

Malware Dynamic Analysis
Part 2

Veronica Kovah
vkovah.ost at gmail

All materials is licensed under a Creative
Commons “Share Alike” license

http://creativecommons.org/licenses/by-sa/3.0/

3See notes for citation

Outline

● Part 1
– Background concepts & tools
– Observing an isolated malware analysis lab setup
– Malware terminology

● Part 2
– RAT exploration - Poison IVY
– Persistence techniques
– Maneuvering techniques

(How malware strategically positions itself)

4See notes for citation

Poison Ivy

● Freely available RAT, the latest version is v.2.3.2
● Implant (Server)

– Customizable features: Encrypted communications,
registry and file manager, screen capture, key logger,
NTLM hash captures, etc.

– No need to update for new features
– Support 3rd party plugins

● E.g. port scanner, wifi enumerator (“stumbler”), etc
● Controller (Client)

– Once an implant is deployed, the implant connects to a
controller, whose information is built into the implant.

[References]
● http://www.poisonivy-rat.com/

[Image Sources]
● http://25.media.tumblr.com/tumblr_m83rfveJWO1r6dcg4o1_500.jpg

5See notes for citation

Simple PI Server Creation
● On the controller VM
● Start Poison Ivy

– MalwareClass/samples/PoisonIvy/Poison Ivy
2.3.2.exe

● File→New Server
● Create Profile with name “pi_agent”
● Connection: set DNS/Port to the controller

VM’s IP and set port to 3460
– 192.168.56.20:3460:0,

6See notes for citation

Connec&on

7See notes for citation

Install

8See notes for citation

Creating pitest.exe

● Advanced: Leave as it is
● Build:

– Click ‘Generate’ and save as “pitest.exe”
– Then click ‘OK =>’

● We need to copy pitest.exe to the victim VM but
will skip the step to save time

9See notes for citation

Client Creation

● On the controller VM
● File→New Client
● Verify ‘Listen on Port’ is set to 3460
● Click ‘Start’ button

10See notes for citation

Executing Poison Ivy Implant

● On the victim VM
– Execute the already prepared PI server

(MalwareClass/samples/PoisonIvy/pi_agent.exe)
● Once a server connects to the client, you will

see the following entry on the controller VM

11See notes for citation

Think Evil!

● On the controller VM, double click on the
‘pi_agent’ line

Q1. Select ‘Remote Shell’ on the left panel, then on
the right panel, click the right mouse button and
select ‘Activate’, Can you start a calculator to
surprise the victim? Hint: “cmd.exe /c ...”
Q2. Can you kill the calculator on the victim VM?
Q3. What’s in the registry value ‘secret_agent’ under
HKLM\SOFTWARE\Microsoft\Windows\CurrentVers
ion\Run? Anything special about it?

12See notes for citation

Answers for PI Lab (1)

A1. C:\> cmd.exe /c
c:\Windows\system32\calc.exe
A2. You can kill the calculator process using
Managers→Processes left-side bar

13See notes for citation

Answers for PI Lab (2)

A3. Alternate Data Stream (ADS) is attached to
C:\WINDOWS\System32
– If you go to C:\WINDOWS\System32, you won't see

anything named “pidriver.exe”. Let's find it with gmer
– Malware occasionally stores data in Alternate Data Stream

(ADS). ADS is a mechanism for attaching metadata to files.
– If you use a colon in a filename, the part after the colon will

be the metadata name/file, and the part before the colon
will be the file it's being attached to

– Explorer doesn't show ADS files, but functions like
CreateFile() can access them just fine, so the file still runs.

14See notes for citation

Let's Start Behavioral Analysis!

