Introduction to Intel x86-64
Assembly, Architecture,
Applications, & Alliteration

Xeno Kovah — 2014
xkovah at gmail

All materials is licensed under a Creative
Commons “Share Alike” license.

 http://creativecommons.org/licenses/by-sa/3.0/

You are free:

10 Share — 10 copy, dis¥ribuie and transma the work
10 Remix — to adapt the work

Under the following conditions:

Attnbution — You must attinbute the work In the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or

Your use of the work

Share Alike — If you aher, transform, or build upon this work, you ma
disindule the resulbng work only under the same, Semilar or 3 compatible

license

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's 'Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html”

Attribution condition: You must indicate that derivative work

"Is derived from Xeno Kovah's ‘Intro x86-64" class, available at http://OpenSecurityTraining.info/IntroX86-64.html"

Guess what?
| have repeatedly misled you!
« Simplification is misleading
« Time to learn the fascinating truth...
* Time to RTFM!

Read The Fun Manuals

« http://www.intel.com/products/processor/manuals/

* Vol.1is a summary of life, the universe, and
everything about x86

« Vol. 2a & 2b explains all the instructions

« Vol. 3a & 3b are all the gory details for all the extra
stuff they’ve added in over the years (MultiMedia
eXtentions - MMX, Virtual Machine eXtentions - VMX,
virtual memory, 16/64 bit modes, system management
mode, etc)

« Reminder, we’re using the pre-downloaded May 2012
version as the standardized reference throughout this
class so we're all looking at the same information

« WEe'll only be looking at Vol. 2a & 2b in this class

Googling is fine to start with, but eventually you need to learn to read the manuals to get the details from the authoritative source

http://www.intel.com/products/processor/manuals/

Interpreting the Instruction
Reference Pages

* The correct way to interpret these

pages is given in the Intel Manual 2a,
section 3.1

| will give yet another simplification

* Moral of the story is that you have to
RTFM to RTFM ;)

Here’'s what | said:
AND - Logical AND

» Destination operand can be r/mX or register

« Source operand can be r/mX or register or
immediate (No source and destination as r/mXs

at the same time)

and al, bl and al, 0x42
00110011b (al - 0x33) 00110011b (al - 0x33)
AND 01010101b (bl - 0x55) AND 01000010b (imm - 0x42)

result 00010001b (al - 0x11) result 00000010b (al - 0x02)

Here'’s
what
the
manual
says:

AND~Logical AND

Opcode Instruction O oAt Compet/ Desuiption
En Mode Leg Mede
40 AND AL e RN Ve Vald AL AND ime
S ANDAX. msie RN Vass Vaba AXAND i 16,
3 ANDEAX, imm32 RM Vild Vakd FAX AND iwn 32
REXW * 254 ANDRAX. immi2 RM Vel NE RAX AND imen2 sign-
oxtondied 10 64 Nive,
WAL AND vl imm@ MR Vel Vad rémE AND immld
REX+B0/4® ANDomE, im=@ MR Vaid NE rimS AND il
LA Y AND A6, MR Ve Vala (/6 AND bnn [
6
81/8 it AND in32, MR Vald Vaid rAm32 AND imm32.
a2
ROUW + 81/ AND nimi54, MR Vol NE rimb4 AND imm32 sign
P mma2 casendod 1o 64 bies.
QMY AND i immG MR Vel Vakd 1/ 16 AND ns (yigr-
cutended)
834 AND oim32 immé MR Vilid Vakd (/32 AND imen fsign-
exdeoded)
REXW * 83/8 AND o4, immll MR Vaso NE. 1Am64 AND dnnst (100
2 axdeneiad)
20r AND o'mdl, e M Vi Vabd rimlS AND r8.
REX*204 ANDoms, 8 M Vs NE. rAemB8 AND o8 (g
axdenaad)
21 ANDomIGr16 M Vald Vald A6 AND r16.
2K AN oA /22 M Vs Vaka (Am32 AND 732
ROXW* 21 ANDUEA 4 M Ve NL rimGA AND 132
22 AND 8, rim8 | Vakd Vakd 8 AND rim8.
Rixe2200 A0l 1 Ve NP 1Ak AND o (g
catended)
23 ANDIE rAmTE | Vakd Vakd 16 AND rin16.
F2 1 AND XS im3e | Vil Vald 138 AND rim 32
REXW+23/r ANDGArmbe | Vol NE 14 AND rimb4.
NOTES:

