <tavl:

2 <t-Fdud vituai=menu it ->

24 <ta>

5

% e

7

28 mySoodle="kmpiadninioglock';

28 if Sockie) |

o print” <pPERROR: Canot secure adrinlog lock </pin’
3 print*<bodyoin”

2 peint <l

B exit

u)

s

36 cpan(FH Ampladmiiogiock

a7

3 mySadmin = coolie{insradmin);

39 uniess (Sadmin)

© print* <p>You are ot an admin. You cannot access tese pages <ipi
a pint<bodyoin”
a2 pint "<
@ clse(FH
a wninkiSiockie)
s et
%)
a
48 mySdsn = DBmysqbdatzbase=Sdbname hostsSabhost;
o =08l dis
50

peint*<h2>Acccunt Actatcn< 2>\

my $sql = Sdoh->preparei'SELECT unams FROM users WHERE state=0')

ecute

uriess (Ssglorows)

prnt"<p><t>No accounts to approve <p>”
yelse

print"<tabla border=1>1n.

pent "<

pnt® cthoUser Name<ioin;

Pt <thoApprowe<ibon’

nt* <tholake Admincnoi

Ssqofetchrow amay) {
P e

Pt <bSomfORASN’
pint*

pint*
ot "<
prnt"<fablesin’

print<l-#nclud vetua="Hootechim’ -,
pent*<lody>”
pent "<l

>firish
Sdoh->disconnact,

chose(FH)
wnink(Siockdle);

IO o chr i st i s Conmor ot e, MITRE

83

Exercise #6 (cont.) : admin/doapprove.cgi

scbiniper
stret

uss COl quistandard!
uss DB

it <<END;
Contentypatenthimiinin
<>

<nead>
<te>Aocount Actvaton<ite>

<head>

<booy

<table bordr=0>

@

<t><img src="mages/InSQR png’ border=0 <>
jn="middle"><h1>The InSQR Application</n1><s>

a0
my Sadin = cookia{ nsqradrin
urless (Sadmi) {

print"<p>You are not an admin. You cannot acosss these pages </pin’
prnt*<loodypin’,

peint"<himl>”

exit

}

my Sdsn = 'DBLimysql database=S dbname host=Sdbhost:
my Seon

my Suname = param(uname|
my Sadmin =0
Sacmin = 1 (¢efineciperamy sdmi

my Ssd = Sdbh->prepare UPDATE users SET state=1, admin=Sadrin WHERE urame=7")
unless

print*<h2>Account Actuated <2’

print<t=#include vinual
pint“<body>i
print“<hm>*

Ssqhonish
Sabhodiscomect

[EROO cxceptunee tnevise ot this work i ensed undor a Creativs Commons Atsbuton SharsAlke 3.0 License

footer bl '

84

MITRE

84

Worksheet #6

[CWE__|File _______|Line# [Description |

GO ot erso s o e G oo 30 MITRE

85

Findings #6

__

CWE-565
CWE-460

CWE-79

CWE-414

n/a

CWE-565

CWE-20

CWE-209
CWE-778

admin/approve.cgi
admin/approve.cgi
admin/approve.cgi
admin/approve.cgi
admin/doapprove.cgi
admin/doapprove.cgi
admin/doapprove.cgi
admin/doapprove.cgi
admin/doapprove.cgi

admin/doapprove.cgi

38

49
67-69
n/a
n/a
28

39

46
n/a

Missing copyright and license info
Reliance on Cookie w/out Validation
Incorrect Cleanup on Error Condition
XSS

Missing Lock Check

Missing copyright and license info
Reliance on Cookie w/out Validation
Improper Data Validation

Info Exposure by Error Message
Insufficient Logging

MITRE

86

Story #7 : Facebook and XSS

Detailed ion of the Cross-Site Scripting ility on Facebook
Facebook makes use of PHP scripts. The following script became vulnerable to cross-site scripting some time
k ive_uploader.php
. uploader. php?
controller_ic ¢ upload=1

* XSS not limited to text fields
* No <script> tag needed
* Note that this code supports ads!

d=test’]); olert(focebook test): //

alert(facebook test;

https://www.acunetix.cc i Irity

(E DG scoptunersctnrvise note tis work s censee e a reaive Commons Atiuion-ShareAks 3.0 License MITRE

Code to support ads.

controller id was supplied by the user and was then used directly inside a script tag.

https://www.acunetix.com/websitesecurity/xss-facebook/

88

Exercise #7 : reports.cgi

1 Asrbiper-w
2 usesict;

3

4

5 %

& #Copyright (c) 2011-2014, The MITRE Corporation

7 #Alnghis reserved

[

9 3

10 # permitted provided tha he folowing conditons are met:

0o

2 oK thslist

13 & of conditions and the folowing discaimer.

