Malware Dynamic Analysis
Part 3

http://opensecuritytraining.info/MalwareDynamicAnalysis.html

All materials is licensed under a Creative Commons
“Share Alike” license
http://creativecommons.org/licenses/by-sa/3.0/

You are free:

to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

Under the following conditions:
Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or
tion

your use of the work

Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license

See note r cita

Where are we at?

e Part 3: Maneuvering techniques

— (How malware strategically positions itself to
access critical resources)

— DLL/code injection
— DLL search order hijacking...
* Part 4: Malware functionality

— Keylogging, Phone home, Security degrading, Self-
destruction, etc.

Maneuvering

DLL injection

Direct code injection

DLL search order hijacking

Asynchronous Procedure Call (APC) injection
IAT/EAT hooking

Inline hooking

DLL/code Injection

Load a malicious
DLL/code into one or
more processes

Run malicious code on
behalf of a legitimate
process

Bypass host-based
security software

— HIDS, Personal Firewall

iexplorer.exe

evil.dll

advapi32.dll
gdi32.dll

ieframe.dll

IE process’s memory

DLL Injection Methods (1)

* Applnit_DLLs
— HKLM\Software\Microsoft\Windows NT
\CurrentVersion\Windows\Applnit_DLLs is set to
a space or comma separated list of DLLs to load
into processes that load user32.dll

— On Windows Vista and newer you also have to set
a few other values in that path like
LoadApplnit_DLLs =1 and
RequireSignedApplnit_DLLs =0

[References]

* Michael Ligh et al., Chapter 9. Dynamic Analysis, Malware Analyst's Cookbook and
DVD

* Applnit_DLLs in Windows 7 and Windows Server 2008 R2, http://
msdn.microsoft.com/en-us/library/windows/desktop/dd744762(v=vs.85).aspx

[

—J)0bserving Parite's Maneuvering

* Using Regshot on the victim VM

1) Start Regshot (MalwareClass/tools/
v5_regshot_1.8.3...)

2) Click 1st shot button—>Shot

3) Run parite/malware.exe

4) Click 2nd shot button->Shot

5) Click Compare button
Q1. Which DLL is used for maneuvering?
Q2. Where is it maneuvering?

Q3. Open question:
Any theories why it’s maneuvering to there?

[References]
* Application programming interface, http://en.wikipedia.org/wiki/
Application_programming_interface

@ Answers for Parite Lab

Al. “fmsiopcps.dll” is added to
HKLM\Software\Microsoft\Windows NT
\CurrentVersion\Windows\Applnit_DLLs

A2. All Windows applications, which use
user32.dll

|
Application Programming Interface (API)

* “Specifies a software component in terms of its
operations, their inputs and outputs and

underling types”
http://en.wikipedia.org/wiki/Application_programming_interface

* char *strncpy(char *dest, const char *src, size_t n);
— 3 inputs:
* dest: destination string
* src: source string
* n: number of characters to copy from source string

— 1 output: returns a pointer to the destination string

[References]

* Application programming interface, http://en.wikipedia.org/wiki/
Application_programming_interface

* strcpy(3) - Linux man page, http://linux.die.net/man/3/strcpy

DLL Injection Methods (2)

* CreateRemoteThread Windows API

— Manipulate a victim process to call LoadLibrary
with the malicious DLL name

— Malicious code is located in DIIMain, which is
called once a DLL is loaded into memory
— A common API call pattern:

* OpenProcess—>VirtualAllocEx—>
WriteProcessMemory—>GetModuleHandle—
GetProcAddress—>CreateRemoteThread

* Also, a direct code injection method

[References]
* Michael Sikorski et al., Chapter 12. Covert Malware Launching, Practical Malware
Analysis

OpenProcess—Virtual AllocEx—> WriteProcessMemory—>
GetModuleHandle—> GetProcAddress—>CreateRemoteThread

HANDLE WINAPI OpenProcess(
In DWORD dwDesiredAccess,
In BOOL binheritHandle,
In DWORD dwProcessld
);
* dwProcessld [in]
— The identifier of the local process to be opened...

e Return value

— If the function succeeds, the return value is an open
handle to the specified process...

