-

jHE

SECRET LIFE
o/ BINARIES!

PART2

A)

Xeno Kovah — 2012
xkovah at gmail

See notes for citation

Image from: http://upload.moldova.org/movie/2007/dec/bee.jpg

All materials are licensed under a Creative
Commons “Share Alike” license.

* http://creativecommons.org/licenses/by-sa/3.0/

You are free:

to Share — to copy, distribute and transmit the work
to Remix — to adapt the work

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or

your use of the work)

Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible 2

license

Attribution conditions: Just state author name and where the slides
were obtained from

Executable Formats

Common Object File Format (COFF)
was introduced with UNIX System V.

Windows has Portable Executable (PE)
format. Derived from COFF.

Modern unix derivatives tend to use the
Executable and Linkable Format (ELF).

Mac OS X uses the Mach Object
(Mach-o) format. ®

Different target binary formats

* Executable (.exe on Windows, no suffix on Linux)

— A program which will either stand completely on its own,
containing all code necessary for its execution, or which will
request external libraries that it will depend on (and which
the loader must provide for the executable to run correctly)

* Dynamic Linked Library (.dll) on Windows == Shared
Library aka Shared Object (.so) on Linux

— Needs to be loaded by some other program in order for any
of the code to be executed. The library *may* have some
code which is automatically executed at load time (the
DlIMain() on windows or init() on Linux). This is as opposed
to a library which executes none of its own code and only
provides code to other programs.

+ Static Library (.lib on Windows, .a on Linux)

— Static libraries are just basically a collection of object files,
with some specific header info to describe the organization
of the files.

Files on Disk

WickedSweetApp.exe

mport MyLi
Import MyLib2
Import LibC

Import MyLib2

MyLib2.dll
Code

Data

b ..
" .
.,
"
" .
-,
.,
.
.
.
.

L=t _ Executable Loader
e ~
s A | Userspace
/7 .
7/ . / Stack
/ ‘. ,' Heap
d /A
)z - / WickedSweetApp.exe
/7 \ / LibC
) I - MyLib1.di
MyLib2.dll

Loader Overview Vitual Memory
Address Space

/"~ Kemel

N

/

Common Windows PE File
Extensions

.exe - Executable file

.dll - Dynamic Link Library

.sys/.drv - System file (Kernel Driver)
.ocx - ActiveX control

.cpl - Control panel

.Scr - Screensaver

Note: .lib files (Static Libraries) don't have
the same "DOS Header then PE Header"
format that the rest of these do.

Building Windows Executable, Dynamic
Linked Library, Static Library

+/ Common Properties

= Configuration Properties
General

Debugaging

CjC++

Linker

Manifest Tool

¥ML Document Generator
Browse Information
Build Events

Custom Build Step

IR A R R I Y

=
Qutput Directary $(SolutionDir)$(ConfigurationName)
Intermediate Directory $(ConfigurationName)
Extensions to Delete on Clean *,obji*ilk;* byt thy* bmp; * rsp*. pac; *. pad; * meta; $1
Build Log File $(IntDir)\BuildLog.htm
Inherited Project Property Sheets
Enable Managed Incremental Build es

=
Configuration Type Application {.exe) v

Use of MFC Makefile

Use of ATL

Character Set Dynamic Library (.dll)

Common Language Runtime support Static Library {.lib)

‘Whole Program Optimization Utility
Configuration Type

Specifies the type of output this configuration generates.

www.openrce.org/reference_library/files/reference/PE%20Format.pdf

Image by Ero Carrerg

Further Reading

The definitions of all of the structures for a PE file are
in WINNT.h

An In-Depth Look into the Win32 Portable Executable

File Format Part 1 & 2 — An excellent set of reference
articles by Matt Pietrek (this is how | first learned)

http://msdn.microsoft.com/en-us/magazine/cc301805.aspx,
http://msdn.microsoft.com/en-us/magazine/cc301808.aspx

The official spec:

http://www.microsoft.com/whdc/system/platform/firmware/pecoff.mspx
All the VisualStudio compiler options (note, some aren't in the GUI, you
have to add them manually): http://msdn.microsoft.com/en-us/
library/fwkeyyhe(v=VS.90).aspx

All the VS linker options: http://msdn.microsoft.com/en-us/
library/y0zzbyt4(v=VS.90).aspx 9

Your new best friends:
PEView and CFF Explorer

* | like PEView (http://www.maqma.ca/~wjr/PEvieW.zip) by
Wayne Radburn for looking at PE files. It's
no frills and gives you a view very close to
what you would see if you were looking at
tﬂe ﬁcructs in a program which was parsing
the file.

* Once you've seen and understood stuff in
PEView, you can graduate to the much
more feature-full CFF Explorer by Daniel
Pistelli (it lets you hex edit the file or
disassemble code! :D)
(http://www.ntcore.com/exsuite.php)

10

Tools: WinDbg

* We're going to be using WinDbg for
basic userspace debugging (as

opposed to kernel debugging like in the

Intermediate x86 class)

1

11

Terminology

RVA - Relative Virtual Address. This indicates
some displacement relative to the start (base)
of a binary in memory.

AVA — Absolute Virtual Address, more often
just "Virtual Address", but | want to be exact.
This is a specific address memory where
something can be found.

So if the base is 0x80000000, and the AVA was
0x80001000, then the RVA would be 0x1000.

If the base is 0x80000000, and the AVA was
0xC123000f, then the RVA would be
0x4123000f.

RVA = VA — Base

Windows uses RVAs extensively in the PE 1,
format, unlike ELF which uses just AVAs

12

Terminology 2

* Windows uses the following variable size
names:

* CHAR = character = 1 byte
« WORD = word = 2 bytes
— SHORT = short integer = 2 bytes
« DWORD = double-word = 4 bytes
— LONG = long integer = 4 bytes
« QWORD = quad-word = 8 bytes
— LONGLONG = long long integer = 8 bytes

NEW 2012

13

struct _IMAGE_DOS_HEADER {
0x00 WORD e_magic;

| 0x02 WORD e_cblp;
0x04 WORD e_cp;

0x06 WORD e_crlc;
0x08 WORD e_cparhdr;
0x0a WORD e_minalloc;
0x0c WORD e_maxalloc;
0x0e WORD e_ss;

0x10 WORD e_sp;

0x12 WORD e_csum;
0x14 WORD e_ip;

0x16 WORD e_cs;

0x18 WORD e_lfarlc;
Ox1a WORD e_ovno;
Ox1c WORD e_res[4];
0x24 WORD e_oemid;

ﬁ_l 0x26 WORD e_oeminfo;

;/ 0x28 WORD e_resZ[1 O] . Portable Executable Format
e ey TE)/ AR 0x3c DWORD e_lIfanew; l D —
‘/l:;) S ij}; }; P —

Image by Ero Carrerg

New 2012 -> Q: Ask students what the next offset after 0Ox3C would be.
A: 0x40 (ensures they get what | just said about sizes, and they have
their hex math down)

The MS-DOS File Header

(from winnt.h)
BLUE means the stuff we actually care about

typedef struct _IMAGE DOS_HEADER {
WORD e_magic;
WORD e_cblp;
WORD e_cp;
WORD e_crlc;
WORD e cparhdr;
WORD e:minalloc;
WORD e_maxalloc;
WORD e_ss;
WORD e_sp;
WORD e _csum;
WORD e_ip;
WORD e _cs;
WORD e_lfarlc;
WORD e_ovno;
WORD e_res([4];
WORD e_oemid;
WORD e_oeminfo;
WORD e _res2[10];
LONG e_lfanew;

//
/7
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

} IMAGE_DOS_HEADER, *PIMAGE_DOS_HEADER;

DOS .EXE header

Magic number

Bytes on last page of file

Pages in file

Relocations

Size of header in paragraphs
Minimum extra paragraphs needed
Maximum extra paragraphs needed
Initial (relative) SS value
Initial SP value

Checksum

Initial IP value

Initial (relative) CS value

File address of relocation table
Overlay number

Reserved words

OEM identifier (for e_oeminfo)
OEM information; e_oemid specific
Reserved words

File address of new exe header

15

15

The DOS Header

e_magic is set to ASCII 'MZ' which is from
Mark Zbikowski who developed MS-DOS

For most Windows programs the DOS header
contains a stub DOS program which does
nothing but print out “This program cannot be
run in DOS mode”

The main thing we care about is the e_Ifanew
field, which specifies a file offset where the
PE header can be found (a file pointer if you
will)

16

16

0x00 DWORD Signature;
| 0x04 _IMAGE_FILE_HEADER FileHeader;
0x18 _IMAGE_OPTIONAL_HEADER OptionalHeader;

%

Lo ot e o S 38 2008

i)

Opair : |
Image by Ero Carrerg

17

NT Header or “PE Header”

(from winnt.h)

typedef struct IMAGE_NT_HEADERS {
DWORD Signature;
IMAGE_FILE_HEADER FileHeader;
IMAGE_OPTIONAL_HEADER32 OptionalHeader;

} IMAGE_NT_HEADERS32, *PIMAGE_NT_HEADERS32;

 Signature == 0x00004550 aka ASCII
string “PE” in little endian order in a
DWORD

» Otherwise, just a holder for two other
embedded (not pointed to) structs

18

18

%

s

0x00
0x02
0x04
0x08
0x0c
0x10
0x12

b

F

struct _IMAGE_FILE_HEADER {

WORD Machine;

WORD NumberOfSections;
DWORD TimeDateStamp;
DWORD PointerToSymbolTable;
DWORD NumberQOfSymbols;
WORD SizeOfOptionalHeader;
WORD Characteristics;

Image by Ero Carrerg

19

File Header

(from winnt.h)

typedef struct IMAGE FILE HEADER {
WORD Machine;
WORD NumberOfSections;
DWORD TimeDateStamp;
DWORD PointerToSymbolTable;
DWORD NumberOfSymbols;
WORD SizeOfOptionalHeader;
WORD Characteristics;

} IMAGE_FILE HEADER, *PIMAGE FILE HEADER;

20

20

File Header 2

« Machine specifies what architecture
this is supposed to run on. This is our
first indication about 32 or 64 bit binary

» Value of 014C = x86 binary, aka 32 bit
binary, aka PE32 binary

» Value of 8664 = x86-64 binary, aka
AMDG64 binary, aka 64 bit binary, aka
PE32+ binary

21

21

File Header 3

* The TimeDateStamp field is pretty
interesting. It's a Unix timestamp (seconds
since epoc, where epoc is 00:00:00 UTC on
January 1st 1970) and is set at link time.

