Special
Purpose
Register:
*FLAGS

General
Purpose
Registers

Introductory x86
Medium-granularity class topics covered
Xeno Kovah
CC BY AT licensed
hosted at OpenSecurityTraining.info

The Stack

Instructions

GNU C
Compiler
GCC

Microsoft
Visual
Studio

Debugger
GDB

Calling
Conventions

Introductory x86
Fine-granularity class topics covered
Xeno Kovah
CC BY AT licensed
hosted at OpenSecurityTraining.info

C Data Types Special Purpose Instruction: Instructions: Boolean Logic: Instructions: Instructions: Instructions: Instructions:
(char=byte, Converting between Two's CISC vs. Intel vs. General Register: x86 Instruction Format: Instruction: MOV , ADD Instruction: AND Instruction: Logical Shift: Arithmetic Shit: MUL DIV Instruction: Instruction: Microsoft .
short = word, . . complement - AT&T o o e " (Move Immediate Into Register, . LEA JMP SHL SAL . . , - MOVS . Variable-length
, decimal,hexidecimal, : RISC | Endianness l Purpose 64 bit: RFLAGS Simplified "r/m32 XCHG . : (Addition), , OR , . . , , (Unsigned Multiply), (Unsigned Divide), STOS Visual | RTFM |
int = double word, . negative . Assembly . o . Register Content Into Register, (Load Effective (Jump to (Shift Logical Left), (Shift Arithmetic Left), . (Move to) Opcodes
binar Architectures Registers 32 bit: EFLAGS Abstraction Exchange . SUB XOR . IMUL IDIV Store to Strin . Studio
long long = quad numbers Syntax 16 bit: FLAGS Register Content Into Memory, Subtraction Address NOT Instruction SHR SAR Sianed Multi Sianed Divide Strin
word r Memory Content Into Register Shift Logical Right Shift Arithmetic Right
—— Special Special Special Special Special Special —
. — Instructions: e Instructions: . .
64 bit: rax, rbx, rcx, rdx, rsi, rdi — — — Purpose Purpose Purpose Purpose Purpose [~ Purpose — — — Instruction: Instruction:
32 bit: eax, ebx, ecx, edx, esi, edi 64 b.'t_' rsp 64 b.'t_' rbp The x86 CALL 64 b.'t_' fp Register: Register: Register: Register: Register: Register: Instruction: Instruction: Instructlons-.) JCC . REP STOS REP MOVS Creating C GNU.C
o o 32 bit: esp 32 bit: ebp (Call a Procedure), 32 bit: eip N _ N _ N _ N _ N _ N _ NOP (No CMP Boolean Logic: (Jump to Instruction : Compiler
16 bit: ax, bx, cx, dx, si, di 16 bit: s 16 bit: bo Stack RET 16 bit: i FLAGS: FLAGS: FLAGS: FLAGS: FLAGS: FLAGS: Oberation Compare AND.OR XOR NOT Based on Conditional (Repeated (Repeated Project (GCC)
8 bit: ah, al, bh, bl, ch, cl, dh, dl ; ' ' Zero Flag Sign Flag Carry Flag Overflow Auxilary Parity Flag —— ’ Store to String! Move to Stringz
Return From a Procedure ;ZF; ;SF; ;CF; Fla ;OF; Fla ; AF; ;PF; Codes

‘

Stack Contents: FILO Data Canonical Instruction: Usin
Caller /Callee-sa\}e Stack Contents: Structure, Stack-based Calling Stack Contents: TEST InIing Compiling Compiling
. Saved Frame Pointers Grows Toward Buffer Conventions Saved Return Address (Logical Project C Files
Registers Assembly
Low Addresses Overflows Compare
Instructions:
(Push Wordli%%ﬂbleword, or Stack Contents: Stack Contents: 64 Bit Fast C Standard Insertin Debugging Compiler Options' Using Disassembling Dur:;)r(lg & Plrjoebr:?r?ivr\:%h
Quadword Onto the Stack), Local Variables. Function Ar ume|:1ts Call Declaration Call | Fast Call I Raw B t(gas Project with Effectpon Asgembl Inline Program with Editing with GNUgDebu or
POP w ;' cdecl stdcall y Visual Studio ;J Assembly Objdum Hexdump cDB 99
(Pop Word, Doubleword, or or XXD
Quadword From the Stack
Instruction: Viewing Viewing
LEAVE Setting Viewing Memory Steooin Viewing Inserting Viewing Viewing Memory Steooin Setting
(Leave Breakpoints Registers (Including Iw Disassembl Raw Bytes Disassembl Registers (Including w Breakpoints
Stack Stack

Procedure

http://youtu.be/HO5q5VpprFQ?t=8m10s

	Medium level
	Low level