" oK his

15 & listofcond

16 # matersks provided wih e dsirbution.

17 & *Naifie the nams of The MITRE Corporation nar e names of s contrbutors may be

B

19 & piorwriten pamssion.

n #

0 & THE COPYRIGHT| 1S ANDANY
22 #EXPRESS OR MPLIED WARRANTEES, INCLUDING, BUT NOT LIMITED TO, THE PLIED WARRANTIES
7 v, AED. IN NO EVENT

24 # SHALLTHE COPYRIGHT OVWNER OR CONTREUTORS BE LIABLE FOR ANY DIRECT, INDIRECT. NCIDENTAL
25 #SPECIAL EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT IMITED TO, PROCUREMENT
2% #OF SUBSTITUTE DATA.)
27 THEORY OF LIABLLITY, STRICT LIABLITY, OR

28 #TORT (NCLUDING NEGLIGENCE R OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTIARE,

20 #EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

¥
3 #File: authentcate cg
#

35 History - 19-sep-2011 (Larry Shilds) inifilversion of tis code
#

Summary.
30 #en presents any matching fepons back 0 the user.
#

43 use CGl quistandard’:

44 use CGl-Session

45 useDBE

4 use MIVE:Basebi;

4T use ibleilapachedimodules”;
use DBAU,

8y L
e session d Fom sither 1f e servar
matches an exising session, hen i reales and saves a new sessicn.

mySeqi=new GG,

e user back 1 the login page.

uniess (defined|(Ssession->param ‘authuser))
Ssession->clear

csete
pint Scg-orediect it focahostcghbintogn. i)
it

Note
#the usar s redircted t his page.
my Sauthuser = Ssession->paramauthuser’
my Sfllname = Ssession->param(name’);
! fen)
#he DBAUN om e
my $dsn = DBlmysqtdatabase=Sdoname host=Sabhost

Q1= Sdohpregare('SELECT e, ports -
WHERE prject N (SELECT project FROM pojects WHERE unams=7)|
Sscfoexecute(Sauthusar);

Print e top part of e HTML resporse.

peint*Content-yps texthimlan’
peintstart_Feml (Report Page)
pent <<END;

<table border=0>

@

<tp<img stc="lmagesInSQR g’ border=0 <>
<t vaign="middle"><h1>The InSCR Application<in1><s>

<>

“menu benl" >

<atie>
<-ginchade vir
<>

EIDG] ot erso s o s s o o3 MITRE

88

Exercise #7 : reports.cgi (cont.)

Ak he personalized reeing o the g of e pege.
it *<h2>Good day fllname, <h2

A the nformation abous the reparts ound i the database to

if ($sah>rows == 0) (

print*<p>You have no reparts avalable for viewing </p>r”

yelse {
print"<p>You have thefolcwing reports svalabie for review-<poin';
pent*<iabl border=151

pint"<x><th>Proect Namach><thoReport Neme< </’
whis (my (§.5¢.8p) = Ssqe>kstchow_armay){
il " "

pint*<aable

Print the bottom par of e HTML respanse.

print*<L-ginclude vitual=foter bl
peint end b

Close up the SOL object and disconnect from the database.

Ssqpoinish
Sdohdisconnsct,

Except where otherwise noted, this work is licensed under a Creative Commons Attribution-ShareAike 3.0 License.

MITRE

89

Worksheet #7

[CWE__|File _______|Line# [Description |

GO ot erso s o e G oo 30 MITRE

90

Findings #7

__

CWE-20
CWE-20
CWE-79
CWE-79

DO xceptunere ctneruise noed, s work s consed undora Cr

reports.cgi
reports.cgi
reports.cgi
reports.cgi

Missing Data Validation

72 Missing Data Validation
103 XSS
114 XSS

91

Story #8 : Password Reset & Social Engineering

Even a well thought out "forgot my password" feature can be
hacked!

