
Introduction to Intel x86-64
Assembly, Architecture,

Applications, & Alliteration

Xeno Kovah – 2014-2015
xeno@legbacore.com

All materials is licensed under a Creative
Commons “Share Alike” license.

• http://creativecommons.org/licenses/by-sa/3.0/

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's 'Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html”

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's ‘Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html"

ExampleSubroutine1.c

//ExampleSubroutine1:
// using the stack & subroutine
//to call subroutines
//New instructions:
//push, pop, call, ret, mov
int func(){
 return 0xbeef;
}
int main(){
 func();
 return 0xf00d;
}

func:
0000000140001000 mov eax,0BEEFh
0000000140001005 ret
main:
0000000140001010 sub rsp,28h
0000000140001014 call func (0140001000h)
0000000140001019 mov eax,0F00Dh
000000014000101E add rsp,28h
0000000140001022 ret

The stack frames in this example will be very simple.
Only saved return addresses (RIP).

CALL - Call Procedure
• CALL’s job is to transfer control to a different function,

in a way that control can later be resumed where it left
off

• First it pushes the address of the next instruction onto
the stack
• For use by RET for when the procedure is done

• Then it changes RIP to the address given in the
instruction

• Destination address can be specified in multiple ways
• Absolute address
• Relative address (relative to the end of the

instruction, or some other register)

4

B
oo

k
pa

ge
 1

08

RET - Return from Procedure

• Two forms
– Pop the top of the stack into RIP (remember, pop

increments stack pointer, RSP)
• In this form, the instruction is just written as “ret”

– Pop the top of the stack into RIP and also add a
constant number of bytes to RSP

• In this form, the instruction is written as “ret 0x8”, or “ret
0x20”, etc

5

B
oo

k
pa

ge
 1

09

Intel vs. AT&T Syntax
(we’ll come back to this again much later)

• Intel: Destination <- Source(s)
– Windows. Think algebra or C: y = 2x + 1;
– mov rbp, rsp
– add rsp, 0x14 ; (rsp = rsp + 0x14)

• AT&T: Source(s) -> Destination
– *nix/GNU. Think elementary school: 1 + 2 = 3
– mov %rsp, %rbp
– add $0x14,%rsp
– So registers get a % prefix and immediates get a $

• My classes will use Intel syntax except in this section
• But it’s important to know both, so you can read documents in

either format.

MOV - Move

• Can move:
– register to register
– memory to register, register to memory
– immediate to register, immediate to memory

• Never memory to memory!
• Memory addresses are given in r/mX

form talked about next

6

B
oo

k
pa

ge
 4

8

“r/mX” Addressing Forms
• Anywhere you see an r/mX it means it could be taking a value

either from a register, or a memory address.
• I’m just calling these “r/mX forms” because anywhere you see “r/

m16”, “r/m32”, or “r/m64” in the manual, the instruction can be a
variation of the below forms.

• In Intel syntax, most of the time square brackets [] means to treat
the value within as a memory address, and fetch the value at that
address (like dereferencing a pointer)
– mov rax, rbx
– mov rax, [rbx]
– mov rax, [rbx+rcx*X] (X=1, 2, 4, 8)
– mov rax, [rbx+rcx*X+Y] (Y= one byte, 0-255 or 4 bytes, 0-2^32-1)

• Most complicated form is: [base + index*scale + disp]

More info: Intel v2a, Section 2.1.5 page 2-4
in particular Tables 2-2 and 2-3B

oo
k

pa
ge

 1
23

ADD and SUB
• Adds or Subtracts, just as expected
• Destination operand can be r/mX or register
• Source operand can be r/mX or register or immediate
• No source and destination as r/mXs, because that

could allow for memory to memory transfer, which isn’t
allowed on x86

• Evaluates the operation as if it were on signed AND
unsigned data, and sets flags as appropriate.
Instructions modify OF, SF, ZF, AF, PF, and CF flags
for what it’s worth

• add rsp, 8 == (rsp = rsp + 8)
• sub rax, [rbx*2] == (rax = rax - memorypointedtoby(rbx*2))