"0 04 Uit mode, (/i can not Do encoded 13 A0 e f0lowing Byto regiters If 4 REX profic i
wsidt AH BH 01 DH

ical AND

Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
AND AL, imm8 RM Valid Valid AL AND imm8.
AND AX, imm16 RM Valid Valid AX AND imm16.
AND EAX, imm32 RM Valid Valid EAX AND imm32.
REXW +25id | ANDRAX, imm32 RM Valid N.E. RAX AND imm32 sign-

extended to 64-bits.
* Opcode Column

» Represents the literal byte value(s) which
correspond to the given instruction

* In this case, if you were to see a 0x24
followed by a byte or 0x25 followed by 4
bytes, you would know they were specific
forms of the AND instruction.

— Subject to correct interpretation under x86’s multi-
byte opcodes as discussed later.

See Intel Vol. 2a section 3.1.1.1 (“Opcode Column in the Instruction Summary Table”)

Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
AND AL, imm8 RM Valid Valid AL AND imm8.
AND AX, imm16 RM Valid Valid AX AND imm16.
AND EAX, imm32 RM Valid Valid EAX AND imm32.
REXW +25id | ANDRAX, imm32 RM Valid N.E. RAX AND imm32 sign-

extended to 64-bits.

« Ifit was 0x25, how would you know whether it should be
followed by 2 bytes (imm16) or 4 bytes (imm32)? Because
the same single opcode byte is used for both, the length of
the operand depends on if the processor is in 16-bit, 32-
bit, or 64-bit mode. Each mode has a default operand size
(i.e. the size of the value).

» For 64-bit mode, the default operand size is 32-bits for
most instructions and the default address size is 64-bits

» This means the default interpretation will usually be the
ones with the r/m32, r32, imm32, or in this case a specific
register like EAX

There are many instructions which are “overloaded” with equivalent 16 bit and 32 bit versions shown in the manual.

Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
AND AL, imm8 RM Valid Valid AL AND imm8.
AND AX, imm16 RM Valid Valid AX AND imm16.
AND EAX, imm32 RM Valid Valid EAX AND imm32.
REXW +25id | ANDRAX, imm32 RM Valid N.E. RAX AND imm32 sign-

extended to 64-bits.

* In some cases the operand or address size can be
overridden with special prefix bytes that come before
the regular instruction opcode

« There are REX prefixes, address size prefixes, and
operand size prefixes

« Will not go into detail for all of them, but the REX.W
byte shown in this example (0x48) will cause the
instruction to use 64-bit operands if in 64-bit mode
(rather than 32-bit operands)

« Therefore, to encode this instruction to use 64-bit
operands (RAX in this case), the code would have
byte sequence 0x48 0x25 ...

There are many instructions which are “overloaded” with equivalent 16 bit and 32 bit versions shown in the manual.

ical AND

Instruction Op/ 64-bit
En Mode

AND AL, imm8 RM Valid
AND AX, imm16 RM Valid
AND EAX, imm32 RM Valid
REXW +25id | ANDRAX, imm32 RM Valid

Compat/ Description

Leg Mode

Valid AL AND imm8.

Valid AX AND imm16.

Valid EAX AND imm32.

N.E. RAX AND imm32 sign-

extended to 64-bits.

* How to see the opcodes in VisualStudio: %] GoToScurce Code
. . QuickWateh,..
« Seeing the exact opcode will s
Breakponrt

help confirm the exact version of an
Instruction

(to show bytes in gdb, use:
disassemble/r optionally passing
an address to disassemble at)

v Show Next Statemant

3 Run To Cursor

@ Set Next Statement

[v: Show Address

[v; Show Source Code

q Show Code Bytes

[v] Show Symbol Names
Show Line Numbers

[v] Show Toobar

AND—Logical AND

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg Mode
24 ib AND AL, imm8 RM Valid Valid AL AND imm8.

25 iw AND AX, im$m16 JRM Valid Valid AX AND imm16.
25 id AND EAX, imm32 § RM Valid Valid EAX AND imm32.

REXW + 25id] AND RAX, imm32 § RM Valid N.E. RAX AND imm32 sign-
extended to 64-bits.

* |nstruction Column

* The human-readable mnemonic which is used to
represent the instruction.

