Rootkits:
What they are and how to find them

check yo self before you wreck yo self!

Part 1

Xeno Kovah —2010
xkovah at gmail

lce Cube is a Friendly Rootkit
Advocating for Rootkit Detection!

You betta check yo self
fore you wreck yo self
cause I'm bad for your health
| come real stealth

O

2

http://www.youtube.com/watch?v=AJR62vsAg-0

All materials is licensed under a Creative
Commons “Share Alike” license.

 http://creativecommons.org/licenses/by-sa/3.0/

You are free:

to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

®E

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible 3
license.

© ®

May your skill tree overgroweth...

Required

(partial) rOxOr Skill Tree

R ded
ecommende ("x86-prereq derived")

Approved

B Intended Future Malware :
Exploits 3
Ana'VSiS {2 day, Corey Kallenberg)
Advanced x86: S s

Real Mode

{3day, John Butterworth)

Advanced x86: Rootkits Reverse Engineering
Virtualization {2 day, Xeno Kovah, April 2011) (2 day, Matt Briggs)

(2day, David Weinstein)

Vulnerabilities &

Intermediate x86 Life of Binaries Exploits 1
2 day, Xeno Kovah) (2 day, Xeno Kovah) (2 day, Corey Kallenberg)

About Me

Security nerd - generalist, not specialist

Been following rootkits for quite a while, but
mostly as just a side thing to keep an eye on.
But therefore | was ready to strike when some
work came up in the area.

Mostly made of 4 elements - Carbon,
Hydrogen, Nitrogen, and...Oxygen!

http://www.youtube.com/watch?
v=d0zION8xjbM#t=2m21s

About You?

 Name & Department
* Why did you want to take the class?

* Which jelly belly flavors do you hate?
(Because | decided the "which is your
favorite" is too hard a question)

o o .
"
' -~

Crushed Pineapple Buttéered Popcoin

OO

Plum Coconut

Margarnta Lemon Drop Caramel Com Cotton Candy Wild Blackberry
p \\
| ey
Bluabeary Raspbeiry Wataimaelon AL WS Cieam Soda

van/ Chony

OO D

A2 WS Root Beer TutticFruitti Chocolate Pudding Cantaloupe

Tangerine Bubble Gum Orange Juice Beiry Blue Cinnameon

Juicy Pear Snzzlmo Cmnamon Jalapeno Toasted Marshmallow Lemon Lime

DOV

Qt_Peppere Stianberry Daiquit Orange Sheat

Licotice

Green Apple Top Banana Strawderry Cheesecake Cappuceino

190 DD

Pink Grapefiuit Rad Apple Island Punch Caamel Apple Steawbarry Jam

+
.
'\

Grape Jelly French Vanilla Peach Pina Colada Peanut Butter

Day 1 -
Day 1 -
Day 2 -
Day 2 -

Agenda

Part 1 - Rootkit stuff

Part 2 - More rootkit stuff
Part 3 - 77?7

Part 4 - Profit!

Miss Alaineous

* Questions: Ask ‘em if you got ‘em
— If you fall behind and get lost and try to tough it out until you
understand, it s more likely that you will stay lost, so ask
questions ASAP.
« Browsing the web and/or checking email during class
IS a good way to get lost ;)

2 hours, 10 min break, 1.5 hours, lunch, 1 hour w/ 5
min break thereafter

What does it all mean?!?!

Try to have a little more practical class

Practical in the sense that one way or another you'll
learn about new tools and how you can use them to
detect rootkits.

But simultaneously | want to reinforce how much
better off you are for having taken the other classes ;)

Don't have enough time to get heavy into the
attribution of changes. That would be things like
"What module allocated this memory? Where in the

module is the code which causes the changes?" etc

— Also need the RE class for that. You DID register for the RE class already
didn't you?

10

why, Why, WHY!?1?

Why have a homework before anyone has learned anything?!

Understand what people (sponsors/
subordinates/you) would actually go through/
see when trying to detect rootkits (if they even
knew to try.)

Understand that some tools are more equal
than others when it comes to detecting things,
and the danger of a false sense of security.

* Provide a concrete before-and-after picture of
the necessity of this type of information for
even being able to understand what the good
tools are trying to tell you

« Have the tools in-hand to then apply them to
other systems

11

Watchugot? Watchuget?

« You’ ve got:

Rootkits VM

* You're going to get

Anonymized homework writeups from everyone in all the
instances of this class

Rootkit detector capability comparison matrix

TiddlyWiki describing how to install the rootkits (targeted at
other instructors) + some reverse engineering rootkit
material cut from the RE class

A collection of more detectors, and a collection of more
proof-of-concept rootkits from places like rootkit.com (be
warned, some of the PoCs will be detected by AV, so don't
use on your work laptop.)

Eventually, 2" "for fun" rootkit VM :D, which still just uses
techniques from this class, but takes away most of the easy
win detection mechanisms

12

Textbook pros/cons

SURVERTING THE WINDOWSE KERNEL YY

ROOTKITS Click to LOOK INSIDE!
*H 74

Professional

Rootkits

Click to LOQK |N_S|Q

The Rootkit

Michael A. Davis Seon M. Bodmer Aaron LeMastons

2005 - Rootkits: Subverting the Windows
Kernel

* Pro: Written by two people who
contributed a lot to the foundations of
understanding what’ s possible with

rootkits

* Con: ...but starting to show its age, with
lack of many newer techniques.

* Con: Without existing OS internals
knowledge, could be too much complexity
too fast. Windows Internals book by MS
definitely helps to explain what they’ re
talking about at some points.

14

2007 - Professional Rootkits

* Pro: Builds up a rootkit of increasing
capabilities, with explanations of the

code

« Cons: Adds nothing new to the field,
just basically a reference for example
code for the most stable versions of
various techniques (not always the most
stealthy techniques.)

* E.g. the type of thing which can be used
to make the Sony Rootkit style software

15

2009 - The Rootkit Arsenal: Escape and Evasion
in the Dark Corners of the System

* Pro: More inclusive of newer techniques like bootkits than the
Hoglund/Butler book.

* Pro/Con: Comes with lots of code, BUT...Doesn’ t allow you to
download the code from anywhere, so if you want to experiment
with it, you have to re-type it (or go find the original)

« Con: A bunch of the code is apparently just re-written from other
people s example code (e.g. files on rootkit.com). Also either
doesn’ t know how to program (use -> not *. in C!) or he was just
trying to further obfuscate ripped off code.

« Con/Pro: Author comes from a forensics background rather than
having OS knowledge, and thus he throws in a bunch of
forensics stuff (which | question the relevance of, because |
consider anti-forensics to be its own separate field from rootkit
hiding). But if you haven't had exposure to anti-forensics, then
it's a pro as you can learn more.

16

2010 - Hacking Exposed: Malware &
Rootkits

* Pro: Good up to date reference which covers
rootkits as they are seen in the wild, with many
references to specific malware instances

* Pro/Con: Overall does a decent job, but while
rootkits are sexy and therefore get cover billing,
they’ re still a minority content area (around 120
pages of how rootkits work and 34 pages of
detection).

« Con: A lot of the detection recommendations
are un-actionable, though that’ s a problem for
anyone talking about the area.

« Con: Almost no source code

17

What is a rootkit?