— Can be used as a “unique version” for the given
file (the version compiled on Jan 1 2010 may or
may not be meaningfully different than that
compiled on Jan 2 2010)

— Can be used to know when a file was linked
(useful for determining whether an attacker tool is
“fresh”, or correlating with other forensic
evidence, keeping in mind that attackers can
manipulate it)

22

22

File Header 4

« Oh hay, Hoglund started using the
TimeDateStamp as a characteristic for
malware attribution (BlackHat Las
Vegas 2010, slides not posted yet)

* NumberOfSections tells you how many
section headers there will be later

23

23

24

File Header 4

(from winnt.h)

« The Characteristics field is used to specify
things like:

#define IMAGE FILE EXECUTABLE IMAGE 0x0002

// File is executable (i.e. no unresolved externelkreferences).
#define IMAGE FILE LINE NUMS_STRIPPED 0x0004

// Line nunbers stripped from file. (tesheehes)
#define IMAGE FILE LARGE ADDRESS AWARE 0x0020

// App can handle >2gb addresses

#define IMAGE FILE 32BIT MACHINE 0x0100

// 32 bit word machine.

#define IMAGE FILE SYSTEM 0x1000

// System File. (Xeno:|don't see that set on .sys files)

#define IMAGE FILE DLL 0x2000

// File is a DLL.

(teeheehee)

25

25

File Header 4

» SizeOfOptionalHeader can theoretically
be shrunk to exclude “data directory”
fields (talked about later) which the
linker doesn't need to include. But |
don't think it ever is in practice.

« PointerToSymbolTable,
NumberOfSymbols not used anymore
now that debug info is stored in
separate file

26

26

New 2012 — changed this to a screen shot to save size
From

http://www.defensereview.com/stories/predatorcamo/Predator
%20Camo_Large.jpg

http://cognitive-edge.com/uploads/blog/predator-3.jpg
http://media.moddb.com/images/mods/1/12/11314/00004.jpg
http://remingtons.files.wordpress.com/2010/07/arnold-predator.jpg

http://www.trespassmag.com/wp-content/uploads/2010/07/
Predators.jpg

http://www.pcgameshardware.com/screenshots/medium/2009/06/
aliens-vs-predator-screenshot-02.jpg

http://images.alphacoders.com/178/178993.jpg

http://www.iamexpat.nl/app/webroot/upload/files/Topics/Lifestyle/Whats-
on/Guns-n-Roses-guns-n-roses-589484 655 475(1).jpg

27

& < | spentway too much time on that. Appreciate it

How to play

Open 2 instances of cmd.exe

— One will be for independent work, one will
be for class-competition

Start the game in both instances by
doing "python BinHunt.py"

the mode
In the class one, enter 2 for the mode

See notes for citation

In the independent work one, enter O for

28

New 2012 — NOTE: | spent way more time on that token than | should

have, so you must love and cherish it
From

http://www.classicplastic.net/dvgi/pics-tokenstilt02.jpg
http://www.classicplastic.net/dvgi/pics-tokensgeneric02.jpg

28

About This Game

» Part of a larger effort to create games to
reinforce material from security classes

» http://code.google.com/p/roxor-arcade/

 Allows for interesting data collection. Inspired
by this picture from khanacademy.org/about:

.r"'

29

29

Example of me playing the same round
multiple times and getting better each time

(I tried not to memorize any of the answers, and go through the motions of looking them up with the tools, |
basically just got faster with the tools

Xeno playing BinaryScavengerHunt Round 1 and 2 three times in a row
(seed = 1349311990)

2500

2000

[}
£
O 1500
Q
n
[o= =Try1
g 1000 = =Try2
(L] —=Try3
500
0
0 50 100 150 200 250 300
Seconds since start of game 30

30

Example of Entire First Class to
Beta Test BinaryScavengerHunt

« TODO

31

31

f:\J “"

R

OpenRrds

-/
<irg)

-
struct

0x00
0x02
0x03
0x04
0x08
0x0c
0x10
0x14
0x18
Oxic
0x20
0x24
0x28
0x2a
0x2c
0x2e
0x30
0x32
0x34
0x38
0x3c
0x40
0x44
0x46
0x48
Ox4c
0x50
0x54
0x58
0x5¢

%

_IMAGE_OPTIONAL_HEADER {

WORD Magic;

BYTE MajorLinkerVersion;

BYTE MinorLinkerVersion;
DWORD SizeOfCode;

DWORD SizeOfinitializedData;
DWORD SizeOfUninitializedData;
DWORD AddressOfEntryPoint;
DWORD BaseOfCode;

DWORD BaseOfData;

DWORD ImageBase;

DWORD SectionAlignment;
DWORD FileAlignment;

WORD MajorOperatingSystemVersion;
WORD MinorOperatingSystemVersion;
WORD MajorimageVersion;
WORD MinorimageVersion;
WORD MajorSubsystemVersion;
WORD MinorSubsystemVersion;
DWORD Win32VersionValue;
DWORD SizeOfimage;

DWORD SizeOfHeaders;
DWORD CheckSum;

WORD Subsystem;

WORD DlICharacteristics;
DWORD SizeOfStackReserve;
DWORD SizeOfStackCommit;
DWORD SizeOfHeapReserve;
DWORD SizeOfHeapCommit;
DWORD LoaderFlags;

DWORD NumberOfRvaAndSizes;
_IMAGE_DATA_DIRECTORY DataDirectory[16];

oo o Vo 28 2508

-t A —
.nage by Ero Carrerg

32

typedef struct _IMAGE_OPTIONAL_HEADER { From winnt.h

WORD Magic;
BYTE MajorLinkerVersion;
BYTE MinorLinkerVersion;

DWORD SizeOfCode;

DWORD SizeOfInitializedData;
DWORD SizeOfUninitializedData;
DWORD AddressOfEntryPoint;
DWORD BaseOfCode;

DWORD BaseOfData;

DWORD ImageBase;

DWORD SectionAlignment;

DWORD FileAlignment;

WORD MajorOperatingSystemVersion;
WORD MinorOperatingSystemVersion;
WORD MajorImageVersion;

WORD MinorImageVersion;

WORD MajorSubsystemVersion;

WORD MinorSubsystemVersion;

DWORD Win32VersionValue;

DWORD SizeOfImage;

DWORD SizeOfHeaders;

DWORD CheckSum;

WORD Subsystem;

WORD DllCharacteristics;

DWORD SizeOfStackReserve;

DWORD SizeOfStackCommit;

DWORD SizeOfHeapReserve;

DWORD SizeOfHeapCommit;

DWORD LoaderFlags;

DWORD NumberOfRvaAndSizes;

IMAGE_DATA_ DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES]; 33
} IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32;

typedef struct _IMAGE_OPTIONAL_HEADER64 {

WORD Magic;

BYTE MajorLinkerVersion;

BYTE MinorLinkerVersion;
DWORD SizeOfCode;

DWORD SizeOfInitializedData;
DWORD SizeOfUninitializedData;
DWORD AddressOfEntryPoint;
DWORD BaseOfCode;

ULONGLONG ImageBase;

DWORD SectionAlignment;

DWORD FileAlignment;

WORD MajorOperatingSystemVersion;
WORD MinorOperatingSystemVersion;
WORD MajorImageVersion;

WORD MinorImageVersion;

WORD MajorSubsystemVersion;
WORD MinorSubsystemVersion;
DWORD Win32VersionValue;
DWORD SizeOfImage;

DWORD SizeOfHeaders;

DWORD CheckSum;

WORD Subsystem;

WORD DllCharacteristics;

_ ULONGLONG _ SizeOfStackReserve;
ULONGLONG SizeOfStackCommit;
ULONGLONG _ SizeOfHeapReserve;

ULONGLONG SizeOfHeapCommit;
DWORD LoaderFlags;

DWORD NumberOfRvaAndSizes;
IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];
} IMAGE_OPTIONAL_HEADER64, *PIMAGE_OPTIONAL_HEADER64;

From winnt.h

34

34

Optional Header O

It's not at all optional ;)

Magic is the true determinant of
whether this is a PE32 or PE32+ binary

Depending on the value, the optional
header will be interpreted as having a
couple 32 or 64 bit fields.

0x10C = 32 bit, PE32
0x20B = 64 bit, PE32+

35

35

Optional Header 1

* It's not at all optional ;)

« AddressOfEntryPoint specifies the
RVA of where the loader starts
executing code once it's completed
loading the binary. Don't assume it just
points to the beginning of the .text
section, or even the start of main().

+ SizeOflmage is the amount of
contiguous memory that must be
reserved to load the binary into memory

36

36

Optional Header 2

« SectionAlignment specifies that sections
(talked about later) must be aligned on
boundaries which are multiples of this
value. E.g. if it was 0x1000, then you might
expect to see sections starting at 0x1000,
0x2000, 0x5000, etc.

