
Introduction to Intel x86-64
Assembly, Architecture,

Applications, & Alliteration

Xeno Kovah – 2014
xkovah at gmail

All materials is licensed under a Creative
Commons “Share Alike” license.

• http://creativecommons.org/licenses/by-sa/3.0/

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's 'Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html”

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's ‘Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html"

Guess what?  
I have repeatedly misled you!

• Simplification is misleading

• Time to learn the fascinating truth…

• Time to RTFM!

Read The Fun Manuals

• http://www.intel.com/products/processor/manuals/
• Vol.1 is a summary of life, the universe, and

everything about x86

• Vol. 2a & 2b explains all the instructions

• Vol. 3a & 3b are all the gory details for all the extra
stuff they’ve added in over the years (MultiMedia
eXtentions - MMX, Virtual Machine eXtentions - VMX,
virtual memory, 16/64 bit modes, system management
mode, etc)

• Reminder, we’re using the pre-downloaded May 2012
version as the standardized reference throughout this
class so we’re all looking at the same information

• We’ll only be looking at Vol. 2a & 2b in this class

Googling is fine to start with, but eventually you need to learn to read the manuals to get the details from the authoritative source

http://www.intel.com/products/processor/manuals/

Interpreting the Instruction
Reference Pages

• The correct way to interpret these
pages is given in the Intel Manual 2a,
section 3.1

• I will give yet another simplification

• Moral of the story is that you have to
RTFM to RTFM ;)

AND - Logical AND

• Destination operand can be r/mX or register

• Source operand can be r/mX or register or
immediate (No source and destination as r/mXs
at the same time)

00110011b (al - 0x33)

AND 01010101b (bl - 0x55)
result 00010001b (al - 0x11)

and al, bl
00110011b (al - 0x33)

AND 01000010b (imm - 0x42)
result 00000010b (al - 0x02)

and al, 0x42

Here’s what I said:

Here’s 
what 
the  

manual 
says:

• Opcode Column

• Represents the literal byte value(s) which
correspond to the given instruction

• In this case, if you were to see a 0x24
followed by a byte or 0x25 followed by 4
bytes, you would know they were specific
forms of the AND instruction.

– Subject to correct interpretation under x86’s multi-
byte opcodes as discussed later.

See Intel Vol. 2a section 3.1.1.1 (“Opcode Column in the Instruction Summary Table”)

• If it was 0x25, how would you know whether it should be
followed by 2 bytes (imm16) or 4 bytes (imm32)? Because
the same single opcode byte is used for both, the length of
the operand depends on if the processor is in 16-bit, 32-
bit, or 64-bit mode. Each mode has a default operand size
(i.e. the size of the value).

• For 64-bit mode, the default operand size is 32-bits for
most instructions and the default address size is 64-bits

• This means the default interpretation will usually be the
ones with the r/m32, r32, imm32, or in this case a specific
register like EAX

There are many instructions which are “overloaded” with equivalent 16 bit and 32 bit versions shown in the manual.

Opcode Column

• In some cases the operand or address size can be
overridden with special prefix bytes that come before
the regular instruction opcode

• There are REX prefixes, address size prefixes, and
operand size prefixes

• Will not go into detail for all of them, but the REX.W
byte shown in this example (0x48) will cause the
instruction to use 64-bit operands if in 64-bit mode
(rather than 32-bit operands)

• Therefore, to encode this instruction to use 64-bit
operands (RAX in this case), the code would have
byte sequence 0x48 0x25 …

There are many instructions which are “overloaded” with equivalent 16 bit and 32 bit versions shown in the manual.

• How to see the opcodes in VisualStudio:
• Seeing the exact opcode will
help confirm the exact version of an

Instruction
!
!
(to show bytes in gdb, use:
disassemble/r optionally passing
an address to disassemble at)

Opcode Column

• Instruction Column

• The human-readable mnemonic which is used to
represent the instruction.

• This will frequently contain special encodings such as
the “r/mX format” which I’ve previously discussed

See Intel Vol. 2a section 3.1.1.3 (Instruction Column in the Opcode Summary Table)

• Operand Encoding Column
• This column was added in more recent manuals. I would

find it more useful it there weren’t so many errors :-/

See Intel Vol. 2a section 3.1.1.4

Should be RI, fixed in latest

Should allow for imm8/16/32, not fixed in latest

Should be I, fixed in latest

• 64bit Column

• Whether or not the opcode is valid in 64 bit mode.

• Compatibility/Legacy Mode Column

• Whether or not the opcode is valid in 32/16 bit code.
– The N.E. Indicates an an instruction encoding which is only

encodable in 64-bit mode

See Intel Vol. 2a section 3.1.1.5
“64/32-bit Mode Column in the Instruction Summary Table”

• Description Column

• Simple description of the action performed by the
instruction

• Typically this just conveys the flavor of the instruction,
but the majority of the details are in the main
description text

See Intel Vol. 2a section 3.1.1.7
“Description Column in the Instruction Summary Table”

Further AND variations

• Looking at some other forms, we now see those
“r/mX” things I told you about

• We know that for instance it can start with an
0x80, and end with a byte, but what’s that /4?

• Unfortunately the explanation goes into too much
detail for this class. Generally the only people
who need to know it are people who want to write
disassemblers. But I still put it in the Intermediate
x86 class :)

• The main thing you need to know is that any time
you see a r/mX, it can be either a register or
memory value.

AND Details

• Description
– “Performs a bitwise AND operation on the destination (first) and

source (second) operands and stores the result in the destination
operand location. The source operand can be an immediate, a
register, or a memory location; the destination operand can be a
register or a memory location. (However, two memory operands
cannot be used in one instruction.) Each bit of the result is set to 1
if both corresponding bits of the first and second operands are 1;
otherwise, it is set to 0.

 This instruction can be used with a LOCK prefix to allow the it to be
executed atomically.”

• Flags effected
– “The OF and CF flags are cleared; the SF, ZF, and PF

flags are set according to the result. The state of the
AF flag is undefined.”

Jcc Revisited

• If you look closely, you will see that there
are multiple mnemonics for the same
opcodes

• 0x77 = JA - Jump Above

• 0x77 = JNBE - Jump Not Below or Equal
• 0x74 = JE / JZ - Jump Equal / Zero

• Which mnemonic is displayed is
disassembler-dependent

IMUL Revisited

• Scavenger hunt: for “extra credit” (i.e. getting
credited in the slides ;)) find me another
“basic” instruction, that’s not part of a special
add-on instruction set (like VMX, SMX, MMX,
SSE*, AES, AVX, etc) and isn’t a floating
point instruction, which uses >= 3 operands

• hint: if you see a “CPUID feature flag”
column, it means it’s a special instruction set