(or more importantly, how will | define it for this class)

It" s an overused term is what it is
It's neither a root, nor a kit

An attacker tool

NOT how they get root

"A rootkit is a set of programs which *PATCH* and
*TROJAN™ existing execution paths within the
system. This process violates the *INTEGRITY™ of

the TRUSTED COMPUTING BASE (TCB)." - Greg

Hoglund, http://www.phrack.com/issues.html?
Issue=55&id=5

The only universal truth about rootkits is that they
are trying to hide the attacker’s presence

2 basic categorization schemes though

18

WON'T SOMEBODY PLEASE
THINK OF THE TAXONOMY?!

http://spennypost.blogspot.com/2010/10/fbu-bonfire-night-strike.html

Lord of the rings around the rosie

* Ring 3 — Userspace-Based
* Ring 0 — Kernel-Based
« “Ring -1" — Virtualization-Based
— Intel VT-x(Virtualization Technology for x86), AMD-V (AMD Virtualization), Hypervisor subverted
* "Ring -1.5?" - Post-BIOS, Pre OS/VMM

— e.g. Master Boot Record (MBR) "bootkit"

— Peripherals with DMA(Direct Memory Access) (this can be ring 0, -1, or -1.5 depending on
whether VT-d is being used)

— Not a generally acknowledged "ring", but the place | think it fits best
« “Ring -2” — System Management Mode (SMM)
 "Ring -2.5" - BIOS (Basic Input Output System), EFI (Extensible Firmware Interface)

— g(KAc:Ka/Iuse they are the first code to execute on the CPU and they control what gets loaded into

— Not a generally acknowledged "ring", but the place | think it fits best

“Ring -3” — Chipset Based
— Intel AMT(Active Management Technology)

But BIOS could use VT-d to prevent DMA, and it initializes peripherals, so...?
Yeah, things get squishy at the bottom with non-real-rings. 20

Stealth Malware Taxonomy
Joanna Rutkowska 2006

 http://invisiblethings.org/papers/malware-taxonomy.pdf

Type 0: Uses only legitimate system features
Type 1: Modifies things which should be static
Type 2: Modifies things which are dynamic
Type 3: Exists outside the operating system

Type 4: Exists outside the main CPU/RAM
— Added by me

21

Example Type 0 Malware

Spyware

— There's nothing illegitimate about a cell phone map application
wanting to access your location data to show the local map. It's
only when it starts sending that location with your PIl to a 3 party
location that it starts to become questionable.

Trojans

— There's nothing illegitimate about allowing users to install
programs. And there's no realistic way for a user to assess the full
extent of all that program's capabilities. When a program contains
capabilities which arguably have nothing to do with its advertised
purpose, that's when it becomes questionable.

Bots

— There's nothing illegitimate about allowing an application to make
network connections. It's only when it's making thousands of them
as a part of a DDoS that's when it becomes questionable.

Hide in plain sight
— Programs can name themselves whatever the developer wants. But
when the developer wants it to be named misleadingly similar to a

"trusted" software vendor like Microsoft's files, that's when it
becomes questionable.

22

Detecting Type O

“Out of scope” for the taxonomy ;)
— Also mostly out of scope for this class

Blacklisting
— Signature-based Anti-Virus

Behavioral analysis

— Triumfant, QualysGuard, most AV to some
degree

Filesystem integrity checking
— Tripwire, Bit9, SolidCore (for HBSS)

23

Why is Type 0 going undetected?

« Companies are overly invested in
blacklisting technology. Explosion in
polymorphism undermining signature-
based approaches.

* Whitelisting technologies often require
dedicated maintainers to understand
“expected” or “known good” state.
Thus they are typically not targeted at
home users.

24

Stealth Malware Taxonomy
Joanna Rutkowska 2006

 http://invisiblethings.org/papers/malware-taxonomy.pdf

Type 0: Uses only legitimate system features
Type 1: Modifies things which should be static
Type 2: Modifies things which are dynamic
Type 3: Exists outside the operating system

Type 4: Exists outside the main CPU/RAM
— Added by me

25

Example Type 1 Malware

* Most in-the-wild rootkits are a mix of
Type 1 and Type 2

* The following are a quick glimpse at
some of the techniques we're going to
be looking at in this class.

26

AT Hook

Some DLL

IAT HOOK

CODE

Some Rootkit

Black Hat Briefings

From: http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Silberman-Butler.pdf

SSDT Hook

System Call

ZwCreateFile:

mov eax,0x25
mov edx, 0x7££fe0300

Call [edx)

System
Service
Descriptor
Table

USER MODE KERNEL MODE
Black Ha. Briefings

From: http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Silberman-Butler.pdf

Kernel or module

Some rootkit

Inline Hook

L L
0]
]
Nt!NtCreateFile
' System Call imp 0008:11223344
[]

ZwCreateFile: 4

mov eax, 0x25

mov edx, 0x7££e0300
{ Sl Kernel or module

0x25
——
B
5]
o
. System
Service Some rootkit
s Descriptor
Table
USER MODE KERNEL MODE
=1Fs > — = e

From: http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Silberman-Butler.pdf

Bootkit Lives here (from disk), but in order to do anything of consequence it has to keep
hooking each s sequent thing to keep control.

N Windows Boot Process

BIOS * Master Boot Record » Partition Bootloader [—
—1{ ntildr / bootmgr — OS Loader —| winload.exe —
— NT kernel

Ntldr = 16-bit stub + 0S Loader (just binary appended)
Windows Vista splits up ntldr into bootmgr, winload.exe and winresume.exe

Windows XP Windows Vista Processor Environment
ntldr bootmgr Real Mode

OS Loader OS Loader Protected Mode

- winload.exe Protected Mode

NT kernel NT kernel Protected Mode + Paging

.
From http://www.stoned-vienna.com/downloads/Presentation.pdf

Detecting Type 1

— Here comes a new challenger! Virus Blok Ada (the people
who found Stuxnet) have been significantly improving their
anti-rootkit (Vba32ark|t exe), and since it has extra removal
capabilities built in, I'm diggin' it. Shoryuken!

Tuluka, GMER, RootkitUnhooker, IceSword, Helios Lite,
RootkitRevealer, System Virginity Verifier(SVV), WinDbg !
chkimg, VICE, RAIDE, chkrootkit, etc,

See http://www.antirootkit.com/software/index.htm and http:/
ntinternals.org/anti_rootkits.php

[VMWatcher] for out of band integrity checks

Strider [GhostBuster] for cross-view of hiding things on
disk (but you can generally detect bootkits with memory
integrity checks, and you can’t get GhostBuster anyway)

31

Preventing Type 1

« PatchGuard. Windows x64

— Unintended consequences”? Pushes Type
1 to Type O or Type 27?

— Still need detection? x64 bootkit in the wild
[3]
* [NICKLE]. Assumes virtualized system

— What about VM escape? Still need
detection?

— [HyperSentry]

32

Why are Type 1 going undetected?

* None of the previously listed software is
meant to be run in an enterprise;
they’ re meant to be run manually on

single systems.
* The best detectors need deep system
knowledge in order to interpret the

results. Administrators may not have
this knowledge.

33

Stealth Malware Taxonomy
Joanna Rutkowska 2006

 http://invisiblethings.org/papers/malware-taxonomy.pdf

Type 0: Uses only legitimate system features
Type 1: Modifies things which should be static
Type 2: Modifies things which are dynamic
Type 3: Exists outside the operating system

Type 4: Exists outside the main CPU/RAM
— Added by me

34

Example Type 2 Malware

* Direct Kernel Object Manipulation
[DKOM]

— Developed specifically to avoid using Type
1 hooking, because it was recognized to be
eminently detectable (presented hook
detector VICE at same time)

» Kernel Object Hooking [KOH]

— Generalization of existing techniques, with
suggestions of some example Windows

objects to hook

35

Process Linked List Before DKOM

Hiding Processes Windows

KPRCB

*CurrentThread

*NextThread
*IdleThread
ETHREAD
KTHREAD <«
ApcState =1
EPROCESS EPROCESS [« EPROCESS
KPROCESS KPROCESS KPROCESS
LIST ENTRY { | . LIST ENTRY { | __LIST ENTRY {
FLINK 'ﬁ " __FLINK 4—] "I FLINK
BLINK } 7 BLINK } BLINK }