 FileAlignment says that data was written
to the binary in chunks no smaller than this
value. Some common values are 0x200
(512, the size of a HD sector), and 0x80
(not sure what the significance is)

37

37

Optional Header 3

ImageBase specifies the preferred virtual memory location
where the beginning of the binary should be placed.

Microsoft recommends developers “rebase” DLL files. That is,
picking a non-default memory address which will not conflict
with any of the other libraries which will be loaded into the same
memory space.

If the binary cannot be loaded at ImageBase (e.g. because
something else is already using that memory), then the loader
picks an unused memory range. Then, every location in the
binary which was compiled assuming that the binary was loaded
at ImageBase must be fixed by adding the difference between
the actual ImageBase minus desired ImageBase.

The list of places which must be fixed is kept in a special
relocations” (.reloc) section.

This is because MS doesn't support position-independent code

38

38

Optional Header 4

DLLCharacteristics specifies some important security options like
ASLR and non-executable memory regions for the loader, and the
effects are not limited to DLLs.

#define IMAGE_DLLCHARACTERISTICS_DYNAMIC BASE 0x0040 // DLL can n
#define IMAGE DLLCHARACTERISTICS_FORCE_INTEGRITY 0x0080 /1 cox
#define IMAGE_DLLCHARACTERISTICS_NX_COMPAT 0x0100 // Imag
#define IMAGE DLLCHARACTERISTICS_NO_SEH 0%0400 // Image EH. No SE handler may ide

IMAGE_DLLCHARACTERISTICS_DYNAMIC BASE |s set when linked
with the /DYNAMICBASE option. This is the flag which tells the OS
loader that this binary supports ASLR. Must be used with the /FIXED:NO
option for .exe files otherwise they won't get relocation information.
IMAGE_DLLCHARACTERISTICS_FORCE_INTEGRITY says to
check at load time whether the digitally signed hash of the binary
matches.

IMAGE_DLLCHARACTERISTICS_NX_COMPAT is set with the /
NXCOMPAT linker option, and tells the loader that this image is
compatible with Data Execution Prevention (DEP) and that non-
executable sections should have the NX flag set in memory (we learn
about NX in the Intermediate x86 class)
IMAGE_DLLCHARACTERISTICS_NO_SEH says that this binary
never uses structured exception handling, and therefore no default
handler should be created (because in the absence of other opjions
that SEH handler is potentially vulnerable to attack.)

39

Security-Relevant Linker Options

+ /DYNAMICBASE — Mark the properties to indicate that this
executable will work fine with Address Space Layout
Randomization (ASLR)

+ /FIXED:NO - This will force the linker to generate relocations
information for an executable, so that it is capable of having its
base address modified by ASLR (otherwise usually .exe files
don't have relocations information, and therefore can't be moved
around in memory)

+ /INXCOMPAT — Mark the properties to indicate that this
executable will work fine with Data Execution Protection (which
marks data memory regions such as the stack and heap as non-
executable). DEP is just MS's name for utilizing the NX/XD bit to
mark memory pages as non-executable (Which we'll talk about
more in the Intermediate x86 class)

+ /SAFESEH - Safe Structured Exception Handling. Enforces that
the only SEH things you can use are ones which are specified in
the binary (it will automatically add any ones defined in your
code to a list that will be talked about later)

40

40

+ Common Properties
= Configuration Properties

+

General
Debugging
CjC++
Linker

General

Generate
Relocations

I e S

Optimization
Embedded IDL
Advanced
Command Line
Manifest Tool
#¥ML Document Generator
Browse Information
Build Events
Custom Build Step

ASLR & DEP/NX

Entry Point

Mo Entry Point Mo

Set Checksum Mo AS L R

Base Address

Randomized Base Address Enable Image Randomization {/DYNAMICBASE)
Generate a relocation section {/FIXED:NO)
Data Execution Prevention (DEP) Image is compatible with DEP {/NXCOMPAT)

Turn OFf Assembly Generation Mo

Delay Loaded DLL Don't Support Unload

Import Library D E P/N X

Merge Sections

Target Machine MachineX86 (/MACHINE:X86)

Profile Mo

CLR Thread Attribute Mo threading attribute set

CLR Image Type Default image type

Key File

Key Container

Delay Sign Mo

Error Reporting Prompt Immediately (fERRORREPORT:PROMPT)
CLR Unmanaged Code Check Mo

Fixed Base Address
Specifies if image must be loaded at a fixed address. (JFIXED:[Ma])

41

41

= scratch.exe RYA Data Description Value
IMAGE_DOS_HEADER 0000013E DLL Characteristics
MS-DOS Stub Program 0040 IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE
= IMAGE_NT_HEADERS 0100 IMAGE_DLLCHARACTERISTICS_NX_COMPAT
Signature 8000 IMAGE_DLLCHARACTERISTICS_TERMINAL_B§ NER_AWARE
IMAGE_FILE_HEADER 00000140 00100000 Size of Stack Reserve
IMAGE_OPTIONAL_HEADER 00000144 00001000 Size of Stack Commit D EP/N
IMAGE_SECTION_HEADER .text 00000148 00100000 Size of Heap Reserve 1
IMAGE_SECTION_HEADER .rdata || 0000014C 00001000 Size of Heap Commit
IMAGE_SECTION_HEADER .data 00000150 00000000 Loader Flags
IMAGE_SECTION_HEADER .rsrc 00000154 00000010 Nurnber of Data Directories
IMAGE_SECTION_HEADER .reloc || 00000158 00000000 RVA EXPORT Table
SECTION .text 0000015C 00000000 Size
SECTION .rdata 00000160 000023D4 RVA IMPORT Table
SECTION .data 00000164 0000003C _ Size
SECTION .rsrc 00000168 00004000 RVA RESOURCE Table
SECTION .reloc 00D0016C _ 000002B4 _ Size
Relocations

ASLR & DEP/NX in the Binary

42

42

DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ ENTRIES]

#define IMAGE_NUMBEROF DIRECTORY ENTRIES 16
(from winnt.h)

Therefore, while FileHeader.SizeOfOptionalHeader]
could technically change, in practice it's fixed|

43

Optional Header 3

» The type of DataDirectory[16] is
IMAGE_DATA DIRECTORY

typedef struct IMAGE DATA DIRECTORY {
DWORD VirtualAddress;
DWORD Size;
} IMAGE_DATA DIRECTORY, *PIMAGE DATA DIRECTORY;

* VirtualAddress is a RVA pointer to some
other structure of the given Size

44

44

#define
#define
#define
#define
#define
#define
#define
//

#define
#define
#define
#define
#define
#define
#define
#define

Optional Header 4

(from winnt.h)

* There is a predefined possible structure for each index in DataDirectory][]

IMAGE DIRECTORY ENTRY EXPORT

IMAGE DIRECTORY ENTRY IMPORT
IMAGE_DIRECTORY ENTRY RESOURCE
IMAGE_DIRECTORY ENTRY EXCEPTION
IMAGE_DIRECTORY ENTRY SECURITY
IMAGE_DIRECTORY ENTRY BASERELOC
IMAGE DIRECTORY ENTRY DEBUG
IMAGE_DIRECTORY ENTRY COPYRIGHT
IMAGE_DIRECTORY ENTRY ARCHITECTURE
IMAGE_DIRECTORY ENTRY GLOBALPTR
IMAGE DIRECTORY ENTRY TLS

IMAGE DIRECTORY ENTRY LOAD_CONFIG
IMAGE DIRECTORY ENTRY BOUND_ IMPORT
IMAGE_DIRECTORY ENTRY IAT

IMAGE DIRECTORY ENTRY DELAY IMPORT

W NNV e WN O

o

10
11
12
13

IMAGE_DIRECTORY_ENTRY COM_DESCRIPTOR 14

//
//

Export Directory

Import Directory

Resource Directory

Exception Directory

Security Directory

Base Relocation Table

Debug Directory

(X86 usage)

Architecture Specific Data
RVA of GP

TLS Directory

Load Configuration Directory
Bound Import Directory in headers
Import Address Table

Delay Load Import Descriptors
COM Runtime descriptor

* We will return to each entry in the DataDirectory[] later.
* Note that while the array is 16 elements, only 15 (0-14) are defined.

45

45

Pop quiz, hot shot. Which fields
do we even care about, and why?

N

typedef struct _IMAGE_DOS_HEADER {
WORD e_magic;
WORD e_cblp;
WORD e_cp;
WORD e_crlc;
WORD e_cparhdr;
WORD e_minalloc;
WORD e _maxalloc;
WORD e_ss;
WORD e_sp;
WORD e_csum;
WORD e_ip;
WORD e _Ccs;
WORD e_lfarlc;
WORD e_ovno;
WORD e _res[4];
WORD e_oemid;
WORD e_oeminfo;
WORD e res2[10];
LONG e_lfanew;

} IMAGE_DOS_HEADER, *PIMAGE_DOS_HEADER;

DOS .EXE header

Magic number

Bytes on last page of file

Pages in file

Relocations

Size of header in paragraphs
Minimum extra paragraphs needed
Maximum extra paragraphs needed
Initial (relative) SS value
Initial SP value

Checksum

Initial IP value

Initial (relative) CS value

File address of relocation table
Overlay number

Reserved words

OEM identifier (for e _oeminfo)
OEM information; e_oemid specific
Reserved words

File address of new exe header

46 @

46

+ Play through round 2 on your own, and
then wait for the seed for the class
deathmatch

* You can skip to level 2 by starting the
game with "python BinHunt.py 2"

47

See notes for citation

New 2012 — NOTE: | spent way more time on that token than | should
have, so you must love and cherish it

From
http://www.classicplastic.net/dvgi/pics-tokenstilt02.jpg
http://www.classicplastic.net/dvgi/pics-tokensgeneric02.jpg

47

Sections

« Sections group portions of code or data
(Von Neumann sez: “What's the
difference?! :P”) which have similar
purpose, or should have similar memory
permissions (remember the linking
merge option? That would be for
merging sections with "similar memory
permissions")

48

48

Sections 2

Common section names:

.text = Code which should never be paged out of memory
to disk

.data = read/write data (globals)
.rdata = read-only data (strings)

.bss = (Block Started by Symbol or Block Storage
Segment or Block Storage Start depending on who you
ask (the CMU architecture book says the last one))

MS spec says of .bss “Uninitialized data (free format)”
which is the same as for ELF.