7 8

B
oo

k
pa

ge
 5

9
=

A
dd

, p
ag

e
62

 =
 S

ub

ExampleSubroutine1.c 1: 
EIP = 00000001`40001010, but no instruction yet executed

rax 000007fe`f239c3a8 ⌘
rsp 00000000`0012feb8 ⌘

Key:
⌧ executed instruction,
♍ modified value
⌘ start value

func:
0000000140001000 mov eax,0BEEFh
0000000140001005 ret
main:
0000000140001010 sub rsp,28h
0000000140001014 call func (0140001000h)
0000000140001019 mov eax,0F00Dh
000000014000101E add rsp,28h
0000000140001022 ret

00000000`0012FEB8 00000001`400012ed

… …
00000000`0012FE90 undef
00000000`0012FE88 undef
00000000`0012FE80 undef
00000000`0012FE78 undef

Belongs to the frame
before main() is called

Colon notation means the full value is represented by the concatenation of the two values. If rdx = 0x11112222 and eax = 0x33334444, then rdx:eax is the quadword 0x1111222233334444

ExampleSubroutine1.c 2:
rax 000007fe`f239c3a8 ⌘
rsp 00000000`0012fe90 ♍

Key:
⌧ executed instruction,
♍ modified value
⌘ start value

func:
0000000140001000 mov eax,0BEEFh
0000000140001005 ret
main:
0000000140001010 sub rsp,28h ⌧
0000000140001014 call func (0140001000h)
0000000140001019 mov eax,0F00Dh
000000014000101E add rsp,28h
0000000140001022 ret

00000000`0012FEB8 00000001`400012ed

… …
00000000`0012FE90 undef
00000000`0012FE88 undef
00000000`0012FE80 undef
00000000`0012FE78 undef

Colon notation means the full value is represented by the concatenation of the two values. If rdx = 0x11112222 and eax = 0x33334444, then rdx:eax is the quadword 0x1111222233334444

ExampleSubroutine1.c 3:

00000000`0012FEB8 00000001`400012ed

… …
00000000`0012FE90 undef
00000000`0012FE88 00000001`40001019

00000000`0012FE80 undef
00000000`0012FE78 undef

rax 000007fe`f239c3a8 ⌘
rsp 00000000`0012fe88 ♍

Key:
⌧ executed instruction,
♍ modified value
⌘ start value

func:
0000000140001000 mov eax,0BEEFh
0000000140001005 ret
main:
0000000140001010 sub rsp,28h
0000000140001014 call func(0140001000h) ⌧
0000000140001019 mov eax,0F00Dh
000000014000101E add rsp,28h
0000000140001022 ret

♍

Colon notation means the full value is represented by the concatenation of the two values. If rdx = 0x11112222 and eax = 0x33334444, then rdx:eax is the quadword 0x1111222233334444

ExampleSubroutine1.c 4:

00000000`0012FEB8 00000001`400012ed

… …
00000000`0012FE90 undef
00000000`0012FE88 00000001`40001019

00000000`0012FE80 undef
00000000`0012FE78 undef

rax 00000000`0000beef ♍
rsp 00000000`0012fe88

Key:
⌧ executed instruction,
♍ modified value
⌘ start value

func:
0000000140001000 mov eax,0BEEFh ⌧
0000000140001005 ret
main:
0000000140001010 sub rsp,28h
0000000140001014 call func (0140001000h)
0000000140001019 mov eax,0F00Dh
000000014000101E add rsp,28h
0000000140001022 ret

Note that it “zero extended” the reg
(meaning it filled in the upper 32 bits

of RAX with zeros)

Colon notation means the full value is represented by the concatenation of the two values. If rdx = 0x11112222 and eax = 0x33334444, then rdx:eax is the quadword 0x1111222233334444

ExampleSubroutine1.c 4:
rax 00000000`0000beef ♍
rsp 00000000`0012fe88

Key:
⌧ executed instruction,
♍ modified value
⌘ start value Note that it “zero extended” the reg

