VICTOR
PELEVIN

LN

\\.: /

.’%

Xeno Kovah — 2012
xkovah at gmail

http://www.goodreads.com/book/show/
76079.The_Life_of_Insects

All materials are licensed under a Creative
Commons “Share Alike” license.

* http://creativecommons.org/licenses/by-sa/3.0/

You are free:

to Share — to copy, distribute and transmit the work
to Remix — to adapt the work

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or

your use of the work)

Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible 2

license

Attribution conditions: Just state author name and where the slides
were obtained from

Viruses

* It's not Virii (http://en.wikipedia.org/wiki/
Plural_form_of words ending_in_-us)

* Viruses are malware which self-
replicate, but which need humans to
initiate their execution. This is in
contrast to worms which can self-
replicate in the absence of humans.

« We're primarily interested in viruses
which infect PE files, but they can infect
other file types as well.

Conceptual:
Executable file infection

Headers
specify
entry Headers Headers
point <

text text

File gets
.bss .bss
I'm a Virus! :D

Or Maybe...

Headers
specify
entry Headers Headers
point <
text text
inline hook
File gets
.bss .bss
I'm a Virus! :D

Headers
specify

entry
point <

Headers

text

.data

Or Maybe...

File gets

.bss

infected

Headers

text

.data

.bss

TLS Callback

I'm a Virus! :D

Or Maybe...

Headers
specify
entry Headers Headers
point < <
text text

I'm a Virus! :D

File gets

padding

infected

.data .data

.bss .bss

Headers
specify

entry
point <

Headers

text

padding

.data

Or Maybe...

File gets

.bss

infected

Headers

inline hook |

I'm a Virus! :D

.data

.bss

Padding

 Show how between 0x4a4 and 0xf14 is
all just padding in the hello ELF binary,
and therefore it can be infected.

« But we're going to go for a virus which
tacks itself to the end of the file, and
alters the headers to make the extra
data get loaded into memory.

Interlude

* For the PE infector | was sitting around
thinking "How am | going to get the
address of CreateFile/WriteFile in a way
where | don't just do opportunistic infection
of files which already have those or
GetProcAddress in their IAT" and then
Corey Kallenberg reminded me that Skape
talked about EAT searching in his
excellent shellcode paper: http://
www.hick.org/code/skape/papers/win32-
shellcode.pdf, so thanks go out to Corey
and Skape.

10

Lab: BabysFirstPhageForPE.c

* Is like the conceptual picture 1
« Can only infect binaries in C:\VirusTarget

» Has built in kill switch logic so that the parents
can infect binaries to create children, and
children can infect binaries to make
grandchildren, but the grandchildren are
sterile and can't have children of their own.

+ Also, it doesn't fix the
OptionalHeader.Checksum. So that must be
fixed before an infected file will run to infect
another file.

» Doesn't do anything malicious other than
replicate, and whether that's malicious or not
is in the eye of the beholder

1

11

Steps

Copy HelloWorld and any other executables to infect to C:

\VirusTarget

Run BabysFirstPhageForPE.exe in VS debug mode
talking through the stages

Open infected file up with CFF Explorer, go to Rebuilder
section, and select only the "Update Checksum" option,
then close it and save the changes.

Open infected binarEy in WinDbg, set a breakpoint on the
entry point in the PE header (which is the virus entry
point), and step through the code

NOTE: If you're doing this on your own, make sure you
don't have any breakpoints set in the virus code at the
time that it copies itself into the buffer, otherwise the
breakpoints will get copied too! (We learn about how
breakpoints modify the code in Intermediate x86)

12

12

Throwback...TO THE MAX!

A virus in the days of botnets!: Virut

(see what they did there? Virus+=1? They're so clever. Also called Virux...because X is awesome!)
http://www.f-secure.com/v-descs/virus w32 virut.shtml

“Variants in the Virut family are polymorphic,
memory-resident, appending file infectors that
have Entry Point Obscuring (EPO)
capabilities.”

¢ http://www.symantec.com/connect/blogs/w32virutcf-collateral-damage

“All of this sounds quite grim, but this threat
can be removed from infected networks by
following best practices.”