In practice, the .bss seems to be merged into the .data
section by the linker for the binaries I've looked at

.idata = import address table (talked about later). In
practice, seems to get merged with .text or .rdata

.edata = export information

49

49

Sections 3

« PAGE* = Code/data which it's fine to page
out to disk if you're running low on memory
(not in the spec, seems to be used
primarily for kernel drivers)

.reloc = Relocation information for where
to modify hardcoded addresses which
assume that the code was loaded at its
preferred base address in memory

.rsrc = Resources. Lots of possible stuff
from icons to other embedded binaries.
The section has structures organizing it
sort of like a filesystem.

50

50

i

’ﬁf}’

rtypedef struct _IMAGE_SECTION HEADER{
0xoo BYTE Name[IMAGE_SIZEOF_SHORT_NAME];
union {
0x08 DWORD PhysicalAddress;
0x08 DWORD VirtualSize;
=" } Misc;
0x0c DWORD VirtualAddress;
0x10 DWORD SizeOfRawData;
0x14 DWORD PointerToRawData;
0x18 DWORD PointerToRelocations;
0x1c DWORD PointerToLinenumbers;
0x20 WORD NumberOfRelocations;
0x22 WORD NumberOfLinenumbers;
0x24 DWORD Characteristics;

}; mat
\ AN = =
PEAREE ——

Image by Ero Carrerg

Section Header

(from winnt.h)

#define IMAGE_SIZEOF_SHORT_NAME 8

typedef struct _IMAGE_SECTION_HEADER {

BYTE
union {

} Misc;
DWORD
DWORD
DWORD
DWORD
DWORD
WORD
WORD
DWORD

Name[IMAGE_SIZEOF_SHORT_NAME];

DWORD PhysicalAddress;
DWORD VirtualSize;

VirtualAddress;
SizeOfRawData;
PointerToRawData;
PointerToRelocations;
PointerToLinenumbers;
NumberOfRelocations;
NumberOfLinenumbers;
Characteristics;

} IMAGE_SECTION_HEADER, *PIMAGE_ SECTION_HEADER;

52

52

Refresher: C Unions

union {
DWORD PhysicalAddress;
DWORD VirtualSize;
} Misc;

» Used to store multiple different interpretations
of the same data in the same location.

» Accessed as if the union were a struct. So if
you have
IMAGE SECTION HEADER sectHdr;
You don't access sectHdr.VirtualSize,
you access sectHdr.Misc.VirtualSize

+ We will only ever consider it as the VirtualSize
field.

53

53

Section Header 2

« Name[8] is a byte array of ASCII
characters. It is NOT guaranteed to be
null-terminated. So if you're trying to parse
a PE file yourself you need to be aware of
that.

« VirtualAddress is the RVA of the section
relative to OptionalHeader.ImageBase

+ PointerToRawData is a relative offset
from the beginning of the file which says
where the actual section data is stored.

54

54

Section Header 3

« There is an interesting interplay between

Misc.VirtualSize and SizeOfRawData. Sometimes
one is larger, and other times the opposite.

Why would VirtualSize be greater than
SizeOfRawData? This indicates that the section is
allocating more memory space than it has data
written to disk.

Think about the .bss]portion of the .rdata section. It
just needs a bunch of space for variables. The
variables are uninitialized, which is why they don't
have to be in the file. Therefore the loader can just
give a chunk of memory to store variables in, by
just allocating VirtualSize worth of data. Thus you
get a smaller binary.

55

95

0x500

VirtualSize > SizeOfRawData

(on your own slide, draw the correspondence between the 0x200 in the first picture and the 0x300 in the second)

Section On Disk

SectionHeader
Misc.VirtualSize = 0x300
SizeOfRawData = 0x200
PointerToRawData = 0x500

Ve

Section Data

0x200

0x1000

Section In Memory

SectionHeader
Misc.VirtualSize = 0x300
SizeOfRawData = 0x200
PointerToRawData = 0x500

VirtualAddress = 0x1000
7

Section Data From Disk

Zero-initialized data

—0x300

56

56

Section Header 4

Why would SizeOfRawData be greater than
VirtualSize?

Remember that PE has the notion of file
alignment. (OptionalHeader.FileAlignment) T herefore, if
you had a FileAlignment of 0x200, but you only
had 0x100 bytes of data, the linker would have
had to write 0x100 bytes of data followed by
0x100 bytes of padding.

By having the VirtualSize < SizeOfRawData,
the loader can say “ok, well | see | really only
need to allocate 0x100 bytes of memory and
read 0x100 bytes of data from disk.”

57

57

VirtualSize < SizeOfRawData

(on your own slide, draw the correspondence between the 0x200 in the first picture and the 0x100 in the second))

Section On Disk Section In Memory
0
Section Header Section Header
VirtualSize = 0x100 VirtualSize = 0x100
SizeOfRawData = 0x200 SizeOfRawData = 0x200
PointerToRawData = 0x500 PointerToRawData = 0x500
VirtualAddress = 0x1000

J
v— &

0x1000

= 0x100

Section Data Section Data
i’“adding - \
L& B

58

58

Section Header 5

(from winnt.h)

« Characteristics tell you something about the
section. Examples:

#define IMAGE_SCN_CNT_CODE 0x00000020
// Section contains code.

#define IMAGE_SCN_CNT_INITIALIZED_DATA 0x00000040
// Section contains initialized data.

#define IMAGE_SCN_CNT_UNINITIALIZED_DATA 0x00000080
// Section contains uninitialized data.

#define IMAGE_SCN_MEM DISCARDABLE 0x%02000000
//Do not cache this section

#define IMAGE_SCN_MEM_NOT_ CACHED 0x04000000
// Section can be discarded.

#define IMAGE_SCN_MEM_NOT_PAGED 0x08000000
// Section is not pageable.

#define IMAGE_SCN_MEM_ SHARED 0x10000000
// Section is shareable.

#define IMAGE_SCN_MEM EXECUTE 0x20000000
// Section is executable.

#define IMAGE_SCN_MEM_READ 0x40000000
// Section is readable.

#define IMAGE_SCN_MEM WRITE 0x80000000

59
// Section is writeable.

59

Section Header

» PointerToRelocations,
PointerToLinenumbers,
NumberOfRelocations,
NumberOfLinenumbers aren't used anymore

60

60

S

#

Configuration: | Active(Release)

CjC++
General
Optimization
Preprocessor
Code Generation
Language
Precompiled Headers
Output Files
Browse Information
Advanced
Command Line
Linker
General
Input
Manifest File
Debugging
System
Optimization
Embedded 1DL
Advanced
Command Line
Manifest Tool
XML Document Generator
Browse Information

v

Renaming Sections

scratch Property Pages a a

V| Platform: | Active(Win32) v | | Configuration Manager...

Entry Point

Mo Entry Point No

Set Checksum Mo

Base Address

Randomized Base Address Enable Image Randomization ([DYNAMICBASE)

Fixed Base Address Default

Data Execution Prevention (DEP) Image is compatible with DEP (jNXCOMPAT)

Turn OFf Assembly Generation No

Delay Loaded DLL Don't Support Unload

Import Library

Merge S ns Jtext=.xeno v

Target Machine MachineX86 (/MACHINE:X86)

Profile No

CLR Thread Attribute No threading attribute set

CLR Image Type Default image type

Key File

Key Container -

Delay San = IMAGE_DOS_HEADER
Error Reporting Prompt Immediately (JERRORREPORT:PROMPT) ~ —

CLR Unmanaged Code Check. No MS-DOS Stub Program

+

IMAGE_NT_HEADERS
IMAGE_SECTION_HEADER .xeno
IMAGE_SECTION_HEADER .rdata
IMAGE_SECTION_HEADER .data
o J o) [ooy IMAGE_SECTION_HEADER _reloc
SECTION .xeno

SECTION .rdata

SECTION .data

SECTION .reloc

Merge Sections
(Causes the linker to merge section ‘from' into section 'to’; if section 'to’ does not exist, section from' is
renamed as 'to'. (/MERGE:[from=ta])

+

61

61

+/ Common Properties
= Configuration Properties
General
Debugging
CIC++
Linker
General
Input
Manifest File
Debugging
System
Optimization
Embedded IDL
Advanced
Command Line
Manifest Tool
%ML Document Generator
Browse Information
Build Events
Custom Build Step

&

SR A S e

scratch.c
Linking. ..