= pick an application to attack (e.g., Gmail)
= stand up a Selenium server

= create a fake survey (free coupons)

= send a phishing email

= ask the user for email address

" initiate password reset on target

= pass Captcha to be solved

= strip questions and ask victim
= explain SMS verification code

— “Hey you have to go through a verification process to download this software package. Please
enter your mobile number. We will send a verification code through Google to that number”.

= change password

http://www.ivizsecurity.com/blog/penetration-testing/how-i-can-reset-your-gmail-password-an-mitm-based-social-engineering-attack/

(E DG scopthere civrvise notet thiswerk s cnsed udera Creatve Commans Atsbuion-ShareAske 3.0 Liense MITRE

Selenium is a software testing framework for web applications. Selenium can automate
browser locally or remotely. http://seleniumhg.org/.)

92

Exercise #8 : reset.cqi

Hstioiperl
use stict

2
3
4
5 %
6 #Copyight (c) 2011-2014, The MITRE Corporation
7 #Alnghis reserved

[

9

0 &
1 #Fi:rseteg

12 # Hishory- 19-5ep-2011 (Lary Shiees) il version of s codle
5 auser atne T
u

15

®

7 wecot

@

19 myScgi=newCG;

»

21 pint Scghoheaderttype => texthin)

2

23 pintstart hii(Password Resef;

25 print <<END;

% <table border=0>

7 @

B <ti><Ad>
2 <t valign="middie"><h1>The INSCR Applicaion</1><15>
o

3

2

B

u <poihat s the useid for your account?<

s <form method="post” action="log-binfesetchalleng g™

® <table>

a7 @

@ <t algnerght><boUser ID<t>

3 <t>cinput name="usar” type="text><i>

© <

a <

@ <t colspan=2 algn=center><input type="submit value="Subrmit ><18>
@ <t

“

a5 <-finclude vinuel="fostec il >

% END

a
48 printend peni

[EROO cxceptunee tnevise ot this work i ensed undor a Creativs Commons Atsbuton SharsAlke 3.0 License

MITRE

93

%

Exercise #8 (cont.) : resetchallenge.cgi

1 #hstonped 51 jeise(

2 sestic 52

3 8 m ($50) = Ssqholetchrow,_aray;

4 5

5 % 5 pint“spoFor st

6 #Copyight(c) 2011-2014, The MITRE Corporation 5 print<p><0> Quesion:<k> SsqP<ipon’

7 Al nghts eserved. s pintorm method=post scion=Icg-binfesetaccount cgi>in’;
[£ print"<table>i™

9 5 pint

0 # & print® <t algnnghi>Answer <An"

1 # Fil - resetchalenge cgi 61 nt* ! type='s ! type=hidden'
12 # History 10-52p-201 (Lany Shielcs) nifal vrsion o s oode &2 "

13 #Summary 6

" # 6 pe 3 ¥
15 3

® 3 print"<talesin’

17 useCal 6 print <o’

1 6

19 use MINE:Basebd; 0)

20 use ibletdapache2imodules’; ™

21 use DBAUN, 71 print"<-#ncde vitual< ootee i

z 72 pentend_heml

23 myScgi=newCGl; i

24 " nsh

25 mySuname = Scgiparam{user) 75 Sabhodsconnes

%

7 fdatabsse=Sdbname host=Sdshost”

B dis s

2

30 my$sql= Sdbh->preparal’SELECT sq FROM users WHERE uname=7");
31 SagoexeoutelSuame);

33 print Seghoheader(ype => texthin)
34 pentstart himi{Password Resef’;
35 prin <<END;

® <table bordar=0>

a7

@ <ta><img stc="imagesInSCR pog’ border=0 <>
kY <t vaign="midde"><h1>The InSQR Applicaion</n1><Ns>
@ <

a <abi

a2 <-include virual="lmenu b

Py <>

4 END

s

4 i (Ssakorows ==0)(

a

@ print "< Emor<h2in';

a9 pent*<poC ystem. Please

50

9 and try again <o’

[EROO cxceptunee tnevise ot this work i ensed undor a Creativs Commons Atsbuton SharsAlke 3.0 License

MITRE

94

Exercise #8 (cont.) : resetaccount.cgi

Hstioiperl
use stict

#

Copyight(c) 2011-2014, The MITRE Corperation
All nghis reserved.

