
Introduction to Intel x86-64
Assembly, Architecture,

Applications, & Alliteration

Xeno Kovah – 2014
xkovah at gmail

All materials is licensed under a Creative
Commons “Share Alike” license.

• http://creativecommons.org/licenses/by-sa/3.0/

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's 'Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html”

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's ‘Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html"

gcc - GNU project C and C++
compiler

• Available for many *nix systems (Linux/BSD/OSX/Solaris)
• Supports many other architectures besides x86
• Some C/C++ options, some architecture-specific options

– Main option we care about is building debug symbols. Use “-
ggdb” command line argument.

• Basically all of the VisualStudio options in the project properties
page are just fancy wrappers around giving their compiler
command line arguments. The equivalent on *nix is for to
developers create “makefile”s which are a configuration or
configurations which describes which options will be used for
compilation, how files will be linked together, etc. We won’t get
that complicated in this class, so we can just specify command
line arguments manually.

Book p. 53

More details in the manpage, available by typing “man gcc” on a *nix system

gcc basic usage

• gcc -o <output filename> <input file name>
– gcc -o hello hello.c
– If -o and output filename are unspecified,

default output filename is “a.out” (for legacy
reasons)

• So we will be using:
– gcc -ggdb -o <filename> <filename>.c
– gcc -ggdb -o Example1 Example1.c

objdump - display information
from object files

• Where ”object file” can be an intermediate file created
during compilation but before linking, or a fully linked
executable
– For our purposes means any ELF file - the executable format

standard for Linux
• The main thing we care about is -d to disassemble a

file.
• Can override the output syntax with “-M intel”

– Good for getting an alternative perspective on what an
instruction is doing, while learning AT&T syntax

Book p. 63

More details in the manpage, available by typing “man objdump” on a *nix system !Aside: the equivalent on Mac OS X is otool.

objdump -d hello
hello: file format elf64-x86-64!!
Disassembly of section .init:!!
00000000004003e0 <_init>:!
 4003e0:!48 83 ec 08 ! sub $0x8,%rsp!
 4003e4:!48 8b 05 0d 0c 20 00 ! mov 0x200c0d(%rip),%rax # 600ff8 <_DYNAMIC+0x1d0>!
 4003eb:!48 85 c0 ! test %rax,%rax!
 4003ee:!74 05 ! je 4003f5 <_init+0x15>!
 4003f0:!e8 3b 00 00 00 ! callq 400430 <__gmon_start__@plt>!
 4003f5:!48 83 c4 08 ! add $0x8,%rsp!
 4003f9:!c3 ! retq !
…!
000000000040052d <main>:!
 40052d:!55 ! push %rbp!
 40052e:!48 89 e5 ! mov %rsp,%rbp!
 400531:!bf d4 05 40 00 ! mov $0x4005d4,%edi!
 400536:!e8 d5 fe ff ff ! callq 400410 <puts@plt>!
 40053b:!b8 34 12 00 00 ! mov $0x1234,%eax!
 400540:!5d ! pop %rbp!
 400541:!c3 ! retq !
 400542:66 2e 0f 1f 84 00 00 ! nopw %cs:0x0(%rax,%rax,1)!
 400549:00 00 00 !
 40054c:0f 1f 40 00 ! nopl 0x0(%rax)!
…

Wait…whut? “nopl/nopw”?
“There are more [NOPS] under heaven and earth, Horatio, than
are dreamt of in your philosophy” :)

GCC is clearly using some multi-byte NOPs to pad the end of
main() so that the next function starts on a 0x10-aligned boundary

objdump -d -M intel hello
hello: file format elf64-x86-64!!
Disassembly of section .init:!!
00000000004003e0 <_init>:!
 4003e0: 48 83 ec 08 sub rsp,0x8!
 4003e4: 48 8b 05 0d 0c 20 00 mov rax,QWORD PTR [rip+0x200c0d] # 600ff8

<_DYNAMIC+0x1d0>!
 4003eb: 48 85 c0 test rax,rax!
 4003ee: 74 05 je 4003f5 <_init+0x15>!
 4003f0: e8 3b 00 00 00 call 400430 <__gmon_start__@plt>!
 4003f5: 48 83 c4 08 add rsp,0x8!
 4003f9: c3 ret !
…!
000000000040052d <main>:!
 40052d: 55 push rbp!
 40052e: 48 89 e5 mov rbp,rsp!
 400531: bf d4 05 40 00 mov edi,0x4005d4!
 400536: e8 d5 fe ff ff call 400410 <puts@plt>!
 40053b: b8 34 12 00 00 mov eax,0x1234!
 400540: 5d pop rbp!
 400541: c3 ret !
 400542: 66 2e 0f 1f 84 00 00 nop WORD PTR cs:[rax+rax*1+0x0]!
 400549: 00 00 00 !
 40054c: 0f 1f 40 00 nop DWORD PTR [rax+0x0]!
…

hexdump & xxd & strings

• Sometimes useful to look at a hexdump to see
opcodes/operands or raw file format info