LINK : warning LNK4ZS54:

Merge Sections

Entry Point
Mo Entry Paint No
Set Checksum No

Base Address

Randomized Base Address

Fixed Base Address

Data Execution Prevention {DEP)

Enable Image Randomization (/DYNAMICBASE)
Generate a relocation section (/FIXED:NO)
Image is compatible with DEP (/NXCOMPAT)

Turn Off Assembly Generation Mo

Delay Loaded DLL Don't Support Unload

Import Library
rdata=.datal

Target Machine MachineX86 {/MACHINE:X86)
Profile No

CLR Thread Attribute No threading attribute set

CLR Image Type Default image type

Key File

Key Container

Delay Sign No

Error Reporting Prompt Immediately (fERRORREPORT:PROMPT)
CLR Unmanaged Code Check No

Merge Sections

Causes the linker to merge section 'from' into section 'to'; if section 'to’ does not exist, section ‘from' is
renamed as 'to'. ({MERGE:[from=ta])

section '.rdata' (40000040) merged into '.data' (C0000040) with

anee BEFORE

IMAGE_DOS_HEADER
MS-DOS Stub Program

IMAGE_NT_HEADERS
IMAGE_SECTION_HEADER text
IMAGE_SECTION_HEADER _rdata
IMAGE_SECTION_HEADER .rsrc
IMAGE_SECTION_HEADER _reloc
SECTION .text

SECTION .rdata
SECTION .data

+ SECTION .rsrc

SECTION .reloc

e AFTER

IMAGE_DOS_HEADER
MS-DOS Stub Program

IMAGE_NT_HEADERS
IMAGE_SECTION_HEADER text
IMAGE_SECTION_HEADER .data
IMAGE_SECTION_HEADER .rsrc
IMAGE_SECTION_HEADER .reloc
SECTION .text

+ SECTION .data

SECTION .rsrc

SECTION reloc

different attributes

62

62

Which fields do we even

care about, and why?
\

typedef struct IMAGE FILE HEADER ({

WORD
WORD
DWORD
DWORD
DWORD
WORD
WORD

Machine;
NumberOfSections;
TimeDateStamp;
PointerToSymbolTable;
NumberOfSymbols;
SizeOfOptionalHeader;
Characteristics;

} IMAGE_FILE HEADER, *PIMAGE FILE HEADER;

63

+ Play through round 3 on your own, and
then wait for the seed for the class
deathmatch

* You can skip to level 3 by starting the
game with "python BinHunt.py 3"

64

See notes for citation

New 2012 — NOTE: | spent way more time on that token than | should
have, so you must love and cherish it

From
http://www.classicplastic.net/dvgi/pics-tokenstilt02.jpg
http://www.classicplastic.net/dvgi/pics-tokensgeneric02.jpg

64

Static Linking vs Dynamic Linking

« With static linking, you literally just include a
copy of every helpér function’you use inside the
executable you're generating.

« Dynamic linking is when you resolve pointers to
functions inside libraries at runtime.

* Needless to say, a statically linked executable
is bloated compared to a dynamically linked
one. But on the other hand, it's standalone,
without outside dependencies. But on the other
other hand, patches or fixes to libraries are not
applied to the statlcally_ linked blnarP/ until it's re-
linked, so it can potentially have vulnerable
code long after a library vulnerability is patched.

« Going to learn a bunch about how dynamic
linking works, in service to learning a bit about

how it is abused. o

65

Calling Imported Functions

* As a programmer, this is transparent to
you, but what sort of assembly does the
compiler actually generate when you
call an imported function like printf()?

* We can use the handy-dandy
HelloWorld.c to find out quickly.

printf("Hello World!\n");

004113BE 8B F4 mov esi,esp
004113C0 68 3C 57 41 00 push 41573Ch
004113C5 FF 15 BC 82 41 00 call dword ptr ds:[004182BCh]

(Note to self, show imports in PEView too)

66

66

. s

= (IMAGE_DIRECTORY_ENTRY_IMPORT

-| struct _IMAGE_DATA_DIRECTORY {
-~ 0x00 DWORD VirtualAddress;
{ 0x04 DWORD Size;

Portable Executable Format

0 monmmmeieen
b e sormtn e

Lo s o o 28 208
s

Image by Ero Carrerg

67

Opsin

struct _IMAGE_IMPORT_DESCRIPTOR {
0x00 union {

/* 0 for terminating null import descriptor */

| ox00 DWORD Characteristics;

/* RVAto original unbound IAT */

~+1 0x00 PIMAGE_THUNK_DATA OriginalFirstThunk;

: Ty
0x04 DWORD TimeDateStamp; /* 0 if not bound,

*-1if bound, and real date\time stamp

* in IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT

* (new BIND)

* otherwise date/time stamp of DLL bound to
* (Old BIND)

*/

=] 0x08 DWORD ForwarderChain; /* -1 if no forwarders */
o 0x0c DWORD Name;

/* RVAto IAT (if bound this IAT has actual addresses) */

=~ =1 0x10 PIMAGE_THUNK_DATA FirstThunk;

Y=
-’i's‘,—

Fovo)

Image by Ero Carrerg

68

Import Descriptor

(from winnt.h)

| think they meant “INT”
typedef struct IMAGE IMPORT DESCRIPTOR {

union {
DWORD Characteristics; // 0 for terminating null\import descriptor
DWORD OriginalFirstThunk; // RVA to original unbound IAT (PIMAGE_THUNK_DATA)
bi
DWORD TimeDateStamp; // 0 if not bound,
// -1 if bound, and real date\time stamp
// in IMAGE_DIRECTORY_ENTRY_ BOUND_ IMPORT (new BIND)
// 0.W. date/time stamp of DLL bound to (0ld BIND)
DWORD ForwarderChain; // -1 if no forwarders

DWORD Name;
DWORD FirstThunk; // RVA to IAT (if bound this IAT has actual addresses)
} IMAGE_IMPORT_DESCRIPTOR;

* While the things in blue are the fields filled in for the most common case, we
will actually have to understand everything for this structure, because you
could run into all the variations.

69

Import Descriptor 2

« OriginalFirstThunk (“is badly named”
according to Matt Pietrek) is the RVA of
the Import Name Table (INT). It's so
named because the INT is an array of
IMAGE_THUNK DATA structs. So this
field of the import descriptor is trying to
say that it's pointing at the first entry in
that array.

70

70

Import Descriptor 3

 FirstThunk like OriginalFirstThunk except
that instead of being an RVA which points
into the INT, it's pointing into the Import
Address Table (IAT). The IAT is also an
array of IMAGE_THUNK_DATA structures
(they're heavily overloaded as we'll see).

« Name is just the RVA which will point at
the specific name of the module which
imports are taken from (e.g. hal.dll,
ntdll.dll, etc)

7

71

union {

0x00 LPBYTE ForwarderString;

0x00 PDWORD Function;

0x00 DWORD Ordinal;

0x00 PIMAGE_IMPORT_BY_NAME AddressOfData;
Yut;

} IMAGE_THUNK_DATA,*PIMAGE_THUNK_DATA;

e h

0x00 WORD Hint;
0x02 BYTE Namel[1];
} IMAGE_IMPORT_BY_NAME,*PIMAGE_IMPORT_BY_NAME;

~

typedef struct _IMAGE_THUNK_DATA{ B

typedef struct _IMAGE_IMPORT_BY_NAME { B

ble Executable Format

a~
OBENRGE

-
Fovo)

Image by Ero Carrerg

72

IMAGE_THUNK_DATA

(from winnt.h)

typedef struct _IMAGE_THUNK_DATA32 ({

union {
DWORD
DWORD
DWORD
DWORD
} ul;

} IMAGE_ THUNK

ForwarderString; // PBYTE

Function; // PDWORD

Ordinal;

AddressOfData; // PIMAGE_IMPORT_ BY NAME

DATA32;

* We just learned that both the INT (pointed to by
OriginalFirstThunk) and the IAT (pointed to by FirstThunk) point
at arrays of IMAGE_THUNK_DATA32s.

* The INT and IAT IMAGE_THUNK_DATAS32 structures are all
interpreted as pointing at IMAGE_IMPORT_BY_NAME
structures to begin with. That is they are u1.AddressOfData.
This is actually the RVA of an IMAGE_IMPORT_BY_NAME

structure.

73

73

IMAGE_IMPORT_BY_NAME

(from winnt.h)_

typedef struct _IMAGE IMPORT BY NAME {
WORD Hint;
BYTE Name[1l];
} IMAGE IMPORT BY NAME, *PIMAGE IMPORT BY NAME;

* Hint specifies a possible “ordinal” of an
imported function. Talked about later,
when we talk about exports, but basically
it's just a way to look up the function by an
index rather than a name.

« Name on the other hand is to look up the
function by name. It's not one byte long,
it's a null terminated ASCII string which
follows the hint. But usually it's just null in
our examples.

74

74

On the impersistence of being: INT vs IAT

* The INT IMAGE_THUNK _ DATA structures
are always interpreted as pointing at
IMAGE_IMPORT_BY_NAME structures,
that is they are u1.AddressOfData, the
RVA of an IMAGE_IMPORT_BY_NAME.

* The IAT IMAGE_THUNK DATA structures
start out are all interpreted as the
ul.AddressOfData, but once the OS
loader resolves each import, it overwrites
the IMAGE_THUNK DATA structure with
the actual virtual address of the start of the
function. Therefore it is subsequently
interpreted as u1.Function.

