Introduction to Intel x86-64
Assembly, Architecture,
Applications, & Alliteration

Xeno Kovah — 2014-2015
xeno@legbacore.com

All materials is licensed under a Creative
Commons “Share Alike” license.

 http://creativecommons.org/licenses/by-sa/3.0/

You are free:

10 Share — 10 copy, dis¥ribuie and transma the work
10 Remix — to adapt the work

Under the following conditions:

Attnbution — You must attnbute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or

yOour use of the work

Share Alike — If you aher, transform, or build upon this work, you ma
disinbule the resulbng work only under the same, Similar or 3 compalible

license

Attribution condition: You must indicate that derivative work
"Is derived from Xeno Kovah's 'Intro x86-64’ class, available at http://OpenSecurityTraining.info/IntroX86-64.html”

Attribution condition: You must indicate that derivative work

"Is derived from Xeno Kovah's ‘Intro x86-64" class, available at http://OpenSecurityTraining.info/IntroX86-64.html"

The Stack

* The stack is a conceptual area of main
memory (RAM) which is designated by the OS
when a program is started.

— Different OS start it at different addresses by their
own convention
« Astack is a Last-In-First-Out (LIFO/FILO) data
structure where data is "pushed" on to the top
of the stack and "popped" off the top.

* By convention the stack grows toward lower
memory addresses. Adding something to the
stack means the top of the stack is now at a
lower memory address.

Book page 107

The Stack 2

» As already mentioned, RSP points to the top
of the stack, the lowest address which is being
used

— While data will exist at addresses beyond the top of
the stack, it is considered undefined

» The stack keeps track of which functions were
called before the current one, it holds local
variables and is often used to pass arguments
to the next function to be called.

« Afirm understanding of what is happening on
the stack is *essential™ to understanding a
program’s operation.

The stack grows
Rsell down towards low
SRRl SRE == addresses!

This message brought to you by M-308 Gunner from MetalStorm!

%PUSH - Push Quadword onto the
Stack

» For our purposes, it will always be a
QWORD (8 bytes).

— Can either be an “immediate” (Intel's term

for a numeric constant), or the value in a
register

* The push instruction automatically
decrements the stack pointer, RSP, by 8.

Book page 107

Will always be a QWORD because we will be running the processor in 64bit mode, and the instruction for a 16 bit push is the same as the one for a 32bit

push is the same as the one for a 64 bit push. The processor just interprets the size based on the mode it is currently running in (or more accurately the
segment, but that's a story for Intermediate x86-64 ;))

Registers Before

RAX
00000

0x00000000°0

03

RSP

0x00000000°0
012FF88

RSP —

oush RAX

Stack Before

0x00000000°
0012FF90

0x00000000°
0012FF88

0x00000000°
0012FF80

0x00000000°
0012FF78

t

0x00000000°
00000001

0x00000000°
00000002

undef

undef

ey

RSP —

Registers After

RAX [0x00000000°0
0000003

RSP]0x00000000°0

012FF80

Stack After
1

0x00000000°
00000001

0x00000000°
00000002

0x00000000°
00000003

undef

Note about the ~ address convention

When writing 64 bit numbers, it can be easy to
lose track of whether you have the right number
of digits

WinDbg (which we don’t use in this class, but do
in the Intermediate x86-64 class) allows you to

write 64 bit numbers with a * between the two 32
bit halves.

| think this is helpful to see when a number is > 32
bit or not (because there will be some non-zero
value on the left side of the)

So in this class I'll occasionally write 64 bit
numbers like 0x12345678 12345678.