15See notes for citation

Diffing
● Take a snapshot of a clean

system state and a snapshot of a
compromised system state

● Compare before and after
● Pros: Artifacts can be observed

easily
● Cons: Can miss evidence that is

created during malware activities
and erased purposely by malware

● Tools: regshot, autoruns

[References]
● Regshot, http://code.google.com/p/regshot/
● Mark Russinovich et al., Autoruns, http://technet.microsoft.com/en-
us/sysinternals/bb963902.aspx

[Image Sources]
● http://familyfun.go.com/assets/cms/printables/0707c_findthedifference.jpg

16See notes for citation

System Monitoring

● From a clean system state, record every
individual change on system and network traffic
that appear after execution of made by the
suspicious file

● Pro: Can collect all manifested changes
● Cons: Often too much information and need to

weed out irrelevant data
● Tools: procmon, Wireshark

[Image Sources]
● http://i1.kym-cdn.com/entries/icons/original/000/007/195/im%20watching%20you%20-
%20copia.jpg

17See notes for citation

API Tracing
● Hook and record important API calls made by the

suspicious process
● Pro: Can provide visibility into activity beyond the

typical file/process/registry/network shown by other
tools. Gets you a little closer to the type of
interpretation that is required when doing static
analysis.

● Cons: Often too much of information and need to weed
out irrelevant data. API-specific interpretation can take
a lot of time (but still less than static analysis ;))

● Tools: WinApiOverride, Rohitab API Monitor

[References]
● http://jacquelin.potier.free.fr/winapioverride32/
● http://www.rohitab.com/apimonitor

[Image Sources]
● Left, http://fc03.deviantart.net/fs39/f/2008/332/c/d/HAND_TURKEY_by_Bilious.jpg
● Right, http://dorpahdoo.files.wordpress.com/2010/11/foot-turkey.jpg

18See notes for citation

Debugging
● Set breakpoints inside the suspicious file to stop its execution at a given

location and inspect its state. Can break when it calls to important APIs.
● Pro: Provides a superset of the functionality of an API monitor
● Cons: Typically must be be done in conjunction with some basic static

analysis and assembly reading. Malware will often change its behavior or
refuse to run when being debugged, which requires a work-around.

● Tools: IDA Pro Debugger, OllyDbg, Immunity Debugger, WinDbg
● We will NOT cover this in this class, because x86 assembly is not a

prerequisite. See the Intro x86 and Intro Reverse Engineering classes to
start working with debuggers.

[Image Sources]
● Top left, http://www.wpclipart.com/computer/humour/debugging.png
● Top right, http://www.phdcomics.com/comics/archive/phd011406s.gif
● Bottom, http://www.oraclealchemist.com/wp-content/uploads/2008/07/bug-feature.jpg

19See notes for citation

Behavioral Analysis Techniques
“Always use the easiest tool for the job” :)

E
as

e-
of

-u
se

/
A

bs
tra

ct
io

n
le

ve
l

File,
Registry,
Process,
Network

Monitoring

Diffing

API
Tracing

Debugging

20See notes for citation

Outline

● Part 1
– Background concepts & tools
– Observing an isolated malware analysis lab setup
– Malware terminology

● Part 2
– RAT exploration - Poison IVY
– Persistence techniques
– Maneuvering techniques

(How malware strategicallypositions itself)

21See notes for citation

Persistence

● Techniques to survive after reboot
● Registry Key
● File System

– Startup locations
– DLL search order hijacking
– Trojanizing system files

● MBR
● BIOS
● Uranium Enrichment Centrifuge PLCs :P

[References]
● Michael Sikorski et al., Practical Malware Analysis
● Nick Harbour, https://blog.mandiant.com/archives/1207
● Nicolas Falliere et al.,
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_st
uxnet_dossier.pdf

22See notes for citation

autoruns.exe

● Provides comprehensive list of items which
malware could use to be persistence

[References]
Mark Russinovich et al., Autoruns, http://technet.microsoft.com/en-
us/sysinternals/bb963902.aspx

23See notes for citation

autoruns.exe

● On the victim VM
● Select Options→Filter Options...→Include Empty

Locations, then press F5 to refresh
– You can see all locations that autoruns.exe checks
– Deselect the option to have cleaner view for the rest of

the class
● Highlight a registry key, then double click

– You can see the selected registry in Registry Editor
● Click the different category tabs and look around

how they are grouped

24See notes for citation

Frequently Used Registry Key (1)
Administrator privilege is required to update HKLM
(The list is not comprehensive nor more important than others, which are not listed here)

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\”Shell” and
“UserInit”

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows\”Appinit_Dlls”

HKLM\System\CurrentControlSet\Control\Session Manager\KnownDlls

HKLM\System\CurrentControlSet\Services

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Image File Execution Options

HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\Browser Helper Objects

25See notes for citation

Frequently Used Registry Key (2)
Without administrator privileges, malware can persist with the following registry
keys
(The list is not comprehensive nor more important than others, which are not listed here)
HKCU\Software\Microsoft\Windows\CurrentVersion\Run

HKCU\Software\Policies\Microsoft\Windows\System\Scripts\Logon

HKCU\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Shell

26See notes for citation

Observing “Image File Execution
Options” registry key

● Start regedit on the victim VM
● Search the following registry key

“HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Image File Execution Options”

● Check if registry key taskmgr.exe exists
● Run procexp.exe and select Options→Replace

Task Manager
● In the Registry Editor hit F5 to refresh the data
● How could malware use this to persist?

27See notes for citation

Persistence Using File System

● Startup locations
– For the logged-in user:

%USERPROFILE%\Start Menu\Programs\Startup
– For all users:

%ALLUSERSPROFILE%\Start Menu\Programs\Startup
● Check the environment variables

– C:\> set
– To see the above two environment variables only

● C:\> echo %USERPROFILE%
● C:\> echo %ALLUSERSPROFILE%

28See notes for citation

How	
 does	
 IMworm	
 persist?
● On the host machine, make sure inetsim is not running to

observe the same results for this lab
– $ sudo ps -ef | grep inetsim
– $ sudo kill -9 {PID}

● Using Autoruns on the victim VM
1) Start Autoruns, then File→save
2) Run IMworm/malware.exe
3) Press F5 to refresh Autoruns
4) File→Compare

Q1. How does the malware persist?
– Observe what files are created in which directories
– Observe what registry keys are created/modified

[References]
http://en.wikipedia.org/wiki/Local_Security_Authority_Subsystem_Service

31See notes for citation

Observing	
 IMworm	
 with	
 Regshot

● In this lab, we will use Regshot to observe how the
malware persists

● Using Regshot on the victim VM
1) Start Regshot (MalwareClass/tools/v5_regshot_1.8.3...)
2) Click 1st shot button→Shot
3) Run IMworm/malware.exe
4) Click 2nd shot button→Shot
5) Click Compare button

● Compare the current results with the previous lab's
results

[References]
● Regshot, http://code.google.com/p/regshot/

32See notes for citation

How does Hydraq persist?

● Using Autoruns on the victim VM
– Start Autoruns, then File→save
– Run Hydraq/malware.exe
– Press F5 to refresh Autoruns
– File→Compare

Q1. How does the malware persist?
– Observe what files are created in which directories
– Observe what registry keys are created/modified

33See notes for citation

Answers for the Hydraq lab

A1. Autoruns shows that malware persists by registering
a service RaS???? (the last 4 characters are random)
– Double click the newly added RaS???? service
– ImagePath value's data is “%SystemRoot

%\System32\svchost.exe -k netsvcs”
– RaS???? runs as part of netsvcs service group
– Parameters→ServiceDll value's data is

“c:\windows\system32\rasmon.dll”
– Check if RaS???? is added to

HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\SvcHost\netsvcs

34See notes for citation

Observing Hydraq with Regshot (1)

● In this lab, we will use Regshot to observe
how the malware persists

● Using Regshot on the victim VM
1) Start Regshot

(MalwareClass/tools/v5_regshot_1.8.3...)
2) Click 1st shot button→Shot
3) Run Hydraq/malware.exe
4) Click 2nd shot button→Shot
5) Click Compare button

35See notes for citation

Observing Hydraq with Regshot (2)

● Compare the current results with the previous
lab's results

● Note that HKLM\SYSTEM\CurrentControlSet is a
pointer to HKLM\SYSTEM\ControlSet00X – check
HKLM\System\Select

36See notes for citation

Outline

● Part 1
– Background concepts & tools
– Observing an isolated malware analysis lab setup
– Malware terminology

● Part 2
– RAT exploration - Poison IVY
– Persistence techniques
– Maneuvering techniques

(How malware strategically positions itself)

37See notes for citation

Maneuvering

● Direct code injection
● DLL injection
● DLL search order hijacking
● Asynchronous Procedure Call (APC) injection
● IAT/EAT hooking
● Inline hooking