Of course! Best practices! In retrospect it's all
S0 obvious!

13

13

Fortune favors the bold

« Xpaj: Another misc virus

“It is not very common for a file infector to do more than simply
introduce trivial modifications to the files it infects. Virus authors
usually avoid complex modifications to the files because of the
possibility of corruption. W32.Xpaj.B is one of exceptions.”

 http://www.symantec.com/connect/
blogs/w32xpajb-upper-crust-file-infector

» Core principals the same, just another
way of going about it, but the point is,
now you can read and understand

14

14

Further Reading

(with the exception of the ~nemo link these are just misc googling that | haven't read, so no guarantee of quality)

PE infection

— http://www.defcon.org/images/defcon-16/dc16-presentations/Iclee/
defcon-16-Iclee_vx-wp.pdf (compares PE vs ELF infection)

— http://vx.netlux.org/29a/29a-7/Articles/29A-7.023
ELF infection

— http://felinemenace.org/~mercy/slides/RUXCON2004-ELFfairytale.ppt

— http://www.linuxsecurity.com/resource_files/documentation/virus-writing-
HOWTO/_html/index.html

— http://vxheavens.com/lib/static/vdat/tuunix02.htm

Mach-O infection

— http://felinemenace.org/~nemo/slides/mach-o_infection.ppt

— http://vxheavens.com/lib/vrg01.html

Old sk0ol

— http://www textfiles.com/virus/

— http://vx.netlux.org/29a/main.html

— http://vx.netlux.org/lib/ 15

15

Packers

Originally used to compress executables
back when disk space was at a premium

The executable would then decompress
itself in memory and run as normal

Nowadays they are mostly used for
obfuscating binaries. Specifically since all
the data for the original binary is
compressed and/or encrypted, it prevents
analysts from being able to infer things
about the binary based on strings or
function imports.

16

Origilnal file

Headers on disk
specify
entry Headers
point <

text

.data

.bss

Conceptual
Packing: File On Disk

Headers
specify
entry
point

Pack >

Packed file
on disk

Headers

Compressed /
Encrypted Blob

Unpacking code

17

17

Conceptual

Unpacking: Load Time

File on disk

Headers

File in Virtual Memory

Compressed /
Encrypted Blob

Read headers and
map file to memory
accordingly

Unpacking code

Headers for packed file
must still reserve >= virtual
memory space used by
original executable

Headers

Compressed /
Encrypted Blob

Empty space

Unpacking code

18

18

Conceptual

Unpacking: Run Time

Headers

Compressed /
Encrypted Blob

Empty space

Unpacking code

D

Unpacking code
runs, replacing

its own memory

with original layout.
Final step is to jump
to original entry point,
at which point the
original executable
runs as normal

Headers

text

.data

.bss

Unpacking code

19

19

The Ultimate Packer for
eXecutables (UPX)

http://upx.sourceforge.net/

Easy to understand, very cross-platform
compatible, legitimate packer which
also has an automatic unpacking ability
as well.

Run it as "upx File -o PackedFile" to
pack, and "upx -d PackedFile —o File" to
decompress.

Demo the header changes made by
UPX to both a PE and ELF file

20

20

UPX applied to PE hello.c

After UPX

Before UPX
RVA Data Description RVA

00000108 0108 Magic 00000108
0000010A 09 Major Linker Version 00000104
00000106 Juli] Minor Linker Version 00000108
0000010C 00000ADD Size of Code < *| 0000010C
00000110 00000EOD — Size of Initialized DalaCZ§ 00000110
00000114 00000000 Size of Uninitialized Datad————>| 00000114
00000118 000012C2 Address of Entry Point _