[References]
* OpenProcess function, http://msdn.microsoft.com/en-us/library/windows/
desktop/ms684320(v=vs.85).aspx

OpenProcess—> VirtualAllocEx—> WriteProcessMemory->
GetModuleHandle—> GetProcAddress—>CreateRemoteThread

LPVOID WINAPI VirtualAllocEx(

In HANDLE hProcess,
_In_opt_ LPVOID IpAddress,

In SIZE_T dwsSize,

In DWORD flAllocationType,
In DWORD flProtect

);

* hProcess [in]
— The handle to a process. The function allocates memory within the virtual
address space of this process...
* dwsSize [in]
— The size of the region of memory to allocate, in bytes...
* Return value

— If the function succeeds, the return value is the base address of the
allocated region of pages...

[References]
* VirtualAllocEx function, http://msdn.microsoft.com/en-us/library/windows/
desktop/aa366890(v=vs.85).aspx

OpenProcess->VirtualAllocEx—> WriteProcessMemory—->
GetModuleHandle—> GetProcAddress—>CreateRemoteThread

BOOL WINAPI WriteProcessMemory(

In HANDLE hProcess,

In LPVOID IpBaseAddress,

In LPCVOID IpBuffer,

In SIZE_T nSize,

Out SIZE_T *IpNumberOfBytesWritten

* hProcess [in]
— A handle to the process memory to be modified...
* IpBaseAddress [in]

— A pointer to the base address in the specified process to which data is
written...

* |pBuffer [in]

— A pointer to the buffer that contains data to be written in the address
space of the specified process.

* nSize [in]
— The number of bytes to be written to the specified process.

[References]
* WriteProcessMemory function, http://msdn.microsoft.com/en-us/library/
windows/desktop/ms681674(v=vs.85).aspx

13

OpenProcess—>VirtualAllocEx—> WriteProcessMemory->
GetModuleHandle— GetProcAddress—>CreateRemoteThread

HMODULE WINAPI GetModuleHandle(
_In_opt_ LPCTSTR IpModuleName

);

* pModuleName [in, optional]
— The name of the loaded module (either a .dll or .exe file)...
* Returnvalue

— If the function succeeds, the return value is a handle to the
specified module...

[References]
* GetModuleHandle function, http://msdn.microsoft.com/en-us/library/windows/
desktop/ms683199(v=vs.85).aspx

14

OpenProcess—>VirtualAllocEx—> WriteProcessMemory->
GetModuleHandle— GetProcAddress—>CreateRemoteThread

FARPROC WINAPI GetProcAddress(
In HMODULE hModule,
In LPCSTR IpProcName

);

* hModule [in]

— A handle to the DLL module that contains the function or
variable...

* |pProcName [in]
— The function or variable name, or the function's ordinal value...
* Return value

— If the function succeeds, the return value is the address of the
exported function or variable...

[References]
* GetProcAddress function, http://msdn.microsoft.com/en-us/library/windows/
desktop/ms683212(v=vs.85).aspx

15

OpenProcess—>VirtualAllocEx—> WriteProcessMemory->
GetModuleHandle-> GetProcAddress—>CreateRemoteThread

HANDLE WINAPI CreateRemoteThread(

In HANDLE hProcess,

In LPSECURITY_ATTRIBUTES IpThreadAttributes,
In SIZE_T dwsStackSize,

In LPTHREAD_START_ROUTINE IpStartAddress,
In LPVOID IpParameter,

In DWORD dwCreationFlags,

) _Out_ LPDWORD IpThreadld
* hProcess [in])

— Ahandle to the f:)rocess in which the thread is to be created...
* |pStartAddress [in]

— A pointer to the application-defined function of type
LPTHREAD_START_ROUTINE to be executed by the thread and
represents the starting address of the thread in the remote process...

* |pParameter [in]
— A pointer to a variable to be passed to the thread function.

[References]

* CreateRemoteThread function, http://msdn.microsoft.com/en-us/library/
windows/desktop/ms682437(v=vs.85).aspx

* LPTHREAD_START_ROUTINE Function Pointer, http://msdn.microsoft.com/en-us/
library/aa964928(v=vs.110).aspx

CreateRemoteThread() cont.

* |pStartAddress’s type is LPTHREAD _START_ROUTINE,
which is defined as

typedef DWORD (__stdcall *LPTHREAD_START_ROUTINE) (
[in] LPVOID lpThreadParameter

’

* You can’t put any function as IpStartAddress. It
has to be one which matches the above
prototype.