38See notes for citation

DLL/code Injection

● Load a malicious DLL
into one or more
processes

● Run malicious code on
behalf of a legitimate
process

● Bypass host-based
security software
– HIDS, Personal Firewall

IE	
 process’s	
 memory

Iiexplorer.exe

advapi32.dll

gdi32.dll

ieframe.dll

…

evil.dll

39See notes for citation

DLL Injection Methods (1)

● AppInit_DLLs
– HKLM\Software\Microsoft\Windows

NT\CurrentVersion\Windows\AppInit_DLLs
is set to a space or comma-separated list of
DLLs to load into processes that load
user32.dll

– On Windows Vista and newer you also
have to set a few other values in that path
like LoadAppInit_DLLs = 1 and
RequireSignedAppInit_DLLs = 0

[References]
● Michael Ligh et al., Malware Analyst's Cookbook and DVD
● AppInit_DLLs in Windows 7 and Windows Server 2008 R2, http://msdn.microsoft.com/en-
us/library/windows/desktop/dd744762(v=vs.85).aspx

40See notes for citation

DLL Injection Methods (2)

● CreateRemoteThread Windows API
– Manipulate a victim process to call

LoadLibrary with the malicious DLL name
– Malicious code is located in DllMain, which is

called once a DLL is loaded into memory
– A common API call pattern:

● OpenProcess→VirtualAllocEx→
WriteProcessMemory→GetModuleHandle
→ GetProcAddress→CreateRemoteThread

Refer to stand-alone DLL_Injection_APIs.pptx for detailsRefer to stand-alone DLL_Injection_APIs.pptx for details

[References]
● Michael Sikorski et al., Practical Malware Analysis

41See notes for citation

DLL Injection Methods (3)

● SetWindowsHookEX Windows API
– Monitor certain types of events (see e.g. keylogger)
– Inject DLL into memory space of every process in

the same Windows “desktop” (which is a memory
organization term, not the desktop you see when
looking at your computer)

● For most intents and purposes you can think of it
as injecting the DLL into every process at lesser
or equal privilege

– For the sake of simple DLL injection, use
uncommon message type (e.g. WH_CBT)

[References]
● Michael Sikorski et al., Practical Malware Analysis
● SetWindowsHookEx function, http://msdn.microsoft.com/en-
us/library/windows/desktop/ms644990(v=vs.85).aspx

42See notes for citation

DLL Injection Methods (4)

● Codecave (a redirection of program execution to another
location and then returning back to the area where program
execution had previously left.)

– Inject a snippet of code, which calls LoadLibrary, to
a victim process

– Suspend a thread in the victim process and restart
the thread with the injected code

– API call pattern
● OpenProcess → VirtualAllocEx → WriteProcessMemory
→ SuspendThread → GetThreadContext →
SetThreadContext → ResumeThread

[References]
●Darawk, DLL Injection, http://www.blizzhackers.cc/viewtopic.php?p=2483118

43See notes for citation

Observing Parite's Maneuvering

● Using Regshot on the victim VM
– Start Regshot (MalwareClass/tools/v5_regshot_1.8.3...)
– Click 1st shot button→Shot
– Run parite/malware.exe
– Click 2nd shot button→Shot
– Click Compare button

Q1. What is the maneuvering method?
Q2. Where is it maneuvering?
Q3. Open question: Any theories why it’s maneuvering to

there?

44See notes for citation

Answers for Parite Lab

A1. AppInit_DLLs is used
– “fmsiopcps.dll” is added to

HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Windows\AppInit_DLLs

A2. All Windows applications, which uses
user32.dll

45See notes for citation

Observing Onlinegames' Maneuvering (1)

● For this lab, we will use WinApiOverride (an API
monitor) to analyze onlinegames/1/malware.exe

Q1. What is the maneuvering method?
Q2. Where is it maneuvering?
Q3. What’s the path of DLL being injected?
● Take a dump of the process using Process

Explorer.