000o011C 00001000 Base of Code <; ;> 00o0o011c
00000120 00002000 Base of Data & Y| 00000120
00000124 00400000 Image Base 00000124
00000128 00001000 Section Alignment 00000128
0o0o012¢ 00000200 File Alignment 0000012C
00000130 0005 Major O/S Version 00000130
00000132 0000 Minor O/S Version 00000132
00000134 0000 Major Image Version 00000134
00000136 0000 Minor Image Version 00000136
00000138 00os Major Subsystem Version 00000138
0000013A 0000 Minor Subsystem Yersion 0000013A
0000013C 00000000 Win32 Version Yalue 0000013C
00000140 00006000 Size of Image ¢ 00000140
00000144 00000400 Size of Headers : :> 00000144
00000148 ODODEFS4 Checksum - 00000148
00o0014C 0003 Subsystem 0000014C
0000014E 8140 DLL Characteristics 0000014E

0040
0100
8000

Data
0108
09
ao
00001000
00001000
00006000

00007000
00008000
00400000
00001000
00000200
0005
0000
0000
0000
0005
0000
(00000000
00003000
00001000
(00000000
0003
8140

Description
Magic
Major Linker Version
Minor Linker Version
Size of Code
Size of Initialized Data
Size of Uninitialized Data

00000118 00007920 Address of Entry Point

Base of Code

Base of Data

Image Base

Section Alignment

File Alignment

Major O/S Version

Minor O/S Version

Major Image Version
Minor Image Version
Major Subsystem Version
Minor Subsystem Version
Win32 Version Value
Size of Image

Size of Headers
Checksum

Subsystem

DLL Characteristics

0040 21
0100

5000

21

UPX applied to PE hello.c 2

= HelloWorld.exe
IMAGE_DOS_HEADER
MS-DOS Stub Program
IMAGE_NT_HEADERS
IMAGE_SECTION_HEADER .rdata
IMAGE_SECTION_HEADER .data
IMAGE_SECTION_HEADER .rsrc
IMAGE_SECTION_HEADER .reloc
SECTION .text
= SECTION .rdata
IMPORT Address Table
IMAGE_DEBUG_DIRECTORY
IMAGE_LOAD_CONFIG_DIRECTORY

IMAGE_DEBUG_TYPE_CODEVIEW
IMPORT Directory Table
IMPORT Marme Table
IMPORT Hints/Names & DLL Names
SECTION .data

= SECTION .rsrc
IMAGE_RESOURCE_DIRECTORY Type
IMAGE_RESOURCE_DIRECTORY Mamell
IMAGE_RESOURCE_DIRECTORY Languz
IMAGE_RESOURCE_DATA_ENTRY
MANIFEST 0001 0409

= SECTION .reloc
IMAGE_BASE_RELOCATION

RVA Data Description Value
000D01ES 2E 74 B5 78 Name text
000001EC 74 00 0O 00
000001FO 00000B0E Virtual Size
000001F4 00001000 RWVA
000001F8 00000ADD Size of Raw Data
000001FC 00000400 Pointer to Raw Data
00000200 00000000 Pointer to Relocations
00000204 00000000 Pointer to Line Numbers
00000208 0ooo Number of Relocations
0000020A 0000 Number of Line Numbers
00oo020C 60000020 Characteristics
00000020 IMAGE_SCHN_CNT_CODE
20000000 IMAGE_SCN_MEM_EXECUTE
40000000 IMAGE_SCN_MEM_READ
RVA Data Description Value
00000288 2E 72 B5 BC Name reloc
0000028C 6F 63 00 00
00000290 0000018A Virtual Size
00000294 00005000 RVA %Total virtual size = 0x518A
00000298 00000200 Size of Raw Data .
DDO0029C OODDTADD Pointer to Raw Data %Total file size = 0x1C00
00000240 00000000 Pointer to Relocations
00000244 00000000 Pointer to Line Numbers
00000243 0000 MNumber of Relocations
00000244 0000 Number of Line Numbers
000002AC 42000040 Characteristics

00000040 IMAGE_SCN_CNT_INITIALIZED_DATA|
02000000 IMAGE_SCN_MEM_DISCARDABLE
40000000 IMAGE_SCN_MEM_READ

22

UPX applied to PE

hello.c 3

= UPXedHelloWorld. exe
IMAGE_DOS_HEADER
MS-DOS Stub Program
= IMAGE_NT_HEADERS
Signature
IMAGE_FILE_HEADER