* One (popular) example is

HMODULE WINAPI LoadLibrary(
In LPCTSTR IpFileName

);

17

DLL Injection API Call Example

LoadLibrary(filename)

mylnjectDII()
{ buf = “evil.dll”

malicious process

kernel32.dll

LoadLibrary(filename)

Internet Explorer process

PID: 109

18

DLL Injection API Call Example

LoadLibrary(filename)

mylnjectDII()
{ buf = “evil.dIl”
h=0penProcess(,,proc_id)

malicious process

kernel32.dll

LoadLibrary(filename)

Internet Explorer process

PID: 109

19

DLL Injection API Call Example

LoadLibrary(filename)

mylnjectDII()

{ buf = “evil.dII”
h=0penProcess(,,proc_id)
addr = VirtualAllocEx(h,, size,,)

malicious process

See note: r citation

kernel32.dll

LoadLibrary(filename)

Internet Explorer process

PID: 109

20

DLL Injection API Call Example

LoadLibrary(filename)

mylnjectDII()

{ buf = “evil.dll”
h=0penProcess(,,proc_id)
addr = VirtualAllocEx(h,, size,,

malicious process

See note r citation

kernel32.dll

0x4000

LoadLibrary(filename)

Internet Explorer process

PID: 109

21

DLL Injection API Call Example

kernel32.dll

LoadLibrary(filename) LoadLibrary(filename)
mylnjectDII() 0x4000
{ buf = “evil.dII”

h=0penProcess(,,proc_id)

addr = VirtualAllocEx(h,, size,,

WriteProcessMem(h,addr,buf,size,...)
}

malicious process Internet Explorer process

eenotes foraitation PID: 109 ‘

22

DLL Injection API Call Example

LoadLibrary(filename)

mylnjectDII()

{ buf = “evil.dIl”
h=0penProcess(,,proc_id)
addr = VirtualAllocEx(h,, size,,
WriteProcessMem(h,addr,buf,size,...)

malicious process

kernel32.dll

0x4000

LoadLibrary(filename)

“evil.dIlI”

Internet Explorer process

PID: 109

23

DLL Injection API Call Example

LoadLibrary(filename)

mylnjectDII()

{ buf = “evil.dII”
h=0penProcess(,,proc_id)
addr = VirtualAllocEx(h,, size,,)
WriteProcessMem(h,addr,buf,size,...)
CreateRemoteThread(h,,,start,param,...)

}

malicious process

See notes for citat

kernel32.dll

0x4000

LoadLibrary(filename)

“evil.dII”

Internet Explorer process
24

PID: 109

24

DLL Injection API Call Example

LoadLibrary(filename)

myInjectDII()

{ buf = “evil.dII”
h=0penProcess(,,proc_id)
addr = VirtualAllocEx(h,, size,,
WriteProcessMem(h,addr,buf,size,...)
CreateRemoteThread(h,,start,param,...)

}

malicious process

See note! r citation

kernel32.dll

0x4000

LoadLibrary(filename)

“evil.dIl”

LoadLibrary(“evil.dll”)

Internet Explorer process

PID: 109

25

I

éserving “Onlinegame?2” Maneuvering

* For this lab, we will use WinApiOverride (an
APl monitor) to analyze
onlinegames/2/malware.exe

\

* Hint: new process will be invoked

Q1. What is the address of LoadLibrary()?

Q2. Where is it maneuvering to?

Q3. What’s the path of the DLL being injected?

26

@Answers for “Onlinegame?2” Lab

Al. 0x7C801D78B

A2. Explorer.exe, OpenProcess takes PID as its
parameter

A3. C:\WINDOWS\system32\ailin.dll

27

I

éserving “Onlinegamel” Maneuvering

* Spot the direct code injection

\

* Use WinApiOverride (an APl monitor) to
analyze onlinegames/1/malware.exe

Q1. What is the size of the code being injected?
Q2. Where is it maneuvering?
Q3. What’s the path of DLL being injected?

* Take a dump of the process using Process
Explorer.

28

@Answers for “Onlinegamel” Lab

Al. 0x457

A2. Explorer.exe, OpenProcess takes PID as its
parameter

A3. C:\Windows\System32\nmdfgds0.dll

* Process Explorer provides process memory
dump. In order to open the dump file, use
windbg’s File>0Open Dump menu option

29

15
Thread

* AKA light weight process who has own program
counter (EIP), a register set, and a stack

* Multiple threads can exist in a process and share
a process's resources, such as opened file and
network connection, concurrently

* Thread context switching is much cheaper than
process context switching

[References]
* Silberscharz Galvin, Chapter 5 Threads, Operating System Concepts 5t Edition

[Image Sources]
* http://www.cs.cf.ac.uk/Dave/C/mthread.gif

See notes for citation

Heap]