(meaning it filled in the upper 32 bits
of RAX with zeros)

From section 3.4.1.1 in the June 2014 Manual included with class materials:

Colon notation means the full value is represented by the concatenation of the two values. If rdx = 0x11112222 and eax = 0x33334444, then rdx:eax is the quadword 0x1111222233334444

ExampleSubroutine1.c:
STACK FRAME TIME OUT

00000000`0012FEB8 00000001`400012ed

… …
00000000`0012FE90 undef
00000000`0012FE88 00000001`40001019

00000000`0012FE80 undef
00000000`0012FE78 undef

func:
mov eax,0BEEFh ⌧
ret
main:
sub rsp,28h
call func (0140001000h)
mov eax,0F00Dh
add rsp,28h
ret

“Function-before-
main”’s frame

main’s frame

func never even
makes a stack

frame

Colon notation means the full value is represented by the concatenation of the two values. If rdx = 0x11112222 and eax = 0x33334444, then rdx:eax is the quadword 0x1111222233334444

ExampleSubroutine1.c 5:

00000000`0012FEB8 00000001`400012ed

… …
00000000`0012FE90 undef
00000000`0012FE88 undef ♍
00000000`0012FE80 undef
00000000`0012FE78 undef

rax 00000000`0000beef
rsp 00000000`0012fe90 ♍

Key:
⌧ executed instruction,
♍ modified value
⌘ start value

func:
0000000140001000 mov eax,0BEEFh
0000000140001005 ret ⌧
main:
0000000140001010 sub rsp,28h
0000000140001014 call func (0140001000h)
0000000140001019 mov eax,0F00Dh
000000014000101E add rsp,28h
0000000140001022 ret

Colon notation means the full value is represented by the concatenation of the two values. If rdx = 0x11112222 and eax = 0x33334444, then rdx:eax is the quadword 0x1111222233334444

ExampleSubroutine1.c 6:

00000000`0012FEB8 00000001`400012ed

… …
00000000`0012FE90 undef
00000000`0012FE88 undef
00000000`0012FE80 undef
00000000`0012FE78 undef

rax 00000000`0000f00d ♍
rsp 00000000`0012fe90

Key:
⌧ executed instruction,
♍ modified value
⌘ start value

func:
0000000140001000 mov eax,0BEEFh
0000000140001005 ret
main:
0000000140001010 sub rsp,28h
0000000140001014 call func (0140001000h)
0000000140001019 mov eax,0F00Dh ⌧
000000014000101E add rsp,28h
0000000140001022 ret

Colon notation means the full value is represented by the concatenation of the two values. If rdx = 0x11112222 and eax = 0x33334444, then rdx:eax is the quadword 0x1111222233334444

ExampleSubroutine1.c 7:

00000000`0012FEB8 00000001`400012ed

… …
00000000`0012FE90 undef
00000000`0012FE88 undef
00000000`0012FE80 undef
00000000`0012FE78 undef

rax 00000000`0000f00d
rsp 00000000`0012feb8 ♍

Key:
⌧ executed instruction,
♍ modified value
⌘ start value

func:
0000000140001000 mov eax,0BEEFh
0000000140001005 ret
main:
0000000140001010 sub rsp,28h
0000000140001014 call func (0140001000h)
0000000140001019 mov eax,0F00Dh
000000014000101E add rsp,28h ⌧
0000000140001022 ret

Colon notation means the full value is represented by the concatenation of the two values. If rdx = 0x11112222 and eax = 0x33334444, then rdx:eax is the quadword 0x1111222233334444

ExampleSubroutine1.c 8:

00000000`0012FEB8 undef ♍
… …
00000000`0012FE90 undef
00000000`0012FE88 undef
00000000`0012FE80 undef
00000000`0012FE78 undef

rax 00000000`0000f00d
rsp 00000000`0012fec0 ♍

Key:
⌧ executed instruction,
♍ modified value
⌘ start value

func:
0000000140001000 mov eax,0BEEFh
0000000140001005 ret
main:
0000000140001010 sub rsp,28h
0000000140001014 call func (0140001000h)
0000000140001019 mov eax,0F00Dh
000000014000101E add rsp,28h
0000000140001022 ret ⌧