» This will frequently contain special encodings such as
the “r/mX format” which I've previously discussed

See Intel Vol. 2a section 3.1.1.3 (Instruction Column in the Opcode Summary Table)

AND—Logical AND

Opcode Instruction Op/ |f4-bit Compat/
ode Leg Mode
24 ib AND AL, imm8 Valid
25 iw AND AX, imm16 Valid
25id AND EAX, imm32 Valid
REXW +25id AND RAX, imm32 NE.
Should be R,

« Operand Encoding Column

hould be |, fixed in latest

Description

AL AND imm8.
AX AND imm16.
EAX AND imm32.

RAX AND imm32 sign-
extended to 64-bits.

fixed in latest

* This column was added in more recent manuals. | would
find it more useful it there weren’t so many errors :-/

Instruction Operand Encoding

Op/En Operand 1
RM ModRMireg (r, w)
MR ModRM:r/m (r, w)
M ModRM:r/m (r, w)

I AL/AX/EAX/RAX

Operand 2 Operand 3 Operand 4
ModRM:r/m (r) NA NA
ModRM:reg (r) NA NA

imm8 NA NA

NA

See Intel Vol. 2a section 3.1.1.

imm8 \ NA

Should allow for imm8/16/32, not fixed in latest

AND-—Logical AND

Opcode Instruction Compat/ Description

Leg Mode
24 ib AND AL, imm8 Valid AL AND imm8.
25 iw AND AX, imm16 Valid AX AND imm16.
25 id AND EAX, imm32 Valid EAX AND imm32.

REXW +25id ANDRAX, imm32 NE. RAX AND imm32 sign-

extended to 64-bits.

* 64bit Column
» Whether or not the opcode is valid in 64 bit mode.

AND—Logical AND

Opcode Instruction Op/ 64-bit Compat/ [Description
En Mode Leg Mode
24 ib AND AL, imm8 RM Valid Valid AL AND imm8.
25 iw AND AX, imm16 RM Valid Valid AX AND imm16.
25 id AND EAX, imm32 RM Valid Valid EAX AND imm32.
REXW+25id ANDRAX imm32 RM Valid N.E. RAX AND imm32 sign-

extended to 64-bits.

« Compatibility/Legacy Mode Column

* Whether or not the opcode is valid in 32/16 bit code.

— The N.E. Indicates an an instruction encoding which is only
encodable in 64-bit mode

See Intel Vol. 2a section 3.1.1.5
“64/32-bit Mode Column in the Instruction Summary Table”

AND—Logical AND

Opcode Instruction Op/ 64-bit Compat/
En Mode Leg Mode

24 ib AND AL, imm8 RM Valid Valid

25 iw AND AX, imm16 RM Valid Valid

25 id AND EAX, imm32 RM Valid Valid

REXW +25id ANDRAX imm32 RM Valid N.E.

» Description Column

Description

AL AND immé8.
AX AND imm16.

EAX AND imm32.

RAX AND imm32 sign-
extended to 64-bits.

» Simple description of the action performed by the

instruction

» Typically this just conveys the flavor of the instruction,
but the majority of the details are in the main

description text

See Intel Vol. 2a section 3.1.1.7
“Description Column in the Instruction Summary Table”

80/4ib AND r/m8, imm8 Valid Valid r/m8 AND imm8.

REX+80/4ib ANDr/m8, imm8 Valid N.E. r/m&4 AND imm8 (sign-
extended).

81 /4 iw AND r/m16, imm16 Valid Valid r/m16 AND imm16.

B81/4id AND r/m32, imm32 Valid Valid r/m32 AND imm32.

» Looking at some other forms, we now see those
“r/mX” things | told you about

 \We know that for instance it can start with an
0x80, and end with a byte, but what's that /4?

« Unfortunately the explanation goes into too much
detail for this class. Generally the only people
who need to know it are people who want to write
disassemblers. But | still put it in the Intermediate
x86 class :)

* The main thing you need to know is that any time
you see a r/mX, it can be either a register or
memory value.

AND Details

« Description

— “Performs a bitwise AND operation on the destination (first) and
source (second) operands and stores the result in the destination
operand location. The source operand can be an immediate, a
register, or a memory location; the destination operand can be a
register or a memory location. (However, two memory operands
cannot be used in one instruction.) Each bit of the result is set to 1

if both corresponding bits of the first and second operands are 1;
otherwise, it is set to 0.

This instruction can be used with a LOCK prefix to allow the it to be
executed atomically.”

* Flags effected

— “The OF and CF flags are cleared; the SF, ZF, and PF
flags are set according to the result. The state of the
AF flag is undefined.”