IMAGE_OPTIONAL_HEADER
IMAGE_SECTION_HEADER UPXD
IMAGE_SECTION_HEADER UPX1
IMAGE_SECTION_HEADER .rsrc

SECTION UPXD
= SECTION UPX1

IMAGE_LOAD_CONFIG_DIRECTORY

= SECTION .rsrc

IMAGE_RESOURCE_DIRECTORY Type
IMAGE_RESOURCE_DIRECTORY NamelD
IMAGE_RESOURCE_DIRECTORY Language
IMAGE_RESOURCE_DATA_ENTRY

MANIFEST 0001 0409
IMPORT Directory Table
IMPORT Address Table
IMPORT DLL Names
IMPORT Hints/Names

IMAGE_BASE_RELOCATION

RVA = iE]
0D0001ES 55 50 58 30
000001EC 00 00 00 00
000001FO 00008000
000001F4 00001000
000001F8 00000000
000001FC 00000400
00000200 00000000
00000204 00000000
00000208 0000
00000204 0000

00000210 55 50 58 31
00000214 00 00 00 00
00000218 00001000
0000021C 00007000
00000220 00000C00
00000224 00000400
00000228 00000000
0000022C 00000000
00000230 0000
00000232 0000
00000234 E0000040

00000238 2E 72 73 72
00DDD23C 63 00 00 00
00000240 00001000
00000244 00008000
00000248 00000400
0oooo24c 00001000
00000250 00000000
00000254 00000000
00000258 0000
00000254 0000
0000025C C0000040

T
Name

Virtual Size {T—= Cc_:v_ers the entire
RVA original memory space

Size of Raw Data {—————7 No data from file

Pointer to Raw Data
Pointer to Relocations
Pointer to Line Numbers
Number of Relocations
Number of Line Numbers

0000020C E00000B0 Characteristics

00000080
20000000
40000000
80000000

Name

Virtual Size

RVA

Size of Raw Data
Pointer to Raw Data
Pointer to Relocations
Pointer to Line Numbers
Number of Relocations
Number of Line Numbers
Characteristics
00000040

20000000

40000000

80000000

e

Name

Wi | Si o .

oA o %Total virtual size = 0x9000
Size of Raw Data .

Pointer to Raw Data Total file size = 0x1400

Pointer to Relocations
Pointer to Line Numbers
Number of Relocations
Nurber of Line Numbers
Characteristics
00000040

40000000

80000000

IMAGE_SCN_CNT_UNINITIALIZED_DATA
IMAGE_SCN_MEM_EXECUTE
IMAGE_SCN_MEM_READ
IMAGE_SCN_MEM_WRITE

UPx1

IMAGE_SCN_CNT_INITIALIZED_DATA|
IMAGE_SCN_MEM_EXECUTE
IMAGE_SCN_MEM_READ
IMAGE_SCN_MEM_WRITE

IMAGE_SCN_CNT_INITIALIZED_DATA
IMAGE_SCN_MEM_READ
IMAGE_SCN_MEM_WRITE

23

UPX applied to ELF hello.c

readelf -1 hello-static

E1lf file type is EXEC (Executable file)

Entry point 0x80481le0

There are 6 program headers, starting at offset 52
Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

LOAD 0x000000 0x08048000 0x08048000 0x851df 0x851df R E 0x1000 (Total FileSize = 0x859B3)
LOAD 0x085f8c 0x080cef8c 0x080cef8c 0x007d4 0x02388 RW 0x1000 (Total MemSize = 0x87567)
NOTE 0x0000£4 0x080480f4 0x080480f4 0x00044 0x00044 R 0x4

TLS 0x085f8c 0x080cef8c 0x080cef8c 0x00010 0x00028 R 0x4

GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0Ox4

GNU_RELRO 0x085f8c 0x080cef8c 0x080cef8c 0x00074 0x00074 R 0x1

Section to Segment mapping:
Segment Sections...