#

#
il resetaccountcgi
isory - 19-sep-2011 (Lary Shsis) nfl version of s code
Summary

#

use CGL

use MIME: Baseb;
use ib etclapache2modules”;
BAM,

my Scgi= new CG;

my Suname = Scgi>paramiuname];
my $5a = Sogh>paramsa)

dsn = Dtmysqfdatahass=Sdbname host=Sdnhost,

die

ySsal= PSELECT uname FROM
$sghexaute(Surame Ssal.
print Scgioheadert-ype => texthtm)
print tart_ i Password Resec
pint <<END;
<table border=0>
@

<ta><img src="images/InSCR pog’ border=0 <>

<t vaign="midde"><h1>The InSQR Application</n1><As>
.
<tinchte Jmenu beml”
oo
[
peint "< Ermorh2in';
pent

iy ($50) = Seq>fetchrow,_aray;

prnt"<poH ”
pent*you wil be abl to remembsr <ip>i”

pent*<form methad="post acion="og-binfesetpassward cgi>in';

print*<tabl:

e
pent "<’
pent*<fable>in®
LR

print*<L-gincuds vitual=ootec

peintend_hami;

Ssgoiish
Sdohoodisconnact,

[EROO cxceptunee tnevise ot this work i ensed undor a Creativs Commons Atsbuton SharsAlke 3.0 License

MITRE

95

96

Exercise #8 (cont.) : resetpassword.cgi

Hstioiperl
use stict

2
3
4
5 %
6 #Copyight(c) 2011-2014, The MITRE Corperation
7
8
9

All nghis reserved.
#

0 &
11 # il resepassword.cg
12 # History- 19-5ep-2011 (Lary Shiees) il vrsion of s codle

13 # Summary

uo#

15

1

17 useCal

1

19 use MINE:Basebd;

20 use ibletdapache2imodules’;

21 use DBAUN,

22 use Digest-MDS quimds_hex);

2

24 myScgi=newCGl;

5

26 mySuname = Scgiparamyuname’;

27 my Spword = Sog->param(pword)

28 my Shashp = mdS hex(Spwore)

2

30 my Sdsn = DBmysadatabase=Sdbname host-Scbhost
3 = dis @ s
2

33 mySsql= Sdoh->prepare'UPDATE users SET pword=?, state=1 WHERE uname="Suname

3 Ssgooexecut(Shaste)

36 print Scgrohaadertype => i)
a7 printstat. himi(Passwors Reser):
3 print<<END:

E <Bble border=0>

@ P

a1 <t><>

2 <3 valgn="middle><h1>The InSQR Applicaion<h ><15>
@ <>

“

5 <t-sinclude e

i <>

a o Your nomalyto pots <p
@ <t-sinclude virua="ootechinl >

8

EN
S0 peintend himi

[EROO cxceptunee tnevise ot this work i ensed undor a Creativs Commons Atsbuton SharsAlke 3.0 License

MITRE

96

Worksheet #8

[CWE__|File _______|Line# [Description |

GO ot erso s o e G oo 30 MITRE

97

Findings #8

__

CWE-640
CWE-20
CWE-79
CWE-79
CWE-20
CWE-79
CWE-20
CWE-89
CWE-807
CWE-620
CWE-759
CWE-778

resetchallenge.cgi
resetchallenge.cgi
resetchallenge.cgi
resetchallenge.cgi
resetaccount.cgi

resetaccount.cgi

resetpassword.cgi
resetpassword.cgi
resetpassword.cgi
resetpassword.cgi
resetpassword.cgi

resetpassword.cgi

25
56
61
25-26
62
26
33
33
n/a
n/a
n/a

Weak Password Recovery
Missing Data Validation
Cross-site Scripting
Cross-site Scripting

Missing Data Validation
Cross-site Scripting

Missing Data Validation

SQL Injection

Untrusted Input in Security Decision
Unverified Password Change
No Salt

Insufficient Logging

MITRE

98

99

Story #9 : Netgear Command Injection

"Don't exploit the buffer overflow
because the command injection
that immediately follows it is
easier!"