Jee—jumgp if Condition Is Met

Opcsde nSICTion
7w 1A g
3cd AE o
72¢d 0 el
75 b JBE o8
2cd Kre®
3T 02 reit
On JEOLZ el
€ ROQ i
74cd) rei8
” G o0
0o 1€ ree
N |
*d LE e
Y- VA o8
72¢h AR rel®
73cd NG 90
7w INBE rei8
73cd I et
75¢0 N e
% NG ros®

O
€n
o

E R R R R E B RE ® RE R E PR RE | R§S

SR EERIER]

iiiiiiiﬁ

Descripnion

o Short i Jbowe (CF=0
ne =0}

Jump short if abowe or oqual
(CF=0)

Jornp hext if beow [CF 1)
Jump hort it Delow or equal
(CF=) or ZF»1)

oo short # carry ((Fe1)
Jorp Shont i OX register i
0

;nomnmmu
:Dmlw(mb

Jamp short ¥ equ (2F1).
Jorp ot i greates (2740
Na SF=0F)

MO SNOCT I QPeaner O
oqual [5+=0F).

Jump short # less (62 OF)
Jump ot i hess oF oguad
(2F 1 o SFe OF)

Jump short # not above
(CFelor ZF=1)

g short # not sbowe or
equal (OF=1).

Jump short ¥ not befow
(CF~0)

o SRt not Delow o
qual (CF=0 ang 2F=0)
Jump short # not cary
(CF~0)

g St i ot el
@0

Jump short i not greater
(2F=1 o SF# OF)

Jcc Revisited

If you look closely, you will see that there
are multiple mnemonics for the same
opcodes

Ox77 = JA - Jump Above
Ox77 = JNBE - Jump Not Below or Equal
0x74 = JE / JZ - Jump Equal / Zero

Which mnemonic is displayed is
disassembler-dependent

IMUL—Signed Multiply

Opcode

F6 /5

F7/5

F7/5

REXW +F7 /5
OF AF It
OF AF It

REXW + OF AF /r
68/rib
68/rib
REXW + 68 /r ib

69 /riw
69 irid

REXW + 65 /r id

NOTES:

Instruction Op/ 64.Bit Compat/
En Mode Leg Mode
IMUL r/mE* M Valad Vaid
IMA /m16 M Vald Vaild
IMUL r/m32 M Vaid Vaiid
IMUL r/mb4 M Vakd NE
IMUL 716, rim16 RM Vald Vaiid
ML r32, rim32 RM Valid Vaild
IMUL 164, r/im64 RM Vald NE
ML r16, r/m16, immB RMI Valid Vaild
MWL r32, rim32. imme RMI Vald Vaild
IMUL 164, r/m64, immB RMI Vald NE.
IMUL 716, r/m16, imm16 RMI Vald Vaild
ML 732, rim32, imm32 RMI Valid Valid
IMUL 64, r/mB4, Imm32 RMI Valld NE

Description

AX+— AL + r/mbyte.

DOCAX ¢ AX * r/m word,
EDXEAX ¢ EAX » r/m32.
ROXRAX « RAX + r/mb4.

word register « word register « 7/m16.

doubloword register « doubleword register «
rim32,

mv'*w PMWO
r/mé4.

word register « r/m16 « sign-extended
immediate byte.

doubleword register « r/m32 sign-
extended immediate byte.

Quadword register « r/m64 » sign-extended
immediate byte.

word register « r/m16 « immediate word.

doubloword register « /m32 » immedate
doubleword.

Quadword register « r/m64 « iImmediate
doubleword.

* In 64-bit mode, r/m8 can not be encoded 10 access the following byte registers If 3 REX prefix is used: AH, BH, CH OH

Op/En
M
M
RM

Instruction Operand Encoding
Operand 1 Operand 2 Operand 3 Operand 4
ModRMr/m {1, W) NA NA NA
ModRMxreq (r, w) ModRMr/m (1) NA NA
ModRM-reg (r, w) MocRMr/m (r) A 632 NA

IMUL Revisited

« Scavenger hunt: for “extra credit” (i.e. getting
credited in the slides ;)) find me another
“basic” instruction, that’s not part of a special
add-on instruction set (like VMX, SMX, MMX,
SSE*, AES, AVX, etc) and isn’t a floating
point instruction, which uses >= 3 operands

 hint: if you see a “CPUID feature flag”
column, it means it's a special instruction set

Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
M ModRMr/m (r, w) NA NA NA

RM ModRMreq (r, w ModRMx/m (r NA NA
RMI ModRMreg (r, w) ModRM:x/m (r) immB/16/32 NA