46See notes for citation

Answers for Onlinegames 1 Lab

A1. Direct code injection
● OpenProcess→VirtualAllocEx→

WriteProcessMemory→CreateRemoteThread

A2. Explorer.exe, OpenProcess takes PID as its
parameter

A3. C:\Windows\System32\nmdfgds0.dll
● Process Explorer provides process memory

dump. In order to open the dump file, use
windbg’s File→Open Dump menu option

47See notes for citation

Observing Onlinegames' Maneuvering (2)

● Use WinApiOverride to analyze
onlinegames/2/malware.exe

● Hint: new process will be invoked
Q1. What is the maneuvering method?
Q2. Where is it maneuvering to?
Q3. What’s the path of the DLL being injected?

48See notes for citation

Answers for Onlinegames 2 Lab

A1. LoadLibrary call
– GetProcAddress→OpenProcess→VirtualAllocEx→

WriteProcessMemory→CreateRemoteThread

A2. Explorer.exe, OpenProcess takes PID as its
parameter

A3. C:\WINDOWS\system32\ailin.dll

49See notes for citation

Maneuvering

● Direct code injection
● DLL injection
● DLL search order hijacking
● Asynchronous Procedure Call (APC) injection
● IAT/EAT hooking
● Inline hooking

50See notes for citation

DLL Search order hijacking (1)

● (default) DLL search order in Windows XP SP3
1.KnownDLLs and its dependent DLLs

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Cont
rol\Session Manager\KnownDLLs

2.Directory from which the application loaded
3.System directory (e.g. c:\WINDOWS\system32)
4.16-bit System Directory (e.g. c:\WINDOWS\system)
5.Windows Directory
6.Current working directory
7.Directories in %Path%

[References]
● Dynamic-Link Library Search Order (Windows), http://msdn.microsoft.com/en-
us/library/windows/desktop/ms682586(v=vs.85).aspx

51See notes for citation

DLL Search order hijacking (2)

● Also an obfuscated method to be persistent
● A malware can make a legitimate looking DLL

– Loaded by an application
– In the directory where the application is located or

the current working directory
– Which is not listed in KnownDLLs and its dependent

DLLs
– Identically named dll as the one in system32

directory

[References]
Nick Harbour, Malware Persistence without the Windows Registry,
https://www.mandiant.com/blog/malware-persistence-windows-registry/

52See notes for citation

Asynchronous Procedure Call
(APC) Injection

● A function executed asynchronously when a thread is in an
alertable state

● A thread enters to alertable states when it calls some
functions such as SleepEx, WaitForSingleObjectEx,
WaitForMultipleObjectEx

● Each thread has a queue of APCs
● Kernel-mode APC is generated by the system
● User-mode APC is generated by an application
● API call pattern

– OpenThread→QueueUserAPC
– From kernel-space to run user-mode code:

KeInitializeAPC→KeInsertQueueApc

[References]
● Michael Sikorski et al., Practical Malware Analysis

53See notes for citation

Checking KnownDLLs

● Use Regedit
– Start →Run.. →regedit
– Search for the following registry key

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControl
Set\Control\Session Manager\KnownDLLs

● Use Winobj.exe to see all dependent DLLs of
KnownDLL
– On desktop, SysinternalSuite\Winobj.exe
– Check \KnownDlls

54See notes for citation

Observing Nitol's Maneuvering

● For this lab, we will use Process Monitor to
analyze nitol/malware.exe

Q1. What is the maneuvering method?
Q2. Where is it maneuvering to?
Q3. Open question: Any theories why it’s maneuvering to

there?
Q4. Bonus question: How does it persist?

[References]
● Microsoft Digital Crimes Unit, Operation b70, http://blogs.technet.com/cfs-
file.ashx/__key/communityserver-blogs-components-weblogfiles/00-00-00-80-54/3755.Microsoft-
Study-into-b70.pdf
● Rex Plantado, MSRT October '12 - Nitol: Counterfeit code isn't such a great deal after all,
http://blogs.technet.com/b/mmpc/archive/2012/10/15/msrt-october-12-nitol-counterfeit-code-isn-t-
such-a-great-deal-after-all.aspx

55See notes for citation

Answers for Nitol Lab

A1. DLL search order hijacking
– lpk.dll was written to multiple directories where

executable files exist
● C:\Program Files\Internet Explorer\lpk.dll
● C:\Program Files\Messenger\lpk.dll etc.