But keep in mind that the only tool which probably
supports you entering them like that is WinDbg

i% POP- Pop a Value from the

Book page 108

Stack

« Take a QWORD off the stack, putitin a
register, and increment RSP by 8

* (Also has a “pop-into-memory” form
which you can look up when you're more
advanced and you know how to
RTFM 1))

Registers Before

RAX

unknown

RSP

0x00000000°0
012FF80

RSP —

0x00000000°

0012FF90

0x00000000°

0012FF88

0x00000000°

0012FF80

0x00000000°

0012FF78

0op RAX

Stack Before
1

00000001

0x00000000°

00000002

0x00000000°

00000003

0x00000000°

undef

ey

RSP —

Registers After

RAX
0000003

0x00000000°0

RSP | 0x00000000°0

012FF88

Stack After
1

0x00000000°
00000001

0x00000000°
00000002

undef

undef

 How code calls a subroutine is compiler-
dependent and configurable. But there
are a few conventions.

 More info at

 Calling convention (as well as other
assembly generation particulars) can be
used as a first order heuristic of what
compiler was used to generate the code

http://en.wikipedia.org/wiki/X86_calling_conventions
http://www.programmersheaven.com/2/Calling-conventions

Einstein!
Calling Conventions
Microsoft x86-64

» First 4 parameters (from left to right) are put
into RCX, RDX, R8, R9 respectively

* Remaining parameters > 4 are “pushed” onto
the stack (right-most param “pushed” first)

* NO use of frame pointers (if you know 32 bit
calling conventions. If not, ignore this bullet)

e RAX or RDX:RAX returns the result for
primitive data types

« Caller is responsible for cleaning up the stack

Colon notation means the full value is represented by the concatenation of the two values.
If rdx = 0x11112222 and eax = 0x33334444, then rdx:eax is the quadword 0x1111222233334444

Yeobeoseyo!
Calling Conventions
System V AMD64 ABI (GCC)

» First 6 parameters (from left to right) are put
into RDI, RSI, RDX, RCX, R8, R9 respectively

« Remaining parameters “pushed” onto the
stack (right-most param “pushed” first)

» Use of frame pointers in unoptimized code,
but not in optimized code (if you know 32 bit
calling conventions. If not, ignore this bullet for
now)

« RAX or RDX:RAX returns the result for
primitive data types

« Caller is responsible for cleaning up the stack

Book page 111

TODO: calling convention identification reinforcement goes here, or at end of deck, or after we've seen some asm?

Give students an example randomized C call, and the equivalent templated, randomized, x86 code and ask them to pick which calling convention it uses

General Stack Frame Operation

We are going to pretend that main() is the very first function
being executed in a program. This is what its stack looks like
to start with (assuming it has any local variables).

stack bottom
main() frame

o ——

Local Variables

—

undef

undef

stack top

Book page 113

General Stack Frame Operation 2

When main() decides to call a subroutine, main() becomes “the caller”. We
will assume main() has some registers it would like to remain the same, so

it will save them. We will also assume that the callee function takes some
input arguments.

stack bottom
main() frame

o ——

Local Variables

Caller-Save Registers

undef
Arguments to Pass to Callee

undef

stack top

General Stack Frame Operation 3

When main() actually issues the CALL instruction, the return address gets
saved onto the stack, and because the next instruction after the call will be
the beginning of the called function, we consider the frame to have
changed to the callee.

stack bottom

o ——

Local Variables main() frame

Caller-Save Registers
undef

Callee arguments (> 4 MS, > 6 *NIX)

Caller’s saved return address undef

stack top

General Stack Frame Operation 4

Next, we’ll assume the the callee foo() would like to use all the registers,
and must therefore save the callee-save registers. Then it will allocate
space for its local variables.

stack bottom

Local Variables main() frame

Caller-Save Registers foo()’s frame

Callee arguments (> 4 MS, > 6 *NIX)
undef

Caller’s saved return address

Callee-Save Registers stack top

Local Variables

General Stack Frame Operation 6

At this point, foo() decides it wants to call bar(). It is still the callee-of-
main(), but it will now be the caller-of-bar. So it saves any caller-save
registers that it needs to. It then puts the function arguments on the stack
as well.

stack bottom

Callee-Save Registers main() frame

Local Variables foo()’s frame

Caller-Save Registers undef

Callee arguments (> 4 MS, > 6 *NIX)

Caller’s saved return address stack top

General Stack Frame Layout

Every part of the stack frame is technically optional (that is,

you can hand code asm without following the conventions.)