00 .note.ABI-tag .note.gnu.build-id .rel.plt .init .plt .text _ libc_freeres_fn .fini .rodata
_ libc_atexit __ libc_subfreeres .eh_frame .gcc_except_table

01 .tdata .ctors .dtors .jcr .data.rel.ro .got .got.plt .data .bss _ libc_freeres_ptrs

02 .note.ABI-tag .note.gnu.build-id

03 .tdata .tbss

04

05 .tdata .ctors .dtors .jcr .data.rel.ro .got

readelf -1 hello-static-packed

Elf file type is EXEC (Executable file)

Entry point 0xc40708

There are 2 program headers, starting at offset 52
Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
LOAD 0x000000 0x00c01000 0x00c01000 0x3£f£f08 0x3ff08 R E 0x1000 (Total FileSize = 0x3FF08)
LOAD 0x000314 0x080d1314 0x080d1314 0x00000 0x00000 RW 0x1000 (Total MemSize = 0x3FF08)

Original executable 2" LOAD segment VirtAddr + MemSiz

24

24

Pseudo Execution Flow Description

my wife pointed out if | don't obfuscate the addresses you could skip straight to step 4 ;)

0. Starts out running at its entry point
* 1. mmaps a page <SOMEWHERE>
» 2. Copies some of its code to <SOMEWHERE>

3. You will be stuck in loops the range between
<SOMEWHERE> and <SOMEWHERE> for a
while. Find the escape hatch!

* 4. Transfers control flow to <SOMEWHERE>

5. mmap allocates memory space sufficient to
cover original memory space

» 6. Decompresses data into original location

« 7. munmaps the original compressed memory area
(but leaves the 1 page at <SOMEWHERE>)
immediately before going to the original entry point
(OEP)

25

25

Other packers

Other packers introduce extensive anti-debug tricks
into the unpacking code.

Themida/VMProtect will take x86 code and convert
it into a series of equivalent instructions in a
custom bytecode language which is subsequently
interpreted into machine code (which may not
necessarily be the exact same code that existed in
the application pre-modification.)

— Therefore the "VM" in VMProtect is a "software virtual
machine" in the "java virtual machine" sense. Java
interprets bytecode in order to eventually execute
equivalent machine code, these VMs interpret
bytecode to execute equivalent machine code.

26

26

5

Offensive Computing — Malware Secrets

http://www.defcon.org/images/defcon-15/dc15-presentations/dc-15-valsmith_and_delchi.pdf

Packers

Packer Distribution Over 100 Files

themida . 100, ,..—‘

Krypton , 108, 1%—
PEX, 111, 1%—
LCC Win32 , 114, 1% ‘

petite . 148, 1% |
InstallShield 2000, 181, 1%— | l
\
\

neclite , 379, 3%
MEW , 426, 3%

upx , 3204, 26%
ste@ith PE . 498, 4%

PE Pack , 505, 4%

fsg . 750, 6%

aspack , 762, 6%

Microsoft Visual C++ , 1946,
15%
Sodand Delphi . 968, 8%

=

pecompact , 1129, 9% Microsoft Visual Basic . 1327,

Panda speculates long tail for packers, seems true

More than
100 files
detected
with packer
listed

27

Further Reading

Lots and lots of good stuff - http://pferrie.tripod.com/

http://www.codebreakers-journal.com/downloads/cbj/2006/
CBM_1_2 2006_BigBoote_Own_Packer.pdf

Autorﬁaﬁc_unpacking - http://www.joestewart.org/ollybone/tutorial.html
Automatic unpacking - http://bitblaze.cs.berkeley.edu/renovo.html

http://securitylabs.websense.com/content/Assets/
HistoryofPackingTechnology.pdf

http://www.Imgtfy.com/?q=PE+packer+filetype % 3Apdf

ELF

Shiva - advanced packer w/ anti-debug tricks: http://www.blackhat.com/
presentations/bh-usa-03/bh-us-03-mehta/bh-us-03-mehta.pdf

Reversing shiva: http://www.blackhat.com/presentations/bh-federal-03/bh-
federal-03-eagle/bh-fed-03-eagle.pdf

Burneye packer - http://packetstormsecurity.org/groups/teso/burneye-1.0.1-
src.tar.bz2

Userland Exec - Just another name for what unpacking does as far as I'm
concerned, but still worth a read - http://www.securityfocus.com/archive/1/348638

http://www.Imgtfy.com/?q=ELF+packer+filetype%3Apdf -

28

Other self-decompressors

» The concept of self-decompression at runtime is

also used in other areas. For instance Cisco's |IOS
is stored on the router in a compressed form which
decompresses in memory. Shttp://
www.coresecurity.com/files/attachments/
Killing_the myth of Cisco IOS_rootkits.pdf.rar)
BIOS can play the same game. (http://

www.coresecurity.com/files/attachments/
Persistent_BIOS_Infection_CanSecWest09.pdf)

Both of these are obviously doing this because
storage space is expected to be smaller than
memory.

