Introduction to Intel x86-64
Assembly, Architecture,
Applications, & Alliteration

Xeno Kovah — 2014
xkovah at gmail

All materials is licensed under a Creative
Commons “Share Alike” license.

 http://creativecommons.org/licenses/by-sa/3.0/

You are free:

10 Share — 10 copy, dis¥ribuie and transma the work
10 Remix — to adapt the work

Under the following conditions:

Attnbution — You must attinbute the work In the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or

Your use of the work

Share Alike — If you aher, transform, or build upon this work, you ma
disindule the resulbng work only under the same, Semilar or 3 compatible

license

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's 'Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html”

Attribution condition: You must indicate that derivative work

"Is derived from Xeno Kovah's ‘Intro x86-64" class, available at http://OpenSecurityTraining.info/IntroX86-64.html"

Intel vs. AT&T Syntax

Intel: Destination <- Source(s)
— Windows. Think algebra or C: y = 2x + 1;
— mov rbp, rsp
— add rsp, 0x14 ; (rsp = rsp + 0x14)
AT&T: Source(s) -> Destination
— *nix/GNU. Think elementary school: 1 +2 =3
— mov %rsp, %rbp
— add $0x14,%rsp
— So registers get a % prefix and immediates get a $
My classes will use Intel syntax except in this section

But it's important to know both, so you can read documents in
either format.

Intel vs AT&T Syntax 2

» For instructions which can operate on different sizes,
the mnemonic will have an indicator of the size.
— movb - operates on bytes
— mov/movw - operates on word (2 bytes)
— movl - operates on “long” (dword) (4 bytes)
— movq - operates on “quad word” (qword) (8 bytes)

* Intel indicates size with things like “mov dword pftr [rax],
but it's not in the actual mnemonic of the instruction

» Will occasionally see things like “movzwl” which is
move with zero extend from a word to a long

Intel vs AT&T Syntax 3

In my opinion the hardest-to-read difference is for /m32 values
For intel it's expressed as

[base + index*scale + disp]
For AT&T it's expressed as

disp(base, index, scale)
Examples:

— call DWORD PTR [rbx+rsi*4-0xe8]

— callg *-0xe8(%rbx,%rsi,4)

— mov rax, DWORD PTR [rbp+0x8]
— movq 0x8(%rbp), Y%rax

lea rax, [rbx-Oxe8]
leaq -0xe8(%rbx), Y%rax

like “mov -0x4(%rbp)” will show it as “mov OxFFFFFFFC(%rbp)”

haxors ;)

TODO

» Create a game that shows two instructions in AT&T
syntax and Intel syntax, and asks the students
whether they’re the same or not

* (The +100/-200 helps mitigate advantage of guessing)