From: http://www.blackhat.com/presentations/win-usa-04/bh-win-04-butler.pdf

Process Linked List After DKOM

sy

Hiding Processes - Windows

KPRCB

*CurmrentThread
*NextThread
*IdleThread

ETHREAD
KTHREAD

ApcState u

EPROCESS EPROCESS EPROCESS
KPROCESS KPROCESS KPROCESS
LIST_ENTRY { LIST_ENTRY{ LIST ENTRY {
FLINK < LK »FLINK

BLINK } BLINK } ' BLINK I

From: http://www.blackhat.com/presentations/win-usa-04/bh-win-04-butler.pdf

KOH

« Hook function pointers in dynamically allocated objects
In the kernel

* typedef struct {

SHORT Type,

UCHAR Number:

UCHAR mportance;

LIST ENTRY DpcListEntry;
PKDEFERRED ROUTINE DeferredRoutine;
PVOID DeferredContext;
PVOID SystemArgument1;
PVOID SystemArgument2;
PULONG Lock;

} KDPC, *PKDPC;

38

Detecting Type 2

 Plenty of things handle canonical DKOM
through “cross-view™ detection
— VBA32AR, GMER, lceSword, RootkitRevealer,
F-Secure BlackLight, Sophos Anti-Rootkit, etc
* |n some cases you may be able to
automatically infer semantic constraints on
data structures and verify them at runtime

[Petroni][LKIM]
» Recent academic interest in KOH
— [HookMap], [HookSafe], [HookScout]

39

Why are Type 2 going undetected?

* Same reasons as for Type 1, and...

* No good tools to detect KOH. Detecting
KOH system-wide (as opposed to
specific things attackers are known to
use) looks like it could induce
unacceptable performance penalty.
Also KOH detection could be more
prone to race conditions, and attempts
to eliminate these conditions would add
more performance overhead. More work
needed there.

40

Stealth Malware Taxonomy
Joanna Rutkowska 2006

 http://invisiblethings.org/papers/malware-taxonomy.pdf

Type 0: Uses only legitimate system features
Type 1: Modifies things which should be static
Type 2: Modifies things which are dynamic
Type 3: Exists outside the operating system

Type 4: Exists outside the main CPU/RAM
— Added by me

41

Example Type 3 Malware

“Ring -1” — Virtualization-Based
— Intel VT-x(Virtualization Technology for x86), AMD-V (AMD
Virtualization), Hypervisor subverted

"Ring -1.57" - Post-BIOS, Pre OS/VMM
— e.g. Master Boot Record (MBR) "bootkit"

— Peripherals with DMA(Direct Memory Access) (this can be ring 0,
-1, or -1.5 depending on whether VT-d is being used)

— Not a generally acknowledged "ring", but the place | think it fits best
“Ring -2” — System Management Mode (SMM)

"Ring -2.5" - BIOS (Basic Input Output System), EFI (Extensible
Firmware Interface)

— because they are the first code to execute on the CPU and they
control what gets loaded into SMM

— Not a generally acknowledged "ring", but the place | think it fits best
“Ring -3” — Chipset Based
— Intel AMT(Active Management Technology)

42

Blue Pill Idea (simplified)

; v
Native Operating [PROC bluepill]
System : ;

[enable SVM J

\ 4

¢ prepare VMCB
T ’ v
Y

\ 4
""ﬁ VMRUN f-

‘ Blue Pill
; /| Hypervisor

4----Ku-

check
VMCB.ezxitcode

only during
first call

"Teeeseseseseeey

RET from bluepill PROC,
never reached in host mode,
_~"| only executed once in guest
e mode

‘.—‘q--..-------o-.----.-

Native Operating System continues to execute,
but inside Virtual Machine this time...

source: J. Rutkowska, Black Hat USA 2006, © Black Hat
© Invisible Things Lab, 2007 42
43
From http://www.invisiblethingslab.com/resources/bh07/IsGameQOver.pdf

The heart of SVM: VMRUN instruction

HOST

(Hypervisor)
) _ u
instruction flow 0
(outside Matrix) 1
< i}
Guest state and AN 0
specification of N\ :
what guest events AN
are intercepted AN}
.y \.

//
//
/
<=

VMCB --ceeeeeeeenennnee. » VMRUN |-~
//""‘\
/»/'/‘, ' s
- '
_.f// . i
— . E
resume al the next instruction n *
after VMRUN (exit code 0 i
written to VMCB on exit) :
i
0
I
il
\ 4

source: J. Rutkowska, Black Hat USA 2006, © Black Hat
© Invisible Things Lab, 2007

Virtual
Machine

instruction flow
kY inside guest
v
(] v
"
"
0
n
0
n
i)
0
n
i
\\
H N\
PN

guest has been
intercepted

From http://www.invisiblethingslab.com/resources/bh07/IsGameQOver.pdf

44

41

Long Mode

CSL=1 SMI#
64-bit Compatibility
Mode Mode RSM
CS.L=0
CS.L=0
EFERLME=1, CRAPAE=1| | CROPG=D
then CRO.PG=1 then EFERLME=0 _ :
s Batteries Not
RSM SMI# | Included!
3]

EFLAGS.VM=0 : Reset

Protected

Mode
J EFLAGS.VM=1
A

! CROPE=1| |CROPE=0 Reset .-
Reset

A ’R;I\<—» SMI

SMI# RSM

System
Management
Mode

Mode «— RSM

.’ 513-206.208

‘.. Reset

Figure 1-6. Operating Modes of the AMD64 Architecture

45
From http://support.amd.com/us/Processor TechDocs/24593.pdf

Detecting Type 3 — Ring -1

Due to hype surrounding ring -1 rootkits, people
had incentive to find them.

“Don’t Tell Joanna, The Virtualized Rootkit Is
Dead” [8]

— Exhibits same misunderstanding of “technically
detectable vs “people can actually detect it in
practice”

Tlmlng side-effect detection

“Compatibility is Not Transparency: VMM
Detection Myths and Realities”[9]

In addition some people have suggested the
classic approach of “just go lower”, as in, scan
from ring -2 or ring -3 (e.g. [DeepWatCh])

46

Prevent/Detect Type 3 — Ring -2

* There are mechanisms in both Intel and AMD’ s
virtualization extensions to “deprivilege” the code
running in SMRAM, by basically virtualizing it, and
limiting the code’ s view of memory so that it can’ t
scribble on your OS/hypervisor.

— AMD also has an option for the hypervisor to intercept
SMIs and fake out a transition directly to SMM without
requiring writing the separate minimal hypervisor which

lives in SMM — talk on *implementing* this at
ShmooCon 2010 [SMMshmoo]

* Not aware of any commercial vendors who do this
yet.

» Can theoretically “just” integrity check SMRAM, iff
you have access, which requires getting there flrst
or going through the same hole as an attacker

47

Hooked AMT
function that is
executed periodically
(regardless of
whether AMT is
enabled or not in the
BIOS)

AMT rootkit

A

DMA access

v
Host OS (e.g. Windows)

Chipset ME/AMT:
All code executed by
the chipset's ARC4
processor, even if the
host in sleep mode!

Host Memory:
all code executed
on the host CPU(s)

48

From http://www.invisiblethingslab.com/resources/bh09usa/Ring%20-3%20Rootkits.pdf

FIXME: add NIC infection

49

FIXME: add KBC infection

50

Detecting Type 4 — Ring -3

» Use other ring -3 detectors and get
there first? TPM can verify a compatible
BIOS, but what about everything else?
[DeepWatch] wasn’ t designed for it, but
can it help?

« Self-attestation [SWATT][SBAP]
[Pioneer]

« SOL?
* Too soon to say

51

Why are Type 3 & 4 going

undetected?

» Cache 227 Not looking for them in the
wild because we’ re not hearing about
them being found in the wild?

* Even if we want to look for them, there
are no tools to help us do so. Have to
roll your own.

