Introduction to Intel x86-64
Assembly, Architecture,
Applications, & Alliteration

Xeno Kovah — 2014
xkovah at gmail

All materials is licensed under a Creative
Commons “Share Alike” license.

 http://creativecommons.org/licenses/by-sa/3.0/

You are free:

10 Share — 10 copy, dis¥ribuie and transma the work
10 Remix — to adapt the work

Under the following conditions:

Attnbution — You must attinbute the work In the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or

Your use of the work

Share Alike — If you aher, transform, or build upon this work, you ma
disindule the resulbng work only under the same, Semilar or 3 compatible

license

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's 'Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html”

Attribution condition: You must indicate that derivative work

"Is derived from Xeno Kovah's ‘Intro x86-64" class, available at http://OpenSecurityTraining.info/IntroX86-64.html"

Effects of Compiler Options

Our standard build

main:
140001000
(/ExampIeS.C 140001004
int mam(){ 140001009
) 14000100D
char bUf[40], 140001011
- . 140001016
bUf[‘?’g] - 42’ 14000101A

return Oxb100d;

sub
mov
imul
mov
mov
add
ret

rsp, 38h

eax,1

rax,rax,27h

byte ptr [rsptrax],2Ah
eax,0B100Dh

rsp,38h

Effects of Compiler Options 2

/O1 (minimum size) or
/02 (maximum speed)
main:

140001000 mov eax,0B100Dh
140001005 ret

Debug information format

Disabled (viewed from WinDbg) or
1Z7 (C7 Compatible)

(no change)

main:

140001000
140001004
140001009
14000100D
140001011
140001016
14000101A

sub
mov
imul
mov
mov
add
ret

rsp,38h

eax,1

rax,rax,27h

byte ptr [rsp+rax],2Ah
eax,0B100Dh

rsp,38h

Effects of Compiler Options 3

/GS - Buffer Security Check (default enabled nowadays)

main:

140001000
140001004
14000100B
14000100E
140001013
140001018
14000101cC
140001020
140001025
140001022
14000102D
140001032
140001036

sub
mov
Xor
mov
mov
imul
mov
mov
mov
Xor
call
add
ret

aka “stack cookies” (MS term)
aka “stack canaries” (original research term)

rsp,38h

rax,qword ptr [_ security cookie (0140004000h)]
rax,rsp

gword ptr [rsp+28h],rax

eax, 1l

rax,rax,27h

byte ptr [rsptrax],2Ah

eax,0B100Dh

rcx,gword ptr [rsp+28h]

rcx,rsp

___security check cookie (0140001190h)
rsp,38h

~ Bookp. 369
Effects of source options

/01 optimization when the volatile keyword is present

main:

mt mam(){ 140001000 sub rsp,38h
. 140001004 mov eax,1
volatile char bUf[40], 140001009 imul rax,rax,27h
_] 14000100D mov byte ptr [rsp+rax],2Ah
bUf[39] = 42, 140001011 mov eax,0B100Dh
. 140001016 add rsp,38h
return Oxb100d; 140001018 ooe
main:
140001000 sub rsp,38h
140001004 mov byte ptr [rsp+27h],2Ah
140001009 mov eax,0B100Dh
14000100E add rsp,38h

140001012 ret
This is a trick | picked up from a 2009 Defcon presentation
http://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-
sean_taylor-binary_obfuscation.pdf

He also talked a little bit about control flow flattening which is
covered in an academic paper in the “Messing with the
disassembler” section.

http://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-sean_taylor-binary_obfuscation.pdf