• hexdump, hd - ASCII, decimal, hexadecimal, octal
dump
– hexdump -C for “canonical” hex & ASCII view
– Use for a quick peek at the hex

• xxd - make a hexdump or do the reverse
– Use as a quick and dirty hex editor
– xxd hello > hello.dump
– Edit hello.dump
– xxd -r hello.dump > hello

– strings - dump out all the ASCII strings for a binary

More details in the manpage, available by typing “man hexdump” and “man xxd” on a *nix system

GDB - the GNU debugger

• A command line debugger - quite a bit less user-
friendly for beginners.
– There are wrappers such as ddd but I tried them back when I

was learning asm and didn’t find them to be helpful. YMMV
• Syntax for starting a program in GDB in this class:

– gdb <program name> -x <command file>
– gdb Example1 -x myCmds

Book p. 57

About GDB -x <command file>

• Somewhat more memorable long form is
“--command=<command file>”

• <command file> is a plaintext file with a list of
commands that GDB should execute upon
starting up. Sort of like scripting the debugger.

• Absolutely essential to making GDB
reasonable to work with for extended periods
of time (I used GDB for many years copying
and pasting my command list every time I
started GDB, so I was super ultra happy when
I found this option)

GDB commands

• “help” - internal navigation of available
commands

• “run” or “r” - run the program
• “r <argv>” - run the program passing the

arguments in <argv>
– I.e. for Example 2 “r 1 2” would be what we

used in windows

GDB commands 2
• “help display”
• “display” prints out a statement every time the debugger stops
• display/FMT EXP
• FMT can be a combination of the following:

– i - display as asm instruction
– x or d - display as hex or decimal
– b or h or w or g - display as byte, halfword (2 bytes), word (4 bytes -

as opposed to intel calling that a double word. Confusing!), giant
word (8 bytes)

– s - character string (will just keep reading till it hits a null character)
– <number> - display <number> worth of things (instructions, bytes,

words, strings, etc)
• “info display” to see all outstanding display statements and their

numbers
• “undisplay <num>” to remove a display statement by number

Full list of format specifiers http://sources.redhat.com/gdb/current/onlinedocs/gdb.html#SEC71

GDB commands 3
• “x/FMT EXP” - x for “Examine memory” at expression

– Always assumes the given value is a memory address, and it dereferences it
to look at the value at that memory address

• “print/FMT EXP” - print the value of an expression
– Doesn’t try to dereference memory

• Both commands take the same type of format specifier as display
• Example:

(gdb) x/x $rbp
0x7fffffffde70: 0x00000000
(gdb) print/x $rbp
$1 = 0x7fffffffde70
(gdb) x/x $rbx
0x0: Cannot access memory at address 0x0
(gdb) print/x $rbx
$2 = 0x0

Full list of format specifiers http://sources.redhat.com/gdb/current/onlinedocs/gdb.html#SEC71 !From “help x” FMT is a repeat count followed by a format letter and a size letter. Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal), t(binary), f(float), a(address), i(instruction), c(char) and s(string). Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).

GDB commands 4
• For all breakpoint-related commands see “help

breakpoints”
• “break” or “b” - set a breakpoint

– With debugging symbols you can do things like “b
main”. Without them you can do things like

 “b *<address>” to break at a given memory address.
– Note: gdb’s interpretation of where a function begins

may exclude the function prolog like “push ebp”…
• “info breakpoints” or “info b” - show currently set

breakpoints
• "delete <num> - deletes breakpoint number

<num>, where <num> came from "info
breakpoints"

GDB 7 commands

• New for GDB 7, released Sept 2009
– Thanks to Dave Keppler for notifying me of the availability of

these new commands (even if they don’t work in this lab ;))
– reverse-step ('rs') -- Step program backward until it reaches

the beginning of a previous source line
– reverse-stepi -- Step backward exactly one instruction
– reverse-continue ('rc') -- Continue program being debugged

but run it in reverse
– reverse-finish -- Execute backward until just before the

selected stack frame is called

GDB 7 commands 2
– reverse-next ('rn') -- Step program backward, proceeding

through subroutine calls.
– reverse-nexti ('rni') -- Step backward one instruction, but

proceed through called subroutines.
– set exec-direction (forward/reverse) -- Set direction of

execution. All subsequent execution commands (continue,
step, until etc.) will run the program being debugged in the
selected direction.

