
Instructions

Special 
Purpose 
Register:
*FLAGS

Microsoft 
Visual 
Studio

GNU C 
Compiler 

(GCC)

GNU 
Debugger 

(GDB)

The Stack

General 
Purpose 
Registers

Calling 
Conventions

Introductory x86
Medium-granularity class topics covered

Xeno Kovah
CC BY AT licensed

hosted at OpenSecurityTraining.info



C Data Types 
(char=byte,

 short = word,
int = double word, 
long long = quad 

word) 

Converting between 
decimal,hexidecimal, 

binary

Two's 
complement 

negative 
numbers

CISC vs. 
RISC 

Architectures
Endianness

Intel vs. 
AT&T 

Assembly 
Syntax

General 
Purpose 
Registers

Special Purpose 
Register:

64 bit: RFLAGS
32 bit: EFLAGS
16 bit: FLAGS

x86 Instruction Format:
Simplified "r/m32" 

Abstraction

Instruction:
XCHG 

(Exchange)

The x86 
Stack

64 bit: rax, rbx, rcx, rdx, rsi, rdi
32 bit: eax, ebx, ecx, edx, esi, edi

16 bit: ax, bx, cx, dx, si, di
8 bit: ah, al, bh, bl, ch, cl, dh, dl

64 bit: rbp
32 bit: ebp
16 bit: bp

64 bit: rsp
32 bit: esp
16 bit: sp

64 bit: rip
32 bit: eip
16 bit: ip

FILO Data 
Structure, 

Grows Toward 
Low Addresses

Calling 
Conventions

Stack Contents:
Caller/Callee-save 

Registers
Stack Contents:

Saved Frame Pointers

Stack Contents:
Local Variables

Stack Contents:
Function Arguments

Stack Contents:
Saved Return Address

Canonical 
Stack-based 

Buffer 
Overflows

Instruction:
NOP (No 

Operation)

Instructions:
PUSH 

(Push Word, Doubleword, or 
Quadword Onto the Stack),

POP 
(Pop Word, Doubleword, or 
Quadword From the Stack)

Instructions:
CALL

(Call a Procedure),
RET

(Return From a Procedure)

Instruction:
MOV

(Move Immediate Into Register,
Register Content Into Register,
Register Content Into Memory, 
Memory Content Into Register)

Instructions:
Boolean Logic:

AND,OR,XOR,NOT

Instructions:
ADD

(Addition),
SUB 

(Subtraction)

Instruction:
LEA

(Load Effective 
Address)

Boolean Logic:
AND
OR

XOR
NOT

Instruction:
JMP

(Jump to 
Instruction)

Instruction:
CMP

(Compare)

Instruction:
TEST

(Logical 
Compare)

Instructions:
Logical Shift:

SHL
(Shift Logical Left),

SHR
(Shift Logical Right)

Instructions:
Arithmetic Shift:

SAL
(Shift Arithmetic Left),

SAR
(Shift Arithmetic Right)

Instructions:
MUL

(Unsigned Multiply),
IMUL

(Signed Multiply)

Instructions:
DIV

(Unsigned Divide),
IDIV

(Signed Divide)

Instruction:
REP STOS
(Repeated 

Store to String)

Instruction:
STOS

(Store to String)

Instruction:
MOVS

(Move to 
String)

Instruction:
LEAVE
(Leave 

Procedure)

Microsoft
Visual 
Studio

GNU C 
Compiler 

(GCC)

RTFM Variable-length 
Opcodes

x86 Disassembly 
Obfuscation 

Tricks

Instructions:
JCC

(Jump to Instruction 
Based on Conditional 

Codes)

C 
Declaration 

(cdecl)

Standard 
Call 

(stdcall)
Fast Call64 Bit Fast 

Call

Special 
Purpose 
Register:
*FLAGS:
Zero Flag 

(ZF)

Special 
Purpose 
Register:
*FLAGS:
Sign Flag 

(SF)

Special 
Purpose 
Register:
*FLAGS:

Carry Flag 
(CF)

Special 
Purpose 
Register:
*FLAGS:
Overflow 
Flag (OF)

Special 
Purpose 
Register:
*FLAGS:
Auxilary 

Flag (AF)

Special 
Purpose 
Register:
*FLAGS:

Parity Flag 
(PF)

Creating C 
Project

Compiling 
Project

Using 
Inline 

Assembly

Debugging 
Project with 

Visual Studio

Viewing 
Disassembly

Setting 
Breakpoints

Viewing 
Registers

Viewing 
Memory 

(Including 
Stack)

Stepping

Compiling 
C Files

Disassembling 
Program with 

Objdump

Hex 
Dumping & 
Editing with 
Hexdump 
or XXD

Debugging 
Program with 

GNU Debugger 
(GDB)

Using 
Inline 

Assembly
Compiler Options' 

Effect on Assembly

Setting 
Breakpoints

Viewing 
Disassembly

Viewing 
Registers

Viewing 
Memory 

(Including 
Stack)

Stepping

Inserting 
Raw Bytes

Inserting 
Raw Bytes

Instruction:
REP MOVS
(Repeated 

Move to String)

Introductory x86
Fine-granularity class topics covered

Xeno Kovah
CC BY AT licensed

hosted at OpenSecurityTraining.info

http://youtu.be/HO5q5VpprFQ?t=8m10s

	Medium level
	Low level