» Level of development effort and
hardware-dependencies probably
indicates they will only be used in highly
targeted attacks.

52

Stealth Malware Taxonomy
Joanna Rutkowska 2006

 http://invisiblethings.org/papers/malware-taxonomy.pdf

Type 0: Uses only legitimate system features
Type 1: Modifies things which should be static
Type 2: Modifies things which are dynamic
Type 3: Exists outside the operating system

Type 4: Exists outside the main CPU/RAM
— Added by me

53

They Might Be Giants:
Where your eyes don't go

(rootkit themesong as far as I'm concerned)

Where your eyes don't go a filthy scarecrow waves its broomstick arms
And does a parody of each unconscious thing you do

When you turn around to look it's gone behind you

On its face it's wearing your confused expression

Where your eyes don't go

Where your eyes don't go a part of you is hovering
It's a nightmare that you'll never be discovering

Should you worry when the skullhead is in front of you
Or is it worse because it's always waiting where your eyes don't go?

http://www.youtube.com/watch?v=hqY3kASMFW8

94

Spoiler Alert

* There are ~8 rooftkits leveraging ~10
techniques in the example VM,
depending on how you count.

95

!\1.

WHAT JF... e WHATIF =

vivorw©®’ B 0. WOLVERINE

HAD POS SSED THE fﬁ I-IAD BEEN»,JI 21‘] JRES

A_.~_

T8 . DURING

 What If...we ran GMER on our example
VM?

* (Note to self, try and crowdsource the
Interpretation to start with)

Inline Hooks

if control flow redirect

PE section where (call, jmp)
the hook resides module within module space where
process memory Its redirec_ted to
function name number of bytes 'f(;tdls within a module
process name within module that changed address range
: — ! \
text {C:\WINDDWS‘ssystem32\taskmgr.exe\[1 348] ntdll. dItNtCreateFile 7C30D0AE 1 Byte [ES]
fext CYWINDOWShsystem32htaskmar.exe[1348] ntdll. dilNtQuerySysteminformation 7C30D92E 5 Bytes JMP 10010330 C:\applnitHook. dll
dext CAWINDOWShsystem32\taskmar. exe[1348] kernel32. dillLoadLibraryk </ JCB01AFS 5 Bytes JMP 01AE34CC
dext CAWINDOWShsystem32\taskmar.exe[1348] kermel32. dll CreateProcess'W/ 7C802336 5 Bytes JMP 008B31C3
fext CAWINDOWS\system32\taskmar. exe[1348] kemel32. dlllCreateProcessd, 7C80236B 5 Bytes JMP 003B30CO
fext CAWINDOWShsystem32\taskmar. exe[1348] kernel32. dlllFreeLibrary 7CBNACYE 5 Bytes JMP 00BB3DAS
fext CAWINDOWShsystem32\taskmar. exe[1348] kemnel32. dillFindFirstFileE </ 7CB0EBT1D 5 Bytes JMP D0BB3EED
dext CAWINDOWShsystem32\taskmar. exe[1348] kernel32. dilFindM extFile'w 7CB0EFDA 5 Bytes JMP 008B3F3C
dext CAWINDOWShsystem32\taskmar. exe[1348] ADVAPI32. dIlRegCloseKey 77DDBCZ2Y 5 Bytes JMP 008B4C22
fext CAWINDOWShsystem32\taskmar. exe[1348] ADVAPI32. dIlR egE numKeyE </ 77DD7BD9 5 Bytes JMP 008B4D72
fext CYWINDOWShsystem32htaskmar.exe[1348]) ADWVAPI32. dIlRegE num' alue's! 77DDYEED 5 Bytes JMP D0BB4ES4
process ID (PID) specific virtual memory interpltation of

address where the

change is found changed bytes

(if possible)

Y

Book page 340

lchkimg

* You can also find modifications to static
code/data areas with the !chkimg

windbg command. It checks the version
iIn memory against the file on disk

58

System Virginity Verifier

* http://invisiblethings.org/tools/svv/
SVV-2.3-Src.zip

* http://invisiblethings.org/papers/
rutkowska bhfederal2006.ppt

* Like Ichkimg but tries to apply some

heuristics to the modifications it found to
apply a severity score.

59

PAGE
PAGE
PAGE
PAGE

False Positives

McAfee HBSS HIPS

ntkinlpa.exe!NtConnectPort
ntkinlpa.exelZwh akeT emporaryObject
ntkinlpa.exe!NtSetSecuntyObject
ntkrnlpa.exe!NtOpenProcess

B805431EA 5 Bytes JMP F4343484 \SystemR oot\system32\drivers\mfehidk.sys [Mcafee Link Driver/Mcafee, Inc.)
805BB14E 5 Bytes JMP F4343470 \SystemRoothsystem32\driversi\mfehidk. sys [Mcafee Link Driver/Mcafee, Inc.)
B05BEAFD 5 Bytes JMP F4343A5C \SystemR oothsystem32\drivers\mfehidk. sys (Mcafee Link Driver/Mcafee, Inc.)
805C3EBA 5 Bytes JMP F4343878 \SystemRoothsystem32\drivers\mfehidk. sys [Mcafee Link Driver/Mcafee, Inc.)

60

Stuxnet use of inline hooks

From the Stuxnet Dossier: http://www.symantec.com/content/en/us/
enterprise/media/security _response/whitepapers/w32_stuxnet dossier.pdf

"~\WTR4141.tmp then loads ~WTR4132.tmp, but before doing
so, it attempts to hide the files on the removable drive. Hiding
the files on the removable drive as early in the infection process
as possible is important for the threat since the rootkit
functionality is not installed yet, as described in the Windows
Rootkit Functionality section. Thus, ~\WTR4141.tmp implements
its own less-robust technique in the meantime.

WTR4141.tmp hooks the following APIs from kernel32.dll and
Ntdll.dll:

From Kernel32.dll
— FindFirstFileW
— FindNextFileW
— FindFirstFileExW

From Ntdll.dll

— NtQueryDirectoryFile 61
— ZwQueryDirectoryFile"

Go with what you know...
Import Address Table (IAT) Hooks

If GMER can, it tries to infer

This is the address in the IAT which module space the
where it should (based on the And if there's version _
E xoorts Adaress Table (EAT) \ information in that module, it
of the exporting module pulls that out too
\ \
...... e e oy e e [S
AT W/ INDOWS \system32\DRIVERSAPCIDEX.SYS[HAL. dIWRITE_PORT_ULONG] [F7BE22E] sptd.sys
AT YWWINDOWS \system32\DRIVERSAPCIIDEX.SYS[HAL. dI'READ_PORT_UCHAR] [FS78D71C) sptd.sys
AT MINDOWS \system32\DRIVERSAPCIDEX.SYS[HAL. dIWRITE_PORT_UCHAR] [FS78DFOE] sptd.sys
AT atapi.sys[HAL dINREAD_PORT_UCHAR] [FS78D71C) sptd.sys
AT atapi.sys[HAL.dINREAD_PORT_BUFFER_USHORT] [F978D910] sptd.sys
AT atapi.sys[HAL.dINREAD_PORT_USHORT] [F978D852] sptd.sys
AT atapi.sys[HAL. dIWRITE_PORT_BUFFER_USHORT] [F78EOQEC] sptd.sys
AT atapi.sys[HAL.dI'WRITE_PORT_UCHAR] [FS78DFOE] sptd.sys
AT \SystemBoot\System32\DRIVERSYB042prt. sys[HAL. dINREAD_PORT_UCHAR] [FS7ATCES] sptd.sys
IAT \SystemB oot\system32\DRIVERS \raspppoe. sys[NDIS.5YSINdisR eqisterProtocol] [F1013672] \SystemR oot\System32\vsdatant. sys [Zonedlarm Firewall...
IAT \SystemB oot\system32\DRIVER S \raspppoe.sys[NDIS.SYSINdisOpenddapter] [F10134C8] \SystemR oot\System324vsdatant. sys [Zonedlarm Firewalli...
IAT \SystemBR oothsystem32\DRIVERS \raspppoe. sys[NDIS.SYSINdisCloseAdapter] [F1013CBA] \SystemRoot\System32\vsdatant. sys [Zonedlarm Firewalli...
IAT \SystemB oot\system32\DRIVERS \raspppoe. sys[NDIS.SYSINdisDeregisterProtocol] [F1011C24] \SystemR oot\System32hwsdatant. sys [Zonedlarm Firewalli...
IAT \SystemB oot\system32\DRIVERS\psched. sys[NDIS.SYSINdisDeregisterProtocol] [F1011C24] \SystemR oot\System32hwsdatant. sys [Zonedlarm Firewalli...
IAT \SystemB oot\system32\DRIVERS\psched.sys[NDIS.SYSINdisReqisterProtocol] [F1013672] \SystemR oot\System32\vsdatant. sys [Zonedlarm Firewall...
\ J
! T
This is the module This is the function
doing the importing being imported by
the first module and
exported by the
second
Telling you that This is the module
this is an IAT hook doing the exporting 62