29

29

Reflective DLL Injection

http://www.harmonysecurity.com/ReflectiveDllInjection.html

In contrast with normal DLL injection, where you might rely on
the OS to load the DLL for you, a reflective DLL is self-sufficient.
The code within it will handle the necessary initialization (that
the OS loader would normally do) in order to ensure it can
execute normally. The benefit is that this DLL will not be
registered anywhere by the OS as being a DLL, it will just be
some blob of code in memory somewhere.

Note, that this property can also potentially be used to find it.
That is, if you are doing memory analysis and you see
something that indicates control flow eventually transfers to
"some blob of code in memory somewhere", that is sort of
suspicious, and therefore bears investigation. (Of course then
the question becomes, how did you find this control flow
divergence ;))

That said, there are "legitimate" reasons there may be code
blobs running around in memory; see the Adobe Flash
ActionScript Just-In-Time (JIT) code generation engine...and
the subsequent utilization for exploits ("JIT Spray" - http://
www.semantiscope.com/research/BHDC2010/BHDC-2010-
Paper.pdf) 30

30

31

31

Hot Patching Running Binaries

"No! You have to add it! Patching is part of a binary's life! Don't make me give you to the back of my hand!")

(topic added under threat of physical violence by my wife!

Good talk here covering all the various ways you can
hotpatch, including microsoft's way: http://
www.blackhat.com/presentations/bh-usa-06/BH-US-06-
Sotirov.pdf

/hotpatch option can be added manually to the additional
compiler options. Then it will generate a "mov edi, edi"
instruction before the normal "push ebp; mov ebp, esp”
function prolog which will make your functions easier to
hotpatch in the future if necessary.

The "mov edi, edi" obviously does nothing, but it's 2 bytes,
which when combined with the 3 bytes for the "push ebp;
mov ebp, esp" == 5 bytes. If some code needs to hotpatch
a function, the first 5 bytes can then be overwritten with a
jmp instruction to jump to the new implementation of the
function, and that function knows it only needs to execute
the "push ebp; mov ebp, esp" instructions before it jumps
back to the original code.

32

32

5-Byte JMP Overwrite

Before overwriting the function prologue, we need to save the
overwritten instructions. The hook routine should execute the
saved instructions before returning to the patched function.

Patched function: Hook routine:
jmp hook >

mov esi, [ebp+arg_0] D

ret push ebp

— jmp patched_function+5

modified from 33
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Sotirov.pdf

TODQO: replace this slide

33

Games Nerds Play:
TinyPE/TeenyELF/TinyMach-O

* http://www.phreedom.org/solar/code/tinype/ -
97 bytes

* http://www.muppetlabs.com/~breadbox/
software/tiny/teensy.html - 45 bytes

* http://www.osxbook.com/blog/2009/03/15/
crafting-a-tiny-mach-o-executable - 165 bytes

34

34

Explore your world!
Read the Mach-O Spec! :D

http://developer.apple.com/mac/library/
documentation/DeveloperTools/
Conceptual/MachORuntime/Reference/
reference.html

How is it similar to the binary formats
we've covered in this class?

How is it different?
Where's the Oxbeef?

35

35

Bad Moon Rising

+ Unified Extensible Firmware Interface (UEFI) is
the replacement for BIOS. It's going to bring
BIOS into the modern day by making people
not have to program as much 16 bit x86.

+ It's also standardizing on the PE format for the
binaries. That means, now your firmware can
have modules which look a lot like Windows
executables and are a lot easier to programs.