“', SOME NETGEAR ROUTERS OPEN TO REMOTE AUTHENTICATION
9| BYPASS, COMMAND INJECTION

here, as it so often does, is i W Follow @dennist

jint command Programming Language Security
ed int ell command P g
f(). Thisis p ly the

slnerability

t. It

Root!

TG e nrss s o o s oo et s st e s MITRE

http://threatpost.com/some-netgear-routers-open-to-remote-authentication-bypass-
command-injection/102689

100

Exercise #9 : dostatus.cgi

1 Asrbiper-w
2 usesict;

3

4

5 %

& #Copyright (c) 2011-2014, The MITRE Corporation

7 #Alnghis reserved

[

9 3

10 # permitted provided tha he folowing conditons are met:

0o

2 oK thslist

13 & of conditions and the folowing discaimer.

" oK his

15 & listofcond

16 # matersks provided wih e dsirbution.

17 & *Naifie the nams of The MITRE Corporation nar e names of s contrbutors may be

B

19 & piorwriten pamssion.

n #

0 & THE COPYRIGHT| 1S ANDANY
22 #EXPRESS OR MPLIED WARRANTEES, INCLUDING, BUT NOT LIMITED TO, THE PLIED WARRANTIES
7 v, AED. IN NO EVENT

24 # SHALLTHE COPYRIGHT OVWNER OR CONTREUTORS BE LIABLE FOR ANY DIRECT, INDIRECT. NCIDENTAL
25 #SPECIAL EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT IMITED TO, PROCUREMENT
2% #OF SUBSTITUTE DATA.)
27 THEORY OF LIABLLITY, STRICT LIABLITY, OR

28 #TORT (NCLUDING NEGLIGENCE R OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTIARE,

20 #EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

¥
3 #File: dostatuscgi
#

35 History - 19-sep-2011 (Larry Shilds) inifilversion of tis code
#

#
38 # Summary. Ths scipt
#

43 use CGl-Request

45 mySogi=rewCOlL;

9 for e SOR
48 #nsed 1o be adressed

51
2
&

&

R REESCSEESRREAR IS FFY FANIN IZTRIRRLBITBLELELE

o7

100

sub check fls {
print“Complted fle scan: InSOR fls al unctioning property.
Sub chack_db{
pent Test

sub check senver
print “Compl d

Ganerate headar information
e contenttype o texth,

prin Sgiheaderf-type => texshim

#The st KN TP respanse.

peintstart_pem"Status Functions)

¥
pags thatwil be displayed to the user.

peint <<END;
<table border=0>
@

<t<img src="lmagesInSQR png border=0 <>
<t vaign="middle"><h1>The InSR Application</n1><g>

<>

<atie>

<-finchde vinual="imenu heml" >

<@
<n>Status Resuls<in2>
END
‘eheck par ™
perop s scrpt. The
» @ the the lastfunch
og->param check)
K Sche
eal(Sfunctin)
pint* <"
pent S8 158
pent"<lpoin

Comgose e foote for the HTML page being generated for e respanse.

prnt*<L-gincu vitual=Hootec i >
pent end e

EIDG] ot erso s o s s o o3 MITRE

100

Worksheet #9

[CWE__|File _______|Line# [Description |

GO ot erso s o e G oo 30 MITRE

101

Findings #9
[CWE___[File ______lLine# |Descripton
CWE-20 dostatus.cgi 90 Missing Data Validation

CWE-78 dostatus.cgi 92 OS Command Injection

® s MITRE

102

Story #10 : Target Data Breach

MITRE

http://krebsonsecurity.com/2014/02/email-attack-on-vendor-set-up-breach-at-target/
#more-24313

http://kansasfirstnews.com/2014/04/17/cyber-cops-target-hackers-may-take-years-to-
find/

103

104

Exercise #10 : logout.cgi

#usrbin/per -
use st

#
Copyight (c) 2011-2014, The MITRE Corporation
All nghis reserved.

#

permitied provided that the folowing condions are met:
#

ofconditons and the follawing discaimer.

#
#

#

listofcond

materaks provided with e dsirbution

*Niner the nams of The MITRE Corporation nor he names of s contbutors may be
#

#

#

¥

#

prcr wikten permission.