Book page 265

- . =

o L

ot VAL SPNC- e % FARON F—

— ASE ZATA TeuCTOw e

. - -~ ~ -

e o S e 5

r— et WA SSONT CARTNITON k -

s Tenr v ’. L)

L -y vy - 1 -

. — obd ~re B —
. . [P ————

- 4~ IMAGE_DIRECTORY_ENTRY_IMPORT . ML DN O

e . [E—

. i O struct _IMAGE_DATA_DIRECTORY {

Todw -~ .

P —

e hadadiien

L

VU ety T
e o,

tose e -

2ot TRACE WO Y AN AveedOTde

[T —
I NAGE OFTONAL SEADES it

WA AL WRASE THN CAIA

struct _IMAGE_DATA_DIRECTORY {
0x00 DWORD VirtualAddress;
0x04 DWORD Size;

| Portable Executable Format |

—) W Cse LBl v @A St
— SouCue PNl T By e Jwe
Lot wockeied o Mon Cec 35 X004

Image by Ero Carrera

‘ struct |MAGE |MPORT _DESCRIPTOR{

0x00 union{
/* 0 for terminating null import descriptor */

5= 0x00 DWORD Characteristics;
/* RVA to original unbound IAT */

==+ 0x00 PIMAGE_THUNK_DATA OriginalFirstThunk;

:‘ = _' } u;

- 10x04 DWORD TimeDateStamp; /* 0 if not bound,

— * -1 if bound, and real date\time stamp
B e * in IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT
5= * (new BIND)

* otherwise date/time stamp of DLL bound to

* (Old BIND)

*/

~—-| 0x08 DWORD ForwarderChain; /* -1 if no forwarders */
.~ 0x0c DWORD Name;

e /* RVAto IAT (if bound this IAT has actual addresses) */
== PIMAGE_THUNK_DATA FirstThunk;

!

it

Image by Ero Carrera

Review: Import Descriptor

typedef struct IMAGE IMPORT DESCRIPTOR {
union {
DWORD Characteristics;
DWORD OriginalFirstThunk;

}i
DWORD TimeDateStamp;

DWORD ForwarderChain;
DWORD Name;
DWORD FirstThunk;

} IMAGE_ IMPORT DESCRIPTOR;

(from winnt.h)

| think they meant “INT”

// 0 for terminating null\ import descriptor
// RVA to original unbound IAT (PIMAGE_THUNK_DATA)
//Xeno Comment: In reality a PIMAGE THUNK DATA

// 0 if not bound,

// -1 if bound, and real date\time stamp

// in IMAGE DIRECTORY ENTRY BOUND IMPORT (new BIND)
// 0.W. date/time stamp of DLL bound to (0ld BIND)

// -1 if no forwarders

// RVA to IAT (if bound this IAT has actual addresses)
//Xeno Comment: In reality a PIMAGE THUNK DATA

* While the things in blue are the fields filled in for the most common case, we
will actually have to understand everything for this structure, because you

could run into all the variations.

65

typedef struct _IMAGE_THUNK_DATA {
e union {

=2 | 0x00 LPBYTE ForwarderString;

o= | 0x00 PDWORD Function;

| 0x00 DWORD Ordinal;

=== 0xX00 PIMAGE_IMPORT_BY_NAME AddressOfData;

yut;
} IMAGE_THUNK_DATA,*"PIMAGE_THUNK_DATA;

typedef struct _IMAGE_IMPORT_BY_NAME {
0x00 WORD Hint;

0x02 BYTE Namel[1];

} IMAGE_IMPORT_BY_NAME,*PIMAGE_IMPORT_BY_NAME;

ble Executable Format |

Image by Ero Carrera

Review: Import Names Table Import Address Table

(IMAGE_THUNK_DATA array) (IMAGE_THUNK_DATA array)
Import data
structures > 0x014B, loDeleteSymbolicLink <—
ON DISK > 0x040B, RillnitUnicodeString ~ <—

—> 0x01DA, lofCompleteRequest <—

Array of IMAGE_IMPORT_BY_NAME
Structures stored wherever in the file

IMAGE_IMPORT_DESCRIPTOR
OriginalFirstThunk

TimeDateStamp

ForwarderChain

— [y

FirstThunk
0
0
Zero-filled
0 IMAGE_IMPORT_DESCRIPTOR
entry terminates the array
0
0 67

- Graphical style borrowed from the Matt Pietrek articles

Review: Import Names Table Import Address Table

(IMAGE_THUNK DATA array) (IMAGE_THUNK DATA array)
Import data
structures —> 0x014B, loDeleteSymbolicLink >
IN MEMORY > 0x040B, RtllnitUnicodeString I
AFTER |MPORTS —> 0x01DA, lofCompleteRequest >
RESO LVE D Array of IMAGE_IMPORT_BY_NAME \—V—/
Structures stored wherever in the file
IMAGE_IMPORT_DESCRIPTOR
.. . IAT entries now
OriginalFirstThunk point to the ful
TimeDateStamp virtual addresses
_ where the
ForwarderChain functions are
N found in the other
ame — e modiles (ust
FirstThunk ntoskrnl.exe in
- this case)
0
0
Zero-filled
0 IMAGE_IMPORT_DESCRIPTOR
entry terminates the array
0
0 68
- Graphical style borrowed from the Matt Pietrek articles

Review: Import Names Table Import Address Table

(IMAGE_THUNK_DATA array) (IMAGE_THUNK_DATA array)
Import data
structures > 0x014B, NtQuerySysInfo <«
ON DISK > 0x040B, RillnitUnicodeString ~ <—

—> 0x01DA, lofCompleteRequest <—

Array of IMAGE_IMPORT_BY_NAME
Structures stored wherever in the file

IMAGE_IMPORT_DESCRIPTOR
OriginalFirstThunk

TimeDateStamp

ForwarderChain

— EeT

FirstThunk
0
0
Zero-filled
0 IMAGE_IMPORT_DESCRIPTOR
entry terminates the array
0
0 69

- Graphical style borrowed from the Matt Pietrek articles

Review: Import Names Table Import Address Table

(IMAGE_THUNK_ DATA array) (IMAGE_THUNK_ DATA array)
Import data
structures > 0x014B, NtQuerySysinfo >
IN MEMORY > 0x040B, RtllnitUnicodeString I
AFTER |MPORTS —> 0x01DA, lofCompleteRequest >
RESO LVE D Array of IMAGE_IMPORT_BY_NAME \—Y—/
Structures stored wherever in the file
IMAGE_IMPORT_DESCRIPTOR
.. . IAT entries now
OriginalFirstThunk point to the ful
TimeDateStamp virtual addresses
_ where the
ForwarderChain functions are
N found in the other
ame — T modes (ust
FirstThunk ntoskrnl.exe in
- this case)
0
0
Zero-filled
0 IMAGE_IMPORT_DESCRIPTOR
entry terminates the array
0
0 70
- Graphical style borrowed from the Matt Pietrek articles

Review: |AT Hooking

 When the IAT is fully resolved, it is
basically an array of function pointers.
Somewhere, in some code path, there’ s
something which is going to take an IAT
address, and use whatever’ s in that
memory location as the destination of the
code it should call.