* Does anyone see why this might start to create
more problems for security at the firmware
level?

36

36

Binject

http://www.rnicrosoft.net/tools/binject _v0.1.zip

https://media.blackhat.com/bh-us-10/
presentations/Harbour/BlackHat-USA-2010-
Harbour-Black-Art-of-Binary-Hijacking-
slides.pdf

Can break apart a binary and put it back
together in a convenient trojaned form.

— The only thing which is going to catch that sort of
thing are filesystem integrity checkers.

DLL Entry Point Redirection, Import Table DLL
Additions, TLS Callback and more, made easy

37

37

Teardown - What did we learn about?

* Not this year! Go watch last year's video at
OpenSecurityTraining.info!

+ Compilation

38

Teardown - What did we learn about?

» Portable Executable (PE) binary format
used on Windows systems

— 3 flavors of imports + hooking, exports +
hooking & export forwarding, relocations w/
relavance to memory integrity checks, thread
local storage (TLS) & TLS callbacks,
resources & file embedding, digital signature
files

» Executable and Linking Format (ELF)
binary format used on *nix systems

— imports & dynamic linking, exports, relocationsg
3

39

Teardown - What did we learn about?

» F*cking viruses, how do they work?!

« Packing/Unpacking and the effects on
binary format and memory contents

» Reflective DLL injection
+ Smallest possible binaries
* And the rest!

* Fly little birdie fly! It's time for you to
explore on your own. Go back through and
re-read explanations, read cited materials,
etc.

40

40

Extra Slides

41

41

STERTRRE

11 e e
R B {181
HE! K ftl

iy 5

|l I

o o o 38 50

Image by Ero Carrer:

42

IMAGE_DIRECTORY_ENTRY_EXCEPTION

http://msdn.microsoft.com/en-us/
magazine/cc301808.aspx

“array of
IMAGE_RUNTIME_FUNCTION_ENTRY
structures, which are CPU-specific.
Pointed to by the
IMAGE_DIRECTORY_ENTRY_EXCEPTI
ON slot in the DataDirectory. Used for
architectures with table-based exception
handling, such as the |IA-64. The only
architecture that doesn't use table-based
exception handling is the x86.”

43

43

STERTRRE
T

[0 1 I s I I N 0 s

it i i EHE BE B B B I8 BHE BT BN B
HH sl : Vi LVl B i Y Y WVl L9 {51
CPREXEXEEX IR i
i i \ 3 g H i H H

o o o 38 50

Image by Ero Carrer:

44

IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR

C:\WINDOWS\System32\TsWpfWrp.exe has a
non-zero instance of this

From Matt Pietrek's PE part 2 figures: http://
msdn.microsoft.com/en-us/magazine/
bb985997.aspx

"This value has been renamed to
IMAGE_DIRECTORY_ENTRY_COMHEADER
in more recent updates to the s%/stem header
files. It points to the top-level information

for .NET information in the executable,
including metadata. This information is in the
form of an IMAGE_COR20 HEADER
structure."

45

45

Image by Ero Carrer:

46

IMAGE_DIRECTORY_ENTRY_ARCHITECTURE
aka IMAGE_DIRECTORY_ENTRY_COPYRIGHT

« From Matt Pietrek's PE part 2 figures:
http://msdn.microsoft.com/en-us/
magazine/bb985997.aspx

« "Points to architecture-specific data,
which is an array of
IMAGE_ARCHITECTURE_HEADER
structures. Not used for x86 or |A-64,
but appears to have been used for
DEC/Compaq Alpha."

47

47

STERTRRE
T

ity ity
iR it i
iy iy

BH

el el

o o o 38 50

Image by Ero Carrer:

48

IMAGE_DIRECTORY_ENTRY_GLOBALPTR

« From Matt Pietrek's PE part 2 figures:
http://msdn.microsoft.com/en-us/
magazine/bb985997.aspx

* "The VirtualAddress field is the RVA to
be used as the global pointer (gp) on
certain architectures. Not used on x86,
but is used on |A-64. The Size field isn't
used. See the November 2000 Under
The Hood column for more information
on the IA-64 gp."

49

49