Execution would continue at the value ret
removed from the stack: 00000001`400012ed

Colon notation means the full value is represented by the concatenation of the two values. If rdx = 0x11112222 and eax = 0x33334444, then rdx:eax is the quadword 0x1111222233334444

ExampleSubroutine1 Notes

• func() is dead code - its return value is not
used for anything, and main() always returns
0xF00D. If optimizations were turned on in the
compiler, it would remove func()

• We don’t yet understand why main() does “sub
rsp,28h” & “add rsp,28h”...We will figure
that out later.

Let’s do that in a tool

• Visual C++ 2012 Express edition (which I will
shorthand as “VisualStudio” or VS)

• Standard Windows development environment
• Available for free, but missing some features

that pro developers might want
• Keep in mind you can’t move express-edition-

compiled applications to other systems and
get them to run without first installing the
“redistributable libraries”

Open IntroToAsm64.sln

Creating a new project - 1

Creating a new project - 2

25

Adding files to the project

Creating a new project - 4

Right click, select Add

Setting project properties

Setting project properties - 1

Setting project properties 2

Unfortunately the debug
information format alters the code
which gets generated too much,

making it not as simple as I
would like for this class.

Setting project properties - 2

Set SDL checks to No (“/
sdl-”) in VS2013

Setting project properties 3

These would just add
extra complexity to the

asm which we don’t
want for now

Setting project properties - 3

Setting project properties 5
This shouldn’t matter, but

setting it just incase…

Setting project properties - 4

Setting project properties 4

Different
options can be
set for release

vs debug builds

The GUI is just a
wrapper to set
command line

options

Click this to
change which
config set is

active

Setting project properties - 5

Setting project properties - 5.1

Click this to
change which
config set is

active
Click this box

And then select “New” here

Pull down to select x64 build
platform option

Once it’s selected, hit OK

Setting project properties - 5.2

Very important!
This box should be un-checked

83

Setting project properties 6

Setting project properties - 6

This adds an extra
jump between a call

and the target function

Disable Address Space
Layout Randomization

(ASLR) so that we see the
same addresses in our labs

Setting project properties - 7

2 ways to build the project

Right click on project
and select build

Or select Build Only … from the
menu bar

Information about whether the build
succeeded will be in the Output

window. If it fails, a separate Error
tab will open up

Building the project - 2

86

Setting breakpoints & start debugger

Click to the left of the
line to break at.

A red circle will appear

Debugging the program 2

Restart debugging

Stop debugging

Continue

Current stopped location

Step
into

Step
out

Step
overDebugging interface

Showing assembly

Right click: Only
available while

debugging

Current stopped location

Debugging window options

Watching registers (“watch”)

In the
“Watch” tab
you can enter
register names
or variable
names

Note that it
knows the RSP
register is going
to be modified

by this
instruction

Autos tab

Watching registers (“autos”)

Watching the stack change 1

Watching the stack change - 1

92

Watching the stack change - 2

Right click on
the body of the

data in the
window and
make sure

everything's set
like this

Set address
to rsp (will
always be

the top of the
stack)

Set to 8 byte

Click “Reevaluate
Automatically” so

that it will change the
display as rsp

Set to 1

ExampleSubroutine1.c takeaways

int func(){
 return 0xbeef;
}
int main(){
 func();
 return 0xf00d;
}

• In VS (when optimization is turned off), there is an over-allocation of
stack space as a result of calling a function

• 0x28 reserved with no apparent storage of data on the stack
• More about this later once we start passing function parameters

func:
0000000140001000 mov eax,0BEEFh
0000000140001005 ret
main:
0000000140001010 sub rsp,28h
0000000140001014 call func (0140001000h)
0000000140001019 mov eax,0F00Dh
000000014000101E add rsp,28h
0000000140001022 ret

Instructions we now know (8)

• NOP
• PUSH/POP
• CALL/RET
• MOV
• ADD/SUB