« What if the “whatever’ s in that memory
location” gets changed after the OS loader
iIs done? What if it points at attacker code?

71

Review: |AT Hooking 2

» Well, that would mean the attacker’ s code
would functionally be “man-in-the-middle”ing
the call to the function. He can then change
parameters before forwarding the call on to the

origina

back from the function, or simp

origina
status

function, and filter resu

function, and send bac
ne pleases.

ts that come
ly never call the
K whatever

— Think rootkits. Say you' re calling OpenFile. It
looks at the file name and if you' re asking for a file
it wants to hide, it simply returns “no file found.”

But how does the attacker change the IAT

entries? This is a question of assumptions
about where the attacker is.

72

Review: |IAT Hooking 3

* In a traditional memory-corrupting exploit, the attacker is, by
definition, in the memory space of the attacked process, upon
successfully gaining arbitrary code execution. The attacker can
now change memory such as the |IAT for this process only,
because remember (from OS class or Intermediate x86) each

process has a separate memory space.

» |If the attacker wants to change the IAT on other processes, he
must be in their memory spaces as well. Typically the attacker
will format some of his code as a DLL and then perform ‘DLL
Injection” in order to get his code in other process’ memory
space.

« The ability to do something like DLL injection is generally a
prerequisite in order to leverage IAT hooking across many
userspace processes. In the kernel, kernel modules are
generally all sharing the same memory space with the kernel,
and therefore one subverted kernel module can hook the IAT of
any other modules that it wants.

73

Review: DLL Injection

» See http://en.wikipedia.org/wiki/
DLL injection for more ways that this
can be achieved on Windows/*nix

« We’ re going to use the Applnit._ DLLs
way of doing this, out of laziness

* (Note: Applnit DLLs' behavior has
changed in releases > XP, it now has to
be enabled with Administrator level
permissions.)

74

Review: Lab: IAT hooking

* http://www.codeproject.com/KB/vista/api-hooks.aspx

This will hook NtQuerySystemInformation(), which is what taskmgr.exe uses in
order to list the currently running processes. It will replace this with
HookedNtQuerySystemInformation(), which will hide calc.exe

I modlilfi?d that code to use IAT hooking rather than inline (which is much simpler
actually

» Steps:

Compile ApplnitHookIAT.dll

Place at C:\AppInitHookIAT.dll for simplicity

Use regedit.exe to add C:\AppInitHookIAT.dll as the value for the key
HKEY LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT

\CurrentVersion\Windows\Applnit_DLLs (if there is already something there,
separate the entries with a comma)

Start calc.exe, start taskmgr.exe, confirm that calc.exe doesn't show up in the list
of running processes.

Remove C:\ApplnitHookIAT.dll from Applnit_DLLs and restart taskmgr.exe.
Confirm calc.exe shows up in the list of running processes.

(This is a basic "userspace rootkit" technique. Because of this, all entries in this
registry key should always be looked upon with suspicion.)
75

Go with what you know: IDT

If we had run the bhwin_keysniff from IntermediateX86 we would
have seen the following:

INT 0x33 VIACAWINDOWSASystem32hdrivers\KEYSNIFF. sys FIF34660

As it is, we see something like:

Type [Name I Value
INT D=0E ? FIF55440

This indicates that interrupt index OxE in the Interrupt Descriptor
Table (IDT) does not point as its normal location, it points at
memory address OxFOF55A40, and GMER has not been able to
determine which driver, if any, is associated with that memory
range (thanks to another rootkit we'll learn about later.)

Let's do a quick review of what we learned about segmentation
and the IDT. 76

Book page 270

Review: Surprise! No one uses segmentation
directly for memory protection! :D

‘i * On most systems, segmentation is not

‘ providing the primary RWX type permissions,
they instead rely on paging protections.

\

€

- Linear Address Space 4
(or Physical Memory)
Segment -
Rggisters Code FFFFFFFFH
| CS Code- and Data-Segment
. | ss \ Descriptors Not Present
I DS | E— Access Limit 5 Data and
| [Es }—" | BaseAddress L | Stack Jo |
\‘ s /
| Gs
Vol.3a, Sect. 77

3.2.1 Figure 3-2. Flat Model

Review: One more time

One of the segment registers The address you see in
(SS/CS/DS/ES/FS/GS) assembly instructions
\ (implicitly with a CS or SS selector)
Logloal 15 0 31(63) ' 0
Address | S€9. Selector [Offset (Effective Address) |
Y

Descriptor Table

Base Address L
» +

GDT or LDT —>| Desanptor [+]
(depending on the Tl bit
31(63) \J 0
of the segment selector) | Linear Address |

Figure 3-5. Logical Address to Linear Address Translation

78

All entries
In these
tables are
“Segment
Descriptor’
structures

’

Special registers
point to the base
of the tables &

specify their size

Review: GDT & LDT

56

48

40

32

24

16

Global Local
Descriptor Descriptor
Table (GDT) Table (LDT)
T ! !
' TI=0 TI=1
Segment
Selector
56
48
J—
40
32
_<
24
16
— 8
First Descriptor in
GDT is Not Used 0

J 3

GDTR Regqister
| Limit
| Base Address

LDTR Reqister

s

Limit

'

Base Address

Seq. Sel.

Figure 3-10. Global and Local Descriptor Tables

79

Review: Segment Descriptors

« “Each segment has a segment descriptor, which specifies the
size of the segment, the access rights and privilege level for the,
the segment type, and the location of the first byte of the
segment in the linear address space (called the base address of

the segment).”

3 242322212019 1615141312 11 8 7 0

D D
Gl/|L P |S Type 4
8 L

0

| approve L — 64-bit code segment (IA-32e mode only)
of this AVL — Available for use by system software
BASE — Segment base address
summary D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)
DPL — Descriptor privilege level
G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)

TYPE — Segment type

80
Figure 3-8. Segment Descriptor

Review: IDTR Usage

IDTR Register
47 16 15 0

IDT Base Address IDT Limit

i Interrupt

- @ - Descriptor Table (IDT)

Gate for

Interrupt #n (n-1p»8
Gate for

Interrupt #3 16
Gate for

Interrupt #2 8
Gate for

» Interrupt #1 0
31 0

Figure 5-1. Relationship of the IDTR and IDT

Review: Interrupt Gate Descriptor

‘ Note that the two halves
31 lnter:l;;::ia::m B 7 5 4 0 of the offset form a
32 bit address.

D
Pl |0D1T10 00O 4
L

31 16 15 0

DPL Descriptor Privilege Level
Offset Offset to procedure entry point _ _
P Segment Present flag Descriptors not in use should have P =0

Selector Segment Selector for destination code segment
Size of gate: 1 = 32 bits; 0 = 16 bits

D
:] Reserved

Figure 5-2. IDT Gate Descriptors

Winners don't
use drugs!