75

Review: Import Names Table Import Address Table

(IMAGE_THUNK_DATA array) (IMAGE_THUNK_DATA array)
Import data
structures —> 0x014B, NtQuerySysinfo <
ON DISK > 0x040B, RtllnitUnicodeString ~ <—

—> 0x01DA, lofCompleteRequest <—

Array of IMAGE_IMPORT_BY_NAME
Structures stored wherever in the file

IMAGE_IMPORT_DESCRIPTOR
OriginalFirstThunk ——

TimeDateStamp

ForwarderChain

— ET—

FirstThunk
0
0
Zero-filled
0 IMAGE_IMPORT_DESCRIPTOR
entry terminates the array
0
0 76
- Graphical style borrowed from the Matt Pietrek articles

Review: Import Names Table Import Address Table

(IMAGE_THUNK_DATA array)

Import data

structures —> 0x014B, NtQuerySyslnfo

IN MEMORY > 0x040B, RilInitUnicodeString
AFTER IMPORTS > 0x01DA, lofCompleteRequest

RESOLVED Array of IMAGE_IMPORT_BY_NAME

Structures stored wherever in the file
IMAGE_IMPORT_DESCRIPTOR

OriginalFirstThunk ——
TimeDateStamp

ForwarderChain

— EEET

S

(IMAGE_THUNK_DATA array)

L

>

— >

)

IAT entries now
point to the full
virtual addresses
where the
functions are
found in the other
modules (just

FirstThunk ntoskrnl.exe in
- this case)
0
0
Zero-filled
0 IMAGE_IMPORT_DESCRIPTOR
entry terminates the array
0
0 77
- Graphical style borrowed from the Matt Pietrek articles

77

|mp0rt data Import Names Table Import Address Table
(IMAGE_THUNK_DATA array) (IMAGE_THUNK_DATA array)
structures

ON DISK > 0x014B, loDeleteSymbolicLink <—
> 0x040B, RillnitUnicodeString ~ <—

<

—> 0x01DA, lofCompleteRequest <—

Array of IMAGE_IMPORT_BY_NAME
Structures stored wherever in the file

IMAGE_IMPORT_DESCRIPTOR
OriginalFirstThunk ——

TimeDateStamp

ForwarderChain

— Emy

FirstThunk
0
0
Zero-filled
0 IMAGE_IMPORT_DESCRIPTOR
entry terminates the array
0
0 78

- Graphical style borrowed from the Matt Pietrek articles

|mp0rt data Import Names Table
(IMAGE_THUNK_DATA array)

structures

IN MEMORY
AFTER IMPORTS
RESOLVED

IMAGE_IMPORT_DESCRIPTOR
OriginalFirstThunk ——
TimeDateStamp

ForwarderChain

—> 0x014B, loDeleteSymbolicLink

—> 0x040B, RtlInitUnicodeString

—> 0x01DA, lofCompleteRequest

Array of IMAGE_IMPORT_BY_NAME
Structures stored wherever in the file

— pm

S

Import Address Table
(IMAGE_THUNK_DATA array)

FirstThunk
0

[=RK=N=Ni)

Zero-filled

MAGE_IMPORT_DESCRIPTOR

entry terminates the array

L

>

— >

)

IAT entries now
point to the full
virtual addresses
where the
functions are
found in the other
modules (just
ntoskrnl.exe in
this case)

79

Graphical style borrowed from the Matt Pietrek articles

79

Look through null.sys

(note to self: start from the data directory)

= null.sys
IMAGE_DOS_HEADER
MS-DOS Stub Program
= IMAGE_NT_HEADERS
Signature
IMAGE_FILE_HEADER
IMAGE_OPTIONAL_HEADER
IMAGE_SECTION_HEADER .rdata
IMAGE_SECTION_HEADER .data
IMAGE_SECTION_HEADER PAGE
IMAGE_SECTION_HEADER INIT
IMAGE_SECTION_HEADER .rsrc
IMAGE_SECTION_HEADER .reloc
= SECTION .rdata
IMPORT Address Table
IMAGE_DEBUG_DIRECTORY
IMAGE_DEBUG_TYPE_CODEVIEW
SECTION .data
SECTION PAGE
= SECTION INIT
IMPORT Directory Table
IMPORT Name Table
IMPORT Hints/Names & DLL Names

RYWA Data Description Value
00000610 00000638 Import Name Table RVA
00000614 00000000 Time Date Stamp
00000618 00000000 Forwarder Chain
0000061C 000006D4 Marme RWVA ntoskml.exe
00000620 00000300 Import Address Table RVA
00000624 (00000000
00000628 00000000
0000062C 00000000
00000630 00000000
00000634 00000000

80

80

Import data
structures
ON DISK

IMAGE_IMPORT_DESCRIPTOR
OriginalFirstThunk
TimeDateStamp
ForwarderChain
Name
FirstThunk
OriginalFirstThunk
TimeDateStamp
ForwarderChain

Name
FirstThunk

Import Names Table
(IMAGE_THUNK_DATA array)

S,

Import Address Table
(IMAGE_THUNK_DATA array)

<
<

—> 0x0001, ExReleaseFastMutex <—
—> 0x004E, KfRaiselrql <—
—> 0x004D, KfLowerlrgl <—
e_
—> 0x029D, MmLockPagableDataSection <
s Ox01EE, KeCancelTimer <]
N 0x02BC, MmUnlockPagablelmageSection <
Array of IMAGE_IMPORT_BY_NAME
Structures stored wherever in the file
— |
—_—>
HAL.dII
81

Graphical style borrowed from the Matt Pietrek articles

81

Import data

Import Names Table
(IMAGE_THUNK_DATA array)

Import Address Table
(IMAGE_THUNK_DATA array)

structures
IN MEMORY > > 0x0001, ExReleaseFastMutex > s
AFTER IMPORTS > 0x004E, KfRaiselrgl N
RESOLVED > 0x004D, KfLowerlrg] N N
|5 0x029D, MmLockPagableDataSection S
IMAGE_IMPORT_DESCRIPTOR g A SE TS T >
OriginalFirstThunk |y 0x02BC, MmUnlockPagablelmageSection S

TimeDateStamp
ForwarderChain
Name

FirstThunk
OriginalFirstThunk
TimeDateStamp
ForwarderChain

Name
FirstThunk

— | Ey

Array of IMAGE_IMPORT_BY_NAME e \—Y—)

Structures stored wherever in the file

IAT entries now
point to the full
virtual

e HAL.dII

addresses
where the
functions are
found in the
other modules

82

Graphical style borrowed from the Matt Pietrek articles

82

Look through beep.sys

beep.sys

IMAGE_DOS_HEADER
MS-DOS Stub Program
IMAGE_NT_HEADERS
IMAGE_SECTION_HEADER _text
IMAGE_SECTION_HEADER .rdata
IMAGE_SECTION_HEADER INIT
IMAGE_SECTION_HEADER .rsrc
IMAGE_SECTION_HEADER .reloc
SECTION .text
SECTION .rdata

IMPORT Address Table

IMAGE_DEBUG_DIRECTORY

IMAGE_DEBUG_TYPE_CODEVIEW
SECTION INIT

IMPORT Name Table

IMPORT Hints/Mames & DLL Names

+ SECTION .rsrc

+

SECTION .reloc

RWA Data Description Yalue
00000880 00000804 Import Name Table RVA
00000554 00000000 Time Date Stamp
00000888 00000000 Forwarder Chain
0000088C 0000DASE Name RVA ntoskml.exe
00000830 00000798 Import Address Table RVA
00000894 0DOODSEC Import Name Table RVA
00000898 00000000 Time Date Stamp
0000083C 00000000 Forwarder Chain
00000BA0 DODODAFC Name RWA HAL.dll
00000BA4 00000780 Import Address Table RVA
00000BAS 00000000
000D0BAC (00000000
000008EB0 00000000
00000864 00000000
000008E8 00000000

83

nt then hal, no special significance, just sayin'

83

Look through beep.sys 2

= beep.sys

+

+

+

#

IMAGE_DOS_HEADER

MS-DOS Stub Program

IMAGE_NT_HEADERS

IMAGE_SECTION_HEADER .text

IMAGE_SECTION_HEADER .rdata

IMAGE_SECTION_HEADER INIT

IMAGE_SECTION_HEADER .rsrc

IMAGE_SECTION_HEADER .reloc

SECTION text

SECTION .rdata
IMAGE_DEBUG_DIRECTORY
IMAGE_DEBUG_TYPE_CODEVIEW

SECTION INIT

SECTION .rsrc

SECTION .reloc

RYA Data Description Yalue
00000780 00000ADD Hint/Name RVA 0001 ExReleaseFastMutex
00000784 00000AC2 Hint/Name RVA 004E KfRaiselrgl
00000788 00000AB4 Hint/Name RVA 004D KfLowerlrgl
0000078C 0000DAAS Hint/Name RVA 0018 HalMakeBeep
00000790 0000DAEG Hint/Name RVA 0000 ExAcquireFastMutex
00000794 00000000 End of Imports HAL dil
00000798 00000SAC Hint/Name RVA 023D MmLockPagableDataSection
0000079C 000003CE Hint/Name RVA 01EE KeCancelTimer
000007 AD 00000308 Hint/Name RVA 02BC MmUnlockPagablelmageSection
000007 A4 00D00SFE Hint/Name RVA 0184 loStartNextPacket
000007A8 OOOOOADA Hint/Name RVA 0254 KeSetTimer
000007AC ODDODATE Hint/Name RVA 055E _allmul
00000780 0000033C Hint/Name RVA 0186 loStartPacket
00000784 00000A34 Hint/Name RVA 020C KelnitializeEvent
00000768 00000A48 Hint/Name RVA 0213 KelnitializeTimer
000007BC O0ODOASC Hint/Name RVA 0208 KelnitializeDpc
000007 CO O0000AGE Hint/Name RVA 0138 loCreateDevice
000007 C4 0000DASD Hint/Name RVA 040B RtlinitUnicodeString
000007 C8 00000982 Hint/Name RVA 0116 loAcquireCancelSpinLock
000007CC 00000SEC Hint/Name RVA 023A KeRemoveDeviceQueue
00000700 00000950 Hint/Name RVA 0238 KeRemoveEntryDeviceQueue
000007D4 00000936 Hint/Name RVA 0199 loReleaseCancelSpinLock
00000708 00000A22 Hint/Name RVA 0149 loDeleteDevice
000o007DC 00000920 Hint/Name RVA 01DA lofCompleteRequest
000007 E0 00000000 End of Imports ntoskml.exe

hal then nt, no special significance, just sayin'it's &4

backwards from the previous

84

Lab: appverif.exe

» appverif.exe was chosen because it has
only "normal" imports; no “bound” or
“delayed” imports as will be talked
about later

* View Imports of C:\Windows
\SysWOW64\appverif.exe with PEView

* View imports in memory by attaching
with WinDbg

85

85

The WOW Effect

* OnWin 7 x64...