THE COPYRIGHT HOLDES 15" ANDANY
EXPRESS OR MPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
Y WED. INNO EVENT
SHALLTHE COPYRIGHT OYANER OR CONTRBUTORS BE LIABLE FOR ANY DRECT. INDIRECT. NCIDENTAL
SPECIAL EXEMPLARY, OR CONSEQUENTIAL DAMAGES (NCLUOING. BUT NOT LINITED T0. PROCUREMENT
#OF SUBSTITUTE GOODS OR SERVICES; LOSS DATA OR PROFITS;)
THEORY OF LIABLITY, STRICT UABLITY, OR

#TORT (NCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTARE,

EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

¥
#File-logoutcgi
*

History - 19-sep-2011 (Larry Shieds) ntal version o s code
#

#

Summary

#
use CGI:
use CGl:Session

e v
Hthe anid tat
my Scgi = new CGL
Sesson(undef,Scgi,)

2

$sessicns

>ciear(

Ssasscn->dsletl)

bs partof the HTTP.

#the contentype t texthimi.

pintScgioneader-4pe

#The stat HIML
s

Yexthtn)

TTP response. It looks ke

#<HIML

't

<HEAD:

<TITLE> Logout Page <TLE>

<HEAD:

#<800Y>

pint stan himi(Logout Page”):

Il
page that wil be dsplayed to the user.

otint <<END;
<table border=0>

TP resporsz.

src=magesInSOR png” border=0 <>
“middle"<h1>The INSCR Appliction<h><1s>

fmenubimt >
<
<
<p>You are naw kogged out ofhe INSOR appication <ip>
<-finchude vinual="footer el >
0
#Theend HIM {TTP response. tlacks ke
¥
#<B0DY>
FUHIML
pint end_hiri;

(ERDO rcontunece ctnrviss notc. s work s censed under a reatve Commons AtributonShareAske 3. Lcanse

MITRE

104

Worksheet #10

[CWE__|File _______|Line# [Description |

GO ot erso s o e G oo 30 MITRE

105

Findings #10

[CWE__|File _______|Line# [Description |

GO ot erso s o e G oo 30 MITRE

106

107

Closing Remarks

EIOTIL contaee omsetes o wr rsso rt aes stsrce Lss MITRE

107

A Combined Approach

7N

Tool Assisted |

_/ Secure Code

Should

= |
| Review ;
\\ /:
/
/
Pair } — Email Pass-
Programming | Around

/

S

[EROO cxceptunee tneuiss ot this work i ensed undor a Greative Commons At SharsAlke 3.0 License

Over-the-

er

Vi

MITRE

A Secure Code Review looks to leverage elements from each of the different types of

peer reviews.

108

109

Secure Code Review Process

Static
Analysis
Tools

Manual
Inspection

Developer
Interview

Findings

Report

(E DB scoptwhers cthervise note tis work s oonsed undor a reative Commons Atbution-SharoAl 3.0 Licenss MITRE

109

Exercises

Together we performed a full review of The InNSQR Application.

©.© @ Mozilla Firefox

Edit

[) [[8)] httpocalhosticgi-bin/dostatus.cgi

5 Most Visited v @) Getting Started

@) http:/fiocalhosty...bin/dostatus.cgi | &

The InSQR Application

InSQR Home = € Reports Status Admin

Status Results

Completed server validation: Server is functioning properly.

© 2010-2011, The MITRE Corporation

110

External Resources

Best Kept Secrets of Peer Code Review
http://www.lexingtonsoft.com/assets/white/documents/best-kept-secrets-of-peer-code-review.pdf

Microsoft: Writing Secure Code, 2"d Edition
http://www.microsoft.com/learning/en/us/book.aspx?ID=5957 &locale=en-us

CERT: Secure Coding in C and C++
http://www.cert.org/books/secure-coding

Viega/McGraw: Building Secure Software
http://collaboration.csc.ncsu.edu/CSC326/Website/lectures/bss-ch1.pdf

OWASP Code Review Guide
https://www.owasp.org/index.php/OWASP_Code_Review_Guide_Table_of _Contents

NIST Static Analysis Tool Exposition (SATE)
http://samate.nist.gov/SATE.html

SAFECode: Fundamental Practices for Secure Software Development, 2" Edition
http.//www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf

=)

111

Thank You!

EIOTIL contaee omsetes o wr rsso rt aes stsrce Lss MITRE

112