47

From IDT to Interrupt Handler

IDTR Register
16 15

IDT Base Address IDT Limit

l Interrupt

i T:
- @ - Descriptor Table (IDT)

Gate for
Interrupt #n

(n-1p8

g

S

Gate for
Interrupt #3

16

Gate for
Interrupt #2

8

Gate for
» Interrupt #1

Logical
0 Address

31

0

83

Figure 5-1. Relationship of the IDTR and IDT

15 0 31(63) 0
[Seg. Selector | |_Offset (Effective Address) |
Y
Descriptor Table
Segment Base Address _!
el Descriptor
31(63) Y 0

Linear Address

|

Figure 3-5. Logical Address to Linear Address Translation

Review: IDT Relation to Segments

Destination
IDT Code Segment
Interrupt
Offset Procedure
Interrupt » Interrupt or >4 >
Vector Trap Gate
»
Segment Selector
GDTor LDT
Base
Address
> Segment
Descriptor

84

Figure 5-3. Interrupt Procedure Call

A hint

Type Name Yalue
INT O=0E ? FIF5R440
+
Module VA AWINDOWS system32\driversimm. sys (% hidden) FIF55000-FIFS7000 (8192 bytes)
+ .
Table 5-1. Protected-Mode Exceptions and Interrupts
Vector | Mne- | Description Type Error | Source
No. monic Code
13 #GP | General Protection Fault Yes Any memory reference and
other protection checks.
14 #PF | Page Fault Fault Yes Any memory reference.

The IDT change seems to be due to a module called mm.sys

which hooks the Page Fault handler... Hmm...who do we know
that might want to do that...

85

Review: ASCII Art of Dooooom!

rootkit code | FRAME 1]

Is it 4 #+=cmcccccaa- - f A—— > |]
code | | | [— |
access? | ITLB I I I FRAME 2]
J— | m—— [ER— / | |

| | VPN=12 | | mmmmmm e]

| | Frame=1 | [FRAME 3]

| T — : | |

| e — S [E— |
MEMORY | PAGE TABLES | | FRAME 4 |
ACCESS N —— + []
VPN=12 | mmmm——————- |
l | FRAME 5 |

A | i }

[I DTLB I random garbage | FRAME 6]
[— . S >| |

Is it a | VPN=12 | | |
data | Frame=6 | [FRAME N]
access? temmmm e ——— - |]

[Figure 5 - Faking Read / Writes by Desynchronizing the Split TLB]
86
Book page 516 ntp/mwww.phrack.com/issues htmi?issue=63&id=8

Missed one!

* Turns out the GDT is modified to have a call
gate. While you could see this with manual
windbg inspection using the !descriptor plugin
from the Intermediate x86 class, Tuluka also
detects it:

 Processes | Drivers | Devices] SST GDT ’ IDT \ Sysenter | System threads | Modified code] IAT] Debug regis!

Suspicious Selector Base Lirnit DPL Type System Present Granul Bit mode

o I e e T I I M
* Let's go review call gates quick shall we?

87

Book page 308

Review: Call Gates

("I'm down with Bill Gates, | call him Money for short. | phone him up at home, and | make him do my tech support!"
- Weird Al, "It's All About the Pentiums")

31 16 1514 13 12 11 87 6 54 0
D Type
Offset in Segment 31:16 Pl P P 000 %%rf,?t" 4
L |o/1/1/0]|0
31 16 15 0
Segment Selector Offset in Segment 15:00 0

DPL Descriptor Privilege Level
P Gate Valid

Figure 4-8. Call-Gate Descriptor

«Call gates are basically a way to transfer control from one segment to
another segment (possibly at a different privilege ring, possible at a
different size in terms of whether it's 16/32 bits.)

-But the key point is you don't want people to be able to call to anywhere
in the other segment, you want the interface to be controlled and well-
understood. So calling to a call gate brings code to a specific place ss
which the kernel has set up.

Review: Call Gates 2

The CALL, RET, and JMP x86 instructions have a
special form for when they are doing inter-segment
control flow transfer (normal call, ret, jmps are
intra-segment for reasons which will become clear
shortly.)

Each of them takes a single far pointer as an
argument (though in ret's case, it's popping it off
the stack).

A call gate expects as many parameters as
specified by the "Param Count" field on the
previous slide (max of 32 due to 5 bit field).
Parameters are just pushed onto the stack right to
left like a normal cdecl/stdcall calling convention.

Return value from the far call is returned in eax.

__asm{call fword ptr 0x48:0x12345678};

89

Funny thing that...

 Run GMER while Tuluka is loaded, get:

Type Name Value
INT 0=0E YVPMCADOCUME ~1huser\LOCALS ~ 1\ Tempx70a)MYn3el. sys [Tuluka kemel module/Libertad) BA4BECFOD
Library [** hidden **] @ C:\Documents and SettingstusertDesktop\Tuluka_v1.0.394. 77\ Tuluka_+1.0.394.77 exe [1108] 0=01A4E0000
Library [(** hidden **] @ C:\Documents and Settingshuser\Desktop\Tuluka_+v1.0.394.77\Tuluka_v1.0.394.77 . exe [1108] 0x003B0000
Library [** hidden ** | @ C:\Documents and SettingstuseriDesktop\Tuluka_v1.0.394. 77\ Tuluka_+1.0.394.77 exe [1108] 0x003F0000
C:\Documents and Settings\user\DesktophTuluka_v1.0.394. 774 Tuluka_v1.0.394.77 exe 1108

YO DAWG I'HEARD YOU LIKE
ROOTKITS

—_

-

\

S01PUT A ROOTKIT INYOUR ROOTKIT DETECTOR SO
YOU CAN ROOTKIT WHILE YOU DETECT ROQTKITS

(With thanks to http://memegenerator.net/yo-dawg/ for making that easy!) gg

A portrait of the rootkit as a young
man in the middle

(CC BY-NC-SA 2.0) image by thrill kills sunday pills 91
http://www.flickr.com/photos/27086700@N03/2994587384/in/photostream/

Normal Intra-Module Function Call
WickedSweetApp.exe

l push 1234
call SomeFunc()
add esp, 4

SomeFunc:
mov edi, edi
push ebp 2
mov ebp, esp
sub esp, 0x20

ret

92

Inline Hooked Intra-Module Function Call

WickedSweetApp.exe

|

push 1234
call SomeFunc()
add esp, 4

SomeFunc:
jmp MySomeFunc
sub esp, 0x20

ret

4

/] 3

J

;

WickedWickedDIl.dll

MySomeFunc:
<stuff>

mov edi, edi

push ebp

mov ebp, esp
jmp SomeFunc+5

That reminds me of trig class! 93

Inline Hooked Intra-Module Function Call

WickedSweetApp.exe WickedWickedDIl.dll

MySomeFunc:
<stL;

Mo\
SomeFunc: l rpnuoS\
. 4 UM YV
jmp MySomeStuff < — imp SomeFunc+5

94

Normal Inter-Module Function Call

WickedSweetApp.exe WickedSweetLib.dll
V\ SomekFunc:
push 1234 A AImov edi, edi
call [0x40112C] push ebp
add esp, 4 mov ebp, esp

!
Import Address Table \\ 5 sub esp, 0x20
0x40112C:SomeFunc .

0x401130:SomeJunk ret
0x401134:ScumDunk

95

Normal Inter-Module Function Call

I WickedSweetLib.dlI

WickedSweetApp.exe

push 1234

call [0x40112C]

add esp, 4

Import Address Table
0x40112C:MySomeFunc
0x401130:SomedJunk
0x401134:ScumDunk

WickedWickedDll.d

MySomeFunc:C

rL/\/

call SomeFunc()

ret <

/N7é;)meFunc:

mov edi, edi
push ebp
mov ebp, esp
sub esp, 0x20

ret

96

Normal Inter-Module Function Call

WickedSweetApp.exe WickedWickedDIl.dIl WickedSweetLib.dll

.

mOvcup, COoM
sub esp, 0x20

E ret

Import Address Table
0x40112C:MySomeFunc
0x401130:SomedJunk

0x401134:ScumDunk

97

Normal Interrupt Event

IDTR Register
47 16 15 0
IDT Base Address IDT Limit ntkrnlpa.exe
i . - KiTrap03:
1 escriptor Table . .
><’-_'_-> > Gate for mMov edl, edl
Interrupt #n (n-1pm8
/ J push ebp
(mov ebp, esp
1. Interrupt ke |\ sub esp, 0x20
In%rlrtgp:?b 8 .
< 3: Interrupt Return iret

Figure 5-1. Re})~

Pop quiz, hot shot. What's the
difference between ntoskrnl.exe
@ Kand ntkrnlpa.exe?