31

See notes for citation

Heap]

32

See notes for citation

Heap

33

See notes for citation

Heap

34

DLL Injection Methods (3a)

* SetWindowsHookEX Windows API
— Monitor certain types of events (e.g. key strokes)

— HHOOK WINAPI SetWindowsHookEx(
In intidHook,
In HOOKPROC Ipfn,
In HINSTANCE hMod,
In DWORD dwThreadld

);

[References]
* Michael Sikorski et al., Chapter 12. Covert Malware Launching, Practical Malware

Analysis
* SetWindowsHookEx function, http://msdn.microsoft.com/en-us/library/windows/
desktop/ms644990(v=vs.85).aspx

35

DLL Injection Methods (3b)

— If dwThreadld is zero, it injects DLL into memory
space of every process in the same Windows
“desktop” (which is a memory organization term,
not the desktop you see when looking at your
computer)

— If dwThreadld belongs to another process, it
injects DLL into the process

— For the sake of simple DLL injection, use
uncommon message type (e.g. WH_CBT)

36

DLL Injection Methods (4)

* Codecave (a redirection of program execution to
another location and then returning back to the area
where program execution had previously left.)

— Inject a snippet of code, which calls LoadLibrary, to a
victim process

— Suspend a thread in the victim process and restart the
thread with the injected code

— API call pattern

* OpenProcess - VirtualAllocEx - WriteProcessMemory -
SuspendThread - GetThreadContext - SetThreadContext
- ResumeThread

[References]
* Darawk, DLL Injection, http://www.blizzhackers.cc/viewtopic.php?p=2483118

37

Maneuvering

DLL injection

Direct code injection

DLL search order hijacking

Asynchronous Procedure Call (APC) injection
IAT/EAT hooking

Inline hooking

38

DLL Search Order Hijacking (1)

* (default) DLL search order in Windows XP SP3

1. KnownDLLs and its dependent DLLs
HKEY _LOCAL_MACHINE\SYSTEM\CurrentControlSet
\Control\Session Manager\KnownDLLs

Directory from which the application loaded
System directory (e.g. c:\WINDOWS\system32)
16-bit System Directory (e.g. c:\WINDOWS\system)
Windows Directory

Current working directory

Directories in %Path%

No Uk wnhN

[References]
* Dynamic-Link Library Search Order (Windows), http://msdn.microsoft.com/en-us/
library/windows/desktop/ms682586(v=vs.85).aspx

39

DLL Search Order Hijacking (2)

* Also an obfuscated method to be persistent

* A malware can make a legitimate looking DLL
— Loaded by an application
— In the directory where the application is located
or the current working directory
— Which is not listed in KnownDLLs and its
dependent DLLs

— ldentically named dll as the one in system32
directory

[References]
* Nick Harbour, Malware Persistence without the Windows Registry, https://
www.mandiant.com/blog/malware-persistence-windows-registry/

40

\

é_ Checking KnownDLLs

* Use Regedit
1) Start ->Run.. >regedit

2) Search for the following registry key
HKEY LOCAL_MACHINE\SYSTEM\CurrentControlSet
\Control\Session Manager\KnownDLLs

* Use Winobj.exe to see all dependent DLLs of
KnownDLL

— On desktop, SysinternalSuite\Winobj.exe
— Check \KnownDlls

41

[

—J Observing Nitol's Maneuvering

* For this lab, we will use Process Monitor to
analyze nitol/malware.exe

Q1. Which DLL is used for maneuvering?
Q2. Where is it maneuvering to?

Q3. Open question: Any theories why it’s
maneuvering to there?

Q4. Bonus question: How does it persist?

[References]

* Microsoft Digital Crimes Unit, Operation b70, http://blogs.technet.com/cfs-
file.ashx/__key/communityserver-blogs-components-weblogfiles/
00-00-00-80-54/3755.Microsoft-Study-into-b70.pdf

* Rex Plantado, MSRT October '12 - Nitol: Counterfeit code isn't such a great deal
after all, http://blogs.technet.com/b/mmpc/archive/2012/10/15/msrt-october-12-
nitol-counterfeit-code-isn-t-such-a-great-deal-after-all.aspx

42

@ Answers for Nitol Lab

Al. lpk.dll was written to multiple directories
where executable files exist

— C:\Program Files\Internet Explorer\Ipk.dll
C:\Program Files\Messenger\lpk.dll etc.