— C:\Windows\System32 = where the 64 bit
binaries are stored
— C:\Windows\SysWOW64 = where the 32 bit
binaries are stored.
» Try opening C:\Windows\SysWOW

» 32 bit executables, like PEView currently is, will
open SysWOW64 instead of System32

— C:\Windows\Sysnative = how you can force 32
bit executables to find the 64 bit executables
to find the 64 bit executables

* For more: http://www.cert.at/static/downloads/
papers/cert.at-the_wow _effect.pdf

86

86

Did | mention?

It's a
MADHOUSE!!!

Did someone
call me?

http://s1.picofile.com/file/6417096576/mad_house.jpg

http://www.staceyreid.com/news/wp-content/uploads/2011/08/
milhouse.gif

http://mimg.ugo.com/201111/9/0/1/214109/cuts/brighteyes_528x297 .jpg

87

Open WinDbg as Administrator

Programs (1)
3 WinDbg
Open
Troubleshoot compatibility
Open file location
% Run as administrator
Pin to Taskbar
Pin to Start Menu

Open with...

Restore previous versions

Send to »
Cut
Copy
Delete
Properties
See more results
_ 88
‘windbg > | Shut down | » |

88

2 WinDbg:6.12.0002.633 AMD64

Edit View Debug Window Help

Open Source File...

Clo urrent Window

Open Executable...

[Workspace 'base’
Save information for workspace?

[¥] Dont ask again in this WinDbg session

Open executable

Ctrl+0
Ctrl+F4
o ==
L SysWOWes4 - @%@
0409 en
Advancedinstallers en-US
ar-SA es-ES
bg-BG et-EE
catroot fi-FI
catroot2 fr-FR
com FxsTmp
config GroupPolicy
cs-CZ GroupPolicyUsers
da-DK he-IL
de-DE hr-HR
Dism hu-HU
drivers icsxml
DriverStore IME
el-GR inetsrv
<)
[File name: C:\WINDOWS\SysWOW64\appverif exe - Open
Files of type Executable Fies «] [cancel |

89

rﬂ CAWindows\SysWOWGH\appverf.exe - WinDbg6.12.0002633 AMDS4

Microsoft (R) Windows Debugger Version 6.12.0002.633 AMD64
Copyright (c) Microsoft Corporation. All rights reserved.

CommandLine: C: \U:ndnws\SvsWOUBA\aDpver;i exe
Symbol search path is: *%x Invalid =

* Symbol loading may be unreliable without a symbol search path. *
* Use .symfix to have the debugger choose a symbol path. *
* Aftar setting your symbol path. use .reload to refresh symbol locations. *

Executable search path i
ModLoad: 00000000° UOUaUOUO 00000000°000ca000 appverif.exe
: 00000000 77280000 00000000°7742b000 ntdll.dll
00000000 77460000 00000000° 77520000 ntdll32 .dll
: 00000000° 74cb0000 00000000° 74cef000 C:\Windows\SYSTEM32\wow64 .dll
© 00000000 74c50000 00000000° 74cac000 C:\Windows\SYSTEM32\wowbdwin dll
: UUUUUUUU 74c40000 00000000°74c48000 C:\Windows\SYSTEM32\wowé4cpu.dll

odLo
(1534 24c8): Break instruction exception - code 80000003 {(first chance)
%%x% ERROR: Svmbol file could not be found. Defaulted to export symnbols for ntdll.dll
ntdll!CsrSetPriorityClass+0x40:
00000000°77331220 cc int

Ln0,Col0 SysO:<local> Proc000:1534 Thrd000:24c8 ASM OVR CAPS NUM
90

90

Ln0,Col0 Sysli<Local> Proc000:1534 Thrd000:24c8 ASM OVR CAPS NUM

91

91

8/ C:\Windows\SysWOW64\appverif.exe - WinDbg:6.12.0002.633 AMDG64

=5 EeR 5
File Edit View Debug Window Help
=) e wapee (COEYE0REE 00 S A
Command
Microsoft (R) Windows Debugger Version 6.12.0002.633
Copyright (c) Microsoft Corporation. All rights re;
CommandLine: C:\Windows\SysWOWf4{\appuerif awa

Symbol search path is: %*%x Invalid %%

: Mouse over to see
* Symbol loading may be unreliable wi
* T fix to h the deb: H H :
e T s v oot et uc d@scCription of which
E: tabl h path 1 H
BT Soenen Babsoneo oooconoo o tYP@ OF window it

q
ModLoad: 00000000°77280000 00000000°7
ModLoad: 00000000° 77460000 000000007
HodLoad: 00000000° 74cb0000 00000000 7 opens up
ModLoad: 00000000°74c50000 00000000° 74cac000 C:\Windows\SYSTEM32\wowt4win.dll
ModLoad: 00000000°74c40000 00000000°74c48000 C:\Windows \SYSTEM32\wowétdcpu.dll
(1534.24c8) : Break instruction exception — code 80000003 (first chance)
*x% ERROR: Symbol file could not be found. Defaulted to export symbols for ntdll.dll -
ntdll!CsrSetPriorityClass+0x40:
000000007 77331220 cc int 3

[0:000> |

Ln0, Col0 SysO:<Local> Proc000:1534 Thrd 000:24¢c8

92

M C:\Windows\SysWOW64\appverif.exe - WinDbg:6.12.0002.633 AMD64 o || &8

File Edit View Debug Window Help
| & BIRELSE. SENNE S L B B O 2 s B e e RS SR VN

x

s TR

1) Create a "memory" window
2) Drag the window over the
grey to split the window top to bottom

M 1000000007 77331320 <0 79 Ob 8b dB 89 44 24 30 9 c1 00 00 00 48 8b v Dso H
(| |00000000° 77331330 54 24 40 428 3b 54 24 S0 Of 84 bl 00 00 00 41 8b TS@H;T$P. A
* 1000000007 77331340 o5 41 £f od 44 89 6c 24 48 85 o0 75 0= bb 29 02 A..D.1SH. .u..)
n 1000000007 77331350 00 c0 89 Sc 24 30 =9 94 00 00 00 48 81 c6 28 01 NSO. . HL
0| |00000000° 77331360 00 00 89 74 24 34 39 bd 24 <8 00 00 00 73 Ob bb £$49.$. . .s.

000000007 77331370 04 00 00 c0 89 S5c 24 30 eb 41 48 8b 44 24 60 48 N$0.AH.DS'E

00000000°77331380 89 44 24 20 4c 8b ca 4d 8b c7 49 8b d6 48 8b 8c . D$ L. M. . I .H
00000000°77331390 24 b0 00 00 00 48 8d 04 bf 41 ff S4 4 10 85 cO0 $... H. . A T... . _

AAAAAANN: 77531320 70 N6 0L A0 06 41 54 20 . 4T 48 81 -7 30 A3 an o nén mr
« " »
[0:000> |
Ln0, Col0 SysO:<local> Proc000:1534 Thrd000:4c8 ASM OVR CAPS NU

93

: Set to
2 Set to appverif.exe + |96:120002633 AMDS4 "Long Hex" =8 ECR =)
| RVA of IAT el I
|B"ﬁ3—]—% CF T O EEEEOREODE|[EET IAEII l;
Memory -
Virtual: appverif . exe+0x1000 Dlsplayfnrrnab(l_nng Hex vl [Previous | [Next]
00000000 00471000 0001d£36 0001df58 0001df74 0001df82 0001d£92 0001dfa2 0001dfba 0001dfd2 0001df40 00000000 O ~
00000000°0047102c 00p°gdd6 0001edsé 0001edfa 00000000 0001=5a4 0001590 00000000 000leddc 0001=45c 00000000 O
00000000 00471058 6 0001dd12 0001dc8 0001des2 0001decc 0001dchbe 0001dca2 0001deSe 0001de70 0001dcSa 0
00000000 00471084 0001dc22 0001dc0c 0001idbfa 0001dbed 0001dbd2 0001dbcé 0001idbba D001sSeé 0001db30 0
00000000 004710b 0001db62 0001dbS0 0001db44 0001db38 0001db2a 0001dblc 0001db0c D001daf6 0001dasé 0
00000000° 0047104 0001da80 0001dabe 0001da52 0001dade 0001da2c 0001dalé 0001da08 0 _
R 0001d9b4 0001d%a2 0001d990 0001d37a 0001d96c D001d958 0001d3da 01F
Hmm...this still seems to match 0001d8ed 0001d910 00000000 0001e576 0001e560 D00le548 0001e536 O
. . . 0001300 000122 0001e2s0 0001336 0001=3la 0001s30s 0001342 OI
what's on disk? Turns out WinDbg 0001s2bc 0001le2ac 0001e29c 0001e28c 0001=27c 0001270 0001260 O
; ; 00012204 0001=1f2? 0001elde 0001elcE 0001=1b6 D001siab 0001=198 0
hit a breakpoint before the loader 0001eldc 00012138 00012128 0001sllc 0001=10e 0001s0fe 0001=0f0 01
had a chance to resolve the IAT 0001=37= 0001=338 0001=39c 0001e3b0 0001=3cd 0001=3dc 0001=3=a OI -
m »
Command BJE

* AITEI SeLtling your SymDoOlL pathn, use .reload L0 relresh Symbol locations. *

ModLoa| .
Hodlos| Base where this got

(1758 loaded this time

Executable search path is:
ModLoad: [EEEITERNERINNT 00000000° 00492000

ModLoad: 00000000 A7280000 00000000°7742b000
ModLoad: 0000000, 0000 00000000° 77520000
ModLoad - 00000000 p000" 74cef 000

appverif exe

ntdll.dll

ntdl132.d11

C:\Windows\SYSTEM32 \wow64 .d1l
PO00°74cac000 C:\Vindows\SYSTEM32\wowé4win.dll
PO00°74c48000 C:\Windows\SYSTEM32\wowé4cpu.dll
pxception — code 80000003 (first chance)

t be found Defaulted to export symbols for ntdll.dll -

TITIOrITYCISSSFURED

ntdll lcsr=e
00000000° 77331220 cc

int 3

m

[0-000> |

Ln0,Col0 SysO:<Local> Proc000:1754 Thrd000:2b20 ASM OVR CAPS
94

NUM

94

If “Source mode
on” is clicked,
when you step, it
will step one
source line at a
time (assuming
you have source)

If “Source mode
off” is clicked,
when you step,
it will step one
asm instruction

at a time
Step into || Step over LStep out |
[File Edit View Debug Window Hi \V4
S s 600 HQEFRVEOREODOR =5 B A,

Go/Continue

Stop debugging

Set breakpoint

wherever the
cursor is currentl

| Previous ||

Next

Source mode off
Chsknamize. ..