Currently can’t use /r and /m together

GDB 7 commands 3
– The "disassemble" command now supports an optional

/m modifier to print mixed source+assembly.
– (gdb) disassemble/m
– Dump of assembler code for function main:
– 2 int main(){
– 0x000000000040052d <+0>: push %rbp
– 0x000000000040052e <+1>: mov %rsp,%rbp
– 3 printf("Hello World!\n");
– => 0x0000000000400531 <+4>: mov $0x4005d4,%edi
– 0x0000000000400536 <+9>: callq 0x400410 <puts@plt>
– 4 return 0x1234;
– 0x000000000040053b <+14>: mov $0x1234,%eax
– 5 } 0x0000000000400540 <+19>: pop %rbp
– 0x0000000000400541 <+20>: retq

– "disassemble" command with a /r modifier, print the raw
instructions in hex as well as in symbolic form.

– (gdb) disassemble/r
– Dump of assembler code for function main:
– 0x000000000040052d <+0>: 55 push %rbp
– 0x000000000040052e <+1>: 48 89 e5 mov %rsp,%rbp
– => 0x0000000000400531 <+4>: bf d4 05 40 00 mov $0x4005d4,%edi
– 0x0000000000400536 <+9>: e8 d5 fe ff ff callq 0x400410 <puts@plt>
– 0x000000000040053b <+14>: b8 34 12 00 00 mov $0x1234,%eax
– 0x0000000000400540 <+19>: 5d pop %rbp
– 0x0000000000400541 <+20>: c3 retq

– See “help disassemble” for full syntax

Currently can’t use /r and /m together

initial GDB commands file
• display/10i $rip
• display/x $rax
• display/x $rbx
• display/x $rcx
• display/x $rdx
• display/x $rdi
• display/x $rsi
• display/x $r8
• display/x $r9
• display/x $rbp
• display/16xg $rsp
• break main

Example run with commands
file

(gdb) r
Starting program: /mnt/hgfs/vmshare/IntroToAsm_code_for_class/HelloWorld/hello !
Breakpoint 1, main () at Hello.c:3
3 printf("Hello World!\n");
11: x/16xg $rsp
0x7fffffffde70: 0x0000000000000000 0x00007ffff7a35ec5
0x7fffffffde80: 0x0000000000000000 0x00007fffffffdf58
0x7fffffffde90: 0x0000000100000000 0x000000000040052d
0x7fffffffdea0: 0x0000000000000000 0x39f79df94699a772
0x7fffffffdeb0: 0x0000000000400440 0x00007fffffffdf50
0x7fffffffdec0: 0x0000000000000000 0x0000000000000000
0x7fffffffded0: 0xc6086206fb99a772 0xc60872bffa63a772
0x7fffffffdee0: 0x0000000000000000 0x0000000000000000
10: /x $rbp = 0x7fffffffde70
9: /x $r9 = 0x7ffff7dea560
8: /x $r8 = 0x7ffff7dd4e80
7: /x $rsi = 0x7fffffffdf58
6: /x $rdi = 0x1
5: /x $rdx = 0x7fffffffdf68
4: /x $rcx = 0x0
3: /x $rbx = 0x0
2: /x $rax = 0x40052d
1: x/10i $rip
=> 0x400531 <main+4>: mov $0x4005d4,%edi
 0x400536 <main+9>: callq 0x400410 <puts@plt>
 0x40053b <main+14>: mov $0x1234,%eax
 0x400540 <main+19>: pop %rbp
 0x400541 <main+20>: retq

Source code line printed here if source
is available (e.g. compiled with -ggbd)

Stepping

• “stepi” or “si” - steps one asm instruction at a time
– Will always “step into” subroutines

• “nexti” or “ni” - steps over one asm instruction at a
time
– Will always “step over” subroutines

• “step” or “s” - steps one source line at a time (if no
source is available, works like stepi)

• “until” or “u” - steps until the next source line, not
stepping into subroutines
– If no source available, this will work like a stepi that will “step

over” subroutines
• “finish” - steps out of the current function

GDB misc commands

• “set disassembly-flavor intel” - use intel syntax
rather than AT&T
– Again, not using now, just good to know

• “continue” or “c” - run until you hit another
breakpoint or the program ends

• “backtrace” or “bt” - print a trace of the call
stack, showing all the functions which were
called before the current function

Lab time:  
Running all the examples we
ran earlier with Windows/VS

with Linux/GDB