— Check where Ipk.dll is loaded from with
iexplorer.exe

A2. All executable which has Ipk.dll in the same
directory and uses Ipk.dll

Just for fun, ZAFE N FHFERF means “Foundation Classes application” according to Google Translate

43

Maneuvering

DLL injection

Direct code injection

DLL search order hijacking

Asynchronous Procedure Call (APC) injection
IAT/EAT hooking

Inline hooking

44

Asynchronous Procedure Call
(APC) Injection

* A function executed asynchronously when a thread is
in an alertable state

* Athread enters to alertable states when it calls some
functions such as SleepEx, WaitForSingleObjectEx,
WaitForMultipleObjectEx

* Each thread has a queue of APCs
* Kernel-mode APC is generated by the system
* User-mode APC is generated by an application
* API call pattern

— OpenThread—>QueueUserAPC

— From kernel-space to run user-mode code:
KelnitializeAPC—>KelnsertQueueApc

[References]

* Michael Sikorski et al., Chapter 12. Covert Malware Launching, Practical Malware
Analysis

|IAT/EAT Hooking

* Import Address Table (IAT) holds addresses of
dynamically linked library functions

* Export Address Table (EAT) holds addresses of
functions a DLL allows other code to call

* Overwrite one or more IAT/EAT entries to redirect a
function call to the attacker controlled code

* |AT hooking only affects a module

* EAT hooking affects all modules loaded after EAT
hooking takes place

* |AT & EAT hooking only affect one process memory
space

[References]
* Xeno Kovah, Rookits: What they are, and how to find them, http://
opensecuritytraining.info/Rootkits.html

Normal Inter-Module Function Call

WickedSweetLib.dll

WickedSweetApp.exe

push 1234
call [0x40112C]
add esp, 4

Import Address Table
0x40112C:SomeFunc
0x401130:Somelunk

0x401134:ScumDunk

L

SomeFunc:
mov edi, edi
push ebp
mov ebp, esp
sub esp, 0x20

ret

From the Rootkits class

47

47

Normal Inter-Module Function Call

WickedSweetApp.exe WickedWickedDIL.dIl WickedSweetLib.dll

/\ ;omeFunc:

push 1234 2 mov edi, edi

call [0x40112C] 1 MySomeFunc: C/v push ebp

add esp, 4 mov ebp, esp
call SomeFunc() sub esp, 0x20

Import Address Table 7
0x40112C:MySomeFunc ret 3 ret

0x401130:SomelJunk

0x401134:ScumDunk

From the Rootkits class

48

Inline Hooking

* There are a few first meaningless bytes at the
beginning of a function for hooking if it is
compiled with /hotpatch option

* Overwrite the first 5 or so bytes of a function
with jump to the attacker's code

* This redirect the program control from the called
function to the malicious code

* Execute any instructions overwritten in the first 5
bytes as the last part of the malicious code
before jumping back to wherever it came from

[References]

* /hotpatch (Create Hotpatchable Image), http://msdn.microsoft.com/en-us/library/
ms173507.aspx

* Greg Hoglund et al., Chapter 4. The Age-Old Art of Hooking, Rootkits

49

Normal Intra-Module Function Call
WickedSweetApp.exe

push 1234
ﬁ call SomeFunc()
add esp, 4
1
\/> SomeFunc:
mov edi, edi

push ebp
J mov ebp, esp 2

sub esp, 0x20
ret

From the Rootkits class

50

50

WickedSweetApp.exe

|
4

g

push 1234
call SomeFunc()
add esp, 4

SomeFunc:
jmp MySomeFunc
sub esp, 0x20

ret

Inline Hooked Intra-Module Function Call

WickedWickedDll.dll

|

MySomeFunc:
<stuff>

mov edi, edi
push ebp

mov ebp, esp
jmp SomeFunc+5

From the Rootkits class

51

51

Many processes, each with their own view of memory,
and the kernel schedules different ones to run at different times

PID: 123 PID: 422 PID: 17 PID: 105 PID: 4
Kernel Kernel Kernel Kernel Kernel
(“System
process”)
Userspace Userspace Userspace Userspace
Stack Stack
Stack
¥ d Stack
r%_mn_ P — * Hesp
WickedSweetApp.exe Explorer.exe
Calc.exe iexplore.exe
Ntdll.dll Ntdlldll N[[e([W_Inline Hook Ntdll.dll
MyLib1.dll
MyLib2.dll User32.dll EvilDead.dll User32.dll
. Kernel32.dIl Kernel32.dll Kernel32.dll
N / A\ /

52