95

Hit Go and you will see this

2 C:\Windows\SysWOW64\appverif.exe - WinDbg:6.12.0002.633 AMD64 (=8 EcR
File Edit View Debug Window Help
| & (sl = Bed |0 FREWE0RE00E|[ER A

Memory Gl

Vittuak appverif .exe+0x1000 Display format: | Long Hex v || Previous | [Net |

00000000°00471000 75b3b7f4 ?5b3b7dc 75b3bed4 7Sb3bb6S 75b3becd 75b3b65S6 75b3b663 75b3b7c4 7Sb2edfd4 00000000 7.4
00000000°0047102c 74?/ N7b 74abacla 74ac2223 00000000 7531619f 7533b425 00000000 761£5689 761£5443 00000000 7!

00000000°00471058 7 757c9dd9 757blefd4 757bl1d8 757b1450 757bl0fc 757blé6b 757b1225 757bd03c 757db309 7!
000000007 00471084 757bl0ef 757bl462 757b1202 757bléb3 757bld4dd 7748decé 757bldbd 757blaaS 757b3222 7!
0000000070047 2cd 757b177b 757cda’?0 757bl262 757cda88 757b22fb 757cal3c 757bladS 757bla?s 7!
0000000070047 IAT Iooks 156f 757blbl2 757blS68 757b1592 757bclel 757bd7cS 757bl02d 757b1126 757b13d0 7!
0000000070047 4518 757bddéd4 757déal34 757ble2c 757b322f 757bbedé 75856788 757b1ldS3 757bbf7é 7!
0000000070047 0000 7Sbcl408 7SbclS2c 75bclS44 00000000 762aff9d 76420616 763249ch 762blb8c 71
0000000070047 updated' dafe 00000000 7611fd0a 76103faS 76102337 760f9saf 76101b99 76104bcé 76102da2 71
0000000070047 0e0d 7610782a 7611fe3f 76lle6ad 7610452a 7610b48a 76102d12 7610cl84 7610467a 71
00000000° 0047 Irpo—rororaoo—roor8b9a 76100abb 7610c925 7610c404 7611dbc? 76112959 76101bdc 76103£54 76108c46 71
00000000°004711ed4 76100dbe 761008eS 7610361b 76100b0e 761006d6 760£766c 76102265 76100832 760fcdbd 76120bcS 71
00000000°00471210 76112862 76l4fect 760f7cl2 761056bl 760f7deb 760£7d79 76112174 76100e3b 760£7e92 76110a8f 71~
« m »

m

Command

(17542020 voued nreakpoint | JUSE tO be sure, let's use the "list nearby
Fhit chance Srochtione ort.t symbols" (In) command on an IAT entry

*%% ERROR: Symbol file co t be found. Defaulted to export symbols for ntdll3Z.dll —
ntdl132!LdrVerifyInagel ecksun+l=zbce
77500%bd cc 3

0:000:=86> IEWNESSEVET
*%%x ERROR: Symbol file could not be found Defaulted to export symbols for C:\Windows\syswow64\ADVAPI32 dll
(75b3b714) ADVAPI32!FreeSid | (75b3b80c) ADVAPI32!GetLengthSid
Exact matches:
ADVAPI32 ! FreeSid (<no paramneter info>)

m

« . »

|0:000:=86> |

Ln0, Col0 Sys0:<Local> Proc000:1754 Thrd 000:2b20 ASM OVR CAPS NUM

96

96

SESEE Ve

] —

0x04 DWORD Size;
Ak

. - ~r i
— | IMAGE_DIRECTORY_ENTRY_IAT

' struct _IMAGE_DATA_DIRECTORY {
0x00 DWORD VirtualAddress;

Lo s o o o 38 2508

Image by Ero Carrerg

97

Get your geek on

e

+ Play through round 4 on your own, and
then wait for the seed for the class
deathmatch

* If you see something like the following:
"user32.dll'Foofus" that means the
function Foofus() in user32.dll

* You can skip to level 4 by starting the
game with "python BinHunt.py 4"

98

See notes for citation

New 2012 — NOTE: | spent way more time on that token than | should
have, so you must love and cherish it

From
http://www.classicplastic.net/dvgi/pics-tokenstilt02.jpg
http://www.classicplastic.net/dvgi/pics-tokensgeneric02.jpg

98

|AT Hooking

* When the IAT is fully resolved, it is
basically an array of function pointers.
Somewhere, in some code path, there's
something which is going to take an IAT
address, and use whatever's in that
memory location as the destination of the
code it should call.

« What if the “whatever's in that memory
location” gets changed after the OS loader
is done? What if it points at attacker code?

99

99

IAT Hooking 2

+ Well, that would mean the attacker's code
would functionally be "man-in-the-middle"ing
the call to the function. He can then change
parameters before forwarding the call on to the
original function, and filter results that come
back from the function, or simply never call the
original function, and send back whatever
status he pleases.

— Think rootkits. Say you're calling OpenFile. It looks
at the file name and if you're asking for a file it
wants to hide, it simply returns “no file found.”

+ But how does the attacker change the IAT
entries? This is a question of assumptions
about where the attacker is.

100

100

|AT Hooking 3

In a traditional memory-corrupting exploit, the attacker is, by
definition, in the memory space of the attacked process, upon
successfully gaining arbitrary code execution. The attacker can
now change memory such as the IAT for this process only,
because remember (from OS class or Intermediate x86) each
process has a separate memory space.

If the attacker wants to change the IAT on other processes, he
must be in their memory spaces as well. Typically the attacker
will format some of his code as a DLL and then perform “DLL
Injection” in order to get his code in other process' memory
space.

The ability to do something like DLL injection is generally a
prerequisite in order to leverage IAT hooking across many
userspace processes. In the kernel, kernel modules are
generally all sharing the same memory space with the kernel,
and therefore one subverted kernel module can hook the IAT of
any other modules that it wants.

101

101

DLL Injection

« See http://en.wikipedia.org/wiki/
DLL injection for more ways that this
can be achieved on Windows/*nix

« We're going to use the Applnit DLLs
way of doing this, out of laziness

* (Note: Applnit_DLLSs' behavior has
changed in releases > XP, it now has to
be enabled with Administrator level
permissions.)

102

102

TODO:

 First thing tomorrow, show the fastjump

rOxOr

103

103

FIXME: Lab: IAT hooking

http://www.codeproject.com/KB/vista/api-hooks.aspx

— This will hook NtQuerySystemInformation(), which is what taskmgr.exe uses in
order to list the currently running processes. It will replace this with
HookedNtQuerySystemInformation(), which will hide calc.exe

-1 modifi(;d that code to use IAT hooking rather than inline (which is much simpler
actually

Steps:

— Compile ApplnitHookIAT.dlIl

— Place at C:\tmp\AppInitHookIAT.dll for simplicity

— Use regedit.exe to set HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft
\Windows NT \CurrentVersion\Windows\LoadAppInit DLLs =1

— Use regedit.exe to add C:\tmp\AppInitHookIAT.dll as the value for the key
HKEY_LOCAL_| MACHINE\SOF ARE\Microsoft\Windows NT
\CurrentVersion\Windows\Applnit_DLLs (if there is already something there,
separate the entries with a comma)

— Start calc.exe, start taskmgr.exe, confirm that calc.exe doesn't show up in the list
of running processes.

— Remove ApplnitHookIAT.dll from Applnit_DLLs and restart taskmgr.exe.

— Confirm calc.exe shows up in the list of running processes.

— (This is a basic "userspace rootkit" technique. Because of this, all entries in this

registry key should always be looked upon with suspicion.) 104

Can also read more here: http://www.codeproject.com/KB/system/
api_spying_hack.aspx

104

Before IAT hooking

| Calculator o] =@ @ 1™ Windows Task Manager
View Edit Help File Options Vie Help

Applications | Processes | Services

Image Name

MC MR MS M+ M- appverif.exe *32

calc.exe

— CE C x v CFF Explorer.exe *32

amd.exe

7 8 9 d % amd.exe

cmd.exe

conhost.exe

conhost.exe

conhost.exe
conhost.exe

0 z

conhost.exe

csrss.exe

P

105

105

After IAT hooking

WHUT

SORCERY IS
THIS?!1?1?!

\

http://knowyourmeme.com/memes/oh-crap-omg-rage-face

106

