
Introduction to Intel x86-64 
Assembly, Architecture, 

Applications, & Alliteration

Xeno Kovah – 2014 
xkovah at gmail



All materials is licensed under a Creative 
Commons “Share Alike” license.

• http://creativecommons.org/licenses/by-sa/3.0/

Attribution condition: You must indicate that derivative work 
"Is derived from Xeno Kovah's 'Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html” 

Attribution condition: You must indicate that derivative work 
"Is derived from Xeno Kovah's ‘Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html"



Messing with a disassembler

• Obfuscation of Executable Code to Improve 
Resistance to Static Disassembly - Linn & Debray 
– http://www.cs.arizona.edu/solar/papers/CCS2003.pdf 
– Linear sweep vs. recursive traversal disassembly 
– Also discusses and measures the “self-repairing” nature of 

x86 disassembly which we saw earlier 
• Confusing linear sweep (objdump) by inserting junk 

bytes after unconditional jumps. 
– Could be literally unconditional “jmp” 
– Could be a jcc, which must always be true, like “xor eax, eax” 

and then “jz <addr>” 
– Have to do this multiple times because of the self-repairing 

disassembly

http://www.cs.arizona.edu/solar/papers/CCS2003.pdf


Messing with disassembler 2
• Confusing recursive traversal 

– 3.4.1: Branch functions. All jmps turned into a call 
to a specific function. 

– 3.4.2: Call conversion. Branch functions + the junk 
byte technique which messed with linear sweep. 

– 3.4.3: Opaque predicates. Create ostensibly 
conditional jumps which will in fact always follow 
only one path. The disassembler doesn’t have the 
smarts to determine this. 

– 3.4.5: Jump table spoofing. Exploits the fact that 
the disassembler may try to estimate the size of 
the jump table based on a constraint. The trick is to 
add a jump table which will never be reached.



Branch Functions Visualized



Jump table visualized



Actual implementation of many 
of these techniques

• Nick Harbour actually apparently 
independently came to the same conclusion 
as Linn & Debray a few years later, and made 
a tool that performed some of these 
obfuscations, and did a defcon talk about it 
• https://www.defcon.org/images/defcon-16/dc16-presentations/defcon-16-

harbour.pdf  
• http://www.youtube.com/watch?v=wdFLK_eX0QY  
• https://web.archive.org/web/20100324144525/http://www.rnicrosoft.net/

tools/PEScrambler_v0_1.zip 

https://www.defcon.org/images/defcon-16/dc16-presentations/defcon-16-harbour.pdf
http://www.youtube.com/watch?v=wdFLK_eX0QY
https://web.archive.org/web/20100324144525/http://www.rnicrosoft.net/tools/PEScrambler_v0_1.zip


Addressing Linn & Debray 
obfuscations

• Static Disassembly of Obfuscated Binaries - 
Kruegel et al. 
– http://www.cs.ucsb.edu/~chris/research/doc/usenix04_disasm.pdf  
– Attempt to improve on the state of the art in 

disassembling, to deal with the Linn & Debray 
obfuscations 

– I don’t know if there are any disassemblers which 
try to use these improved disassembly methods 
(objdump and IDA definitely don’t). Confirmed with 
Kruegel that he’s not aware of anywhere that uses 
the improvements either.

http://www.cs.ucsb.edu/~chris/research/doc/usenix04_disasm.pdf


9