– Compare where lpk.dll is loaded from with
iexplorer.exe

A2. All executable which has lpk.dll in the same
directory and uses lpk.dll

Just	
 for	
 fun,	
 基础类应用程序 means	
 “Founda&on	
 Classes	
 applica&on”	
 according	
 Google	
 Transla&on

56See notes for citation

Maneuvering

● Direct code injection
● DLL injection
● DLL search order hijacking
● Asynchronous Procedure Call (APC) injection
● IAT/EAT hooking
● Inline hooking

57See notes for citation

IAT/EAT Hooking
● Import Address Table (IAT) holds addresses of

dynamically linked library functions
● Export Address Table (EAT) holds addresses of

functions a DLL allows other code to call
● Overwrite one or more IAT/EAT entries to redirect a

function call to the attacker controlled code
● IAT hooking only affects a module
● EAT hooking affects all modules loaded after EAT

hooking takes place
● IAT & EAT hooking only affect one process memory

space

Normal Inter-Module Function Call

58

…
push 1234
call [0x40112C]
add esp, 4
…
Import Address Table
0x40112C:SomeFunc
0x401130:SomeJunk
0x401134:ScumDunk
…

…
SomeFunc:
mov edi, edi
push ebp
mov ebp, esp
sub esp, 0x20
…
ret

WickedSweetApp.exe WickedSweetLib.dll

From the Rootkits class

[References]
● Xeno Kovah, Rookits: What they are, and how to find them,
http://opensecuritytraining.info/Rootkits.html

IAT Hooked Inter-Module Function Call

59

…
push 1234
call [0x40112C]
add esp, 4
…
Import Address Table
0x40112C:EvilSomeFunc
0x401130:SomeJunk
0x401134:ScumDunk
…

WickedSweetApp.exe

1

4

EvilSomeFunc:
…
call SomeFunc()
…
ret

WickedWickedDll.dll

…
SomeFunc:
mov edi, edi
push ebp
mov ebp, esp
sub esp, 0x20
…
ret

WickedSweetLib.dll

From the Rootkits class

60See notes for citation

Inline Hooking

● There are a few first meaningless bytes at the
beginning of a function for hooking if it is
compiled with /hotpatch option

● Overwrite the first 5 or so bytes of a function
with jump to the attacker's code

● This redirect the program control from the called
function to the malicious code

● Execute any instructions overwritten in the first 5
bytes as the last part of the malicious code
before jumping back to wherever it came from

[References]
● /hotpatch (Create Hotpatchable Image), http://msdn.microsoft.com/en-us/library/ms173507.aspx
● Greg Hoglund et al., Rootkits

Normal Intra-Module Function Call

61

…
push 1234
call SomeFunc()
add esp, 4
…
SomeFunc:
mov edi, edi
push ebp
mov ebp, esp
sub esp, 0x20
…
ret

1

2

WickedSweetApp.exe

From the Rootkits class

Inline Hooked Intra-Module Function Call

62

…
push 1234
call SomeFunc()
add esp, 4
…
…
SomeFunc:
jmp EvilSomeFunc
sub esp, 0x20
…
ret

1

WickedSweetApp.exe

MySomeFunc:
<stuff>
…
mov edi, edi
push ebp
mov ebp, esp
jmp SomeFunc+5

WickedWickedDll.dll

3
4

From the Rootkits class

63See notes for citation

63

Userspace

 WickedSweetApp.exe

 MyLib1.dll

 MyLib2.dll

 Ntdll.dll

 Stack

Kernel

Many processes, each with their own view of memory, and the
kernel schedules different ones to run at different times

Currently Running
Code

Userspace

 Calc.exe

 User32.dll

 Ntdll.dll

 Stack

 Heap

Kernel

Userspace

 Explorer.exe

Ntdll.dll

 Stack

 Heap

Kernel

Userspace

 Iexplore.exe

 Stack

 Heap

Kernel Kernel

(“System”
“process”)

 Heap

PID: 123 PID: 422PID: 123 PID: 4PID: 17 PID: 105

 Kernel32.dll
 WickedEvil.dll

IAT Hook

 EvilDead.dll

Inline Hook

 Kernel32.dll

 User32.dll

 Ntdll.dll

 Kernel32.dll