Hooked Interrupt Event

pwnsauce.sys

IDTR Register
16 15 0
: Address IDT Limit
Y Interrupt
>(/'F\} - Descriptor Table (IDT)
N’ Gate for
Interrupt #n
£
S
I Gate f?ItS
' nterrupt 3
1. Interrupt e
| Interrupt #2 !
3: Interrupt Retur

DebugHook:
if()
jmp KiTrapO

else
Iret

2

ntkrnlpa.exe

KiTrap03:
mov edi, edi
push ebp
mov ebp, esp
sub esp, 0x20

4: Interrupt Return

Relationship of the IDTR and IDT

99

Hooked Interrupt Event

IDTR Register
16 15 0

» Address IDT Limit pwnsSauce.SysS

i Interrupt

>./_\+ _Descnptor Table (1D

1: Interrupt

il | Ls " t
3: Interrupt Retur e

ntkrnlpa.exe

4: Interrupt Return

Kil
mCcC
pu
mc P
sulb"cSy,OR20

irat
LI YAY

Relationship of the IDTR and IDT

100

Hooked IDT + inline hook

(not common, just saying. be aware of potential to mix and match techniques)

<>

IDTR Register
16 15 0
: Address IDT Limit
Y Interrupt
T . Descriptor Table (IDT)
N Gate for

Interrupt #n (n

Gate for
1: Interrupt>'";‘;‘;;;‘;‘O’j‘3 16

Interrupt #2 8

Gate for
Interrupt #1 0

pwnsauce.sys

ntkrnlpa.exe

3/5: Inte

rrupt Return

bébug Hook: o
()1 C’V’

jmp KiTrap03

DebugHook+fo\
4

AN

lelse

KiTrap03:
mov edi, edi
push ebp
mov ebp, esp
sub esp, 0x20

>jmp DebugHook+x

iret

lationship of the IDTRand IDT

101

Stuxnet trojaned DLL

Figure 18

« Stuxnet used forwarded exports for the
93 of 109 exports in s7otbxdx.dll which
it didn’ t need to intercept.

Step7 and PCL communicating via s7otbxdx.dl|

Step/

Request
code block
fromPLC

Show code
block from
PLCto user.

llllllllll

s/otbxdx dll

2s7blk read

llllllllll

102

From http://www.symantec.com/content/en/us/enterprise/media/security _response/whitepapers/w32_stuxnet_dossier.pdf

Stuxnet trojaned DLL 2

Figure 19

Communication with malicious version of s7otbxdx.dll
Step7
Request s/otbxdx.dll PLC
codeblock Tblk d — ——
fron‘PLC S _rea-..r.

—>§ STL *
* code |

Show code . cszLe 8 DK
block from . block €<
PLCto user. DLk

: Modified

: STLcode . s7otbxsx.dll

H block -

s/blk_read

103

From http://www.symantec.com/content/en/us/enterprise/media/security response/whitepapers/w32_stuxnet_dossier.pdf

Stuxnet trojaned DLL 2

Figure 19

Communication with malicious version of s7otbxdx.dll
Step/

PLC

s/otbxdx dll

« Modified
STL code

NO! I'm the real)
s7otbxdx, | swear!
He's wearing a
mission impossible
style latex mask ~ /

s/otbxsx.dll

104

From http://www.symantec.com/content/en/us/enterprise/media/security _response/whitepapers/w32_stuxnet_dossier.pdf

Stuxnet trojaned DLL 2

Figure 19

Communication with malicious version of s7otbxdx.dll

Step/

s/otbxdx dll

Modified
STL code

~

s/otbxsx.dll

Shut up s7otbxsx!
And btw, what's
PLC's favorite dish?

N J

105

From http://www.symantec.com/content/en/us/enterprise/media/security _response/whitepapers/w32_stuxnet_dossier.pdf

Stuxnet trojaned DLL 2

Figure 19

Communication with malicious version of s7otbxdx.dll
Step/

PLC

s/otbxdx dll

« Modified
STL code

~

s/otbxsx.dll

It's a Luther Burger.
...Blast!

J

106

From http://www.symantec.com/content/en/us/enterprise/media/security _response/whitepapers/w32_stuxnet_dossier.pdf

Further Reading

« Hacker Defender Readme: http://
www.megasecurity.org/trojans/n/
hackerdefender/
Hackerdefender1.00r.html

107

References
(from the early "Rootkits are lame" talk slides)

¢ VMWatCheI’] http://www.csc.ncsu.edu/faculty/jiang/pubs/CCSO07.pdf

* [NICKLE]: nttp:friends.cs.purdue.edu/dokuwiki/doku.php?id=nickle

» [3] “TDL rootkit x64 goes wild”

http://www.prevx.com/blog/154/TDL-rootkit-x-goes-in-the-wild.html

° :-yperSentry] http://discovery.csc.ncsu.edu/pubs/ccs10.pdf

* [HookMap] nttp://iwwwa4.ncsu.edu/~zwang15/files/raid08.pdf

° :-ookSafe] http://www4.ncsu.edu/~zwang15/files/ccs09.pdf

O O kS CO U t] http://www.ecs.syr.edu/faculty/yin/pubs/hookscout-dimva10.pdf

108

References 2

(from the early "Rootkits are lame" talk slides)
e [8] “Don’t Tell Joanna, The Virtualized Rootkit Is Dead”

httpS://www.blackhat.com/presentations/bh-usa-07/Ptacek Goldsmith_and Lawson/
Presentation/bh-usa-07-ptacek _goldsmith_and_lawson.pdf

¢ 9 “Compatibility is Not Transparency: VMM Detection Myths and Realities”
http://www.usenix.org/event/hotos07/tech/full_papers/garfinkel/garfinkel _html/

« [DKOM] “VICE — Catch the hookers’-

http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-butler/bh-us-04-butler.pdf

» [KOH] “Kernel Object Hooking (KOH') Rootkits” -
nttp://www.rootkit.com/newsread.php?newsid=501

° 'DeepWatchJ “Chipset Based AEPproach to Detect Virtualization Malware”

http://www.blackhat.com/presentations/bh-usa-08/ ul)agfin/
bulygin_Chip_Based_Approach_to_Detect_Rootkits.p

109

References 3
(from the early "Rootkits are lame" talk slides)

¢ SWATT] SWATT: SOFTWARE-BASED ATTESTATION FOR EMBEDDED SYSTEMS,
http://sparrow.ece.cmu.edu/~adrian/projects/swatt.pdf

o SBAP] SBAP: SOFTWARE-BASED ATTESTATION FOR PERIPHERALS,
http://sparrow.ece.cmu.edu/group/pub/li mccune perrig SBAP trust10.pdf

¢ :S M M S h mOO] Ring -1 vs. Ring -2: Containerizing Malicious SMM Interrupt Handlers on AMD-V,
http://www.shmoocon.org/2010/slides/containerizing.zip

« [GhostBuster] The Strider GhostBuster Project,

http://research.microsoft.com/en-us/um/redmond/projects/strider/rootkit/

« [LKIM] Linux kernel integrity measurement using contextual inspection,
portal.acm.org/citation.cfim?id=1314354.1314362

» [Petroni] An Architecture for Specification-Based Detection of
Semantic Integrity Violations in Kernel Dynamic Data

http://www.usenix.org/event/sec06/tech/full_papers/petroni/
petroni_html/

110