But compilers generate code which uses portions if they are needed.
Which pieces are used can sometimes be manipulated with compiler
options. (E.g. omitting frame pointers, changing calling convention to
pass arguments on stack instead of in registers, etc.)

stack bottom

Callee-Save Registers main() frame
Local Variables foo()'s frame
Caller-Save Registers undef

Callee arguments (> 4 MS, > 6 *NIX)

Caller’s saved return address stack top

Instructions we now know (3)

- NOP
- PUSH/POP

Superfluous Curiosities

http://msdn.microsoft.com/en-us/library/ew5Stede7.aspx
Bottom of stack

High mem

Low mem

| Function A |

A stack
parameter
stack area

A register
parameter
stack area

§

-

14

B stack
parameter
stack area

B register
parameter
stack area

Number of entries is
equal to four or the
maximym number of
parameters in any
function A calls-
whichever is greater,

Local variables and saved
nonvolatile Registers

If used, frame pointer will
generally point here

- alloca space (if used).

Number of entries Is
equal to four or the
maximum number of
parameters in any
function B calls-
whichever Is greater.

Top of stack

“The stack will always be maintained 16-byte aligned, except within the prolog (for example, after the return
address is pushed), and except where indicated in Function Types for a certain class of frame functions.”

http://msdn.microsoft.com/en-us/library/67fa79wz.aspx

Caller-save registers just mixed in with the
local variables?

nt main()

att;

b

return 0;

40060a:
40060c:
40060e:
400610:
400611:

000000000040052d <main=>:
052d:

registerinta=1,b=2,c¢=3,d=4,e=5,f=6,g=7,h=8,1=9,j=10,k=11,1=12, m=13,n=14,0=15,p = 16;
printf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d\n", a, b, ¢, d, e, f, g, h, 1, j, k, |, m, n, o, p);

sh by
4889 ¢S mov rbp.rsp
4157 push 15
4156 push rl4
4155 push 13
4154 push r12

53

48 83 ec 68
41 be 01 00 00 00
41 bd 02 00 00 00
41 be 03 00 00 00
¢745 cc 04 00 00
€745 ¢8 05 00 00
41 bf 06 00 00 00
41 b9 07 00 00 00
41 b8 08 00 00 00
41 bb 09 00 00 00
41 ba 0a 00 00 00
bf 0b 00 00 00

be Oc 00 00 00
b9 0d 00 00 00
ba Oe 00 00 00

push
sub rsp,0x68

bx

mov rl2d,0x1

mov r13d,0x2

mov rl4d,0x3
00 mov DWORD PTR [rbp-0x34],0x4
00 mov DWORD PTR [rbp-0x38].0x5
mov r15d,0x6

mov 19d,0x7

mov 18d,0x8

mov rl1d,0x9

mov rl0d,0xa

mov edi,0xb

mov esiOxc

mov ecx,0xd

mov edx,Oxe

b80f000000 mov eax.xf

bb 10000000 mov ebx,0x10

89 5¢ 24 50 mov DWORD PTR [rsp+0x50],ebx
89442448 mov DWORD PTR [rsp+0xd8].cax
89 d0 mov eax.edx

89 4424 40 mov DWORD PTR [rsp+0xd0].cax
89 c8 mov eax.ecx

89442438 mov DWORD PTR [rsp+0x38].cax
89 mov eaxesi

89 4424 30 mov DWORD PTR [rsp+0x30],cax
89 13 mov eaxedi

89442428 mov DWORD PTR [rsp+0x28].cax
44 89 d0 mov eax,r10d

89 4424 20 mov DWORD PTR [rsp+0x20],cax
44 89 d8 mov eax.rll

894424 18 mov DWORD PTR [rsp+0x18].cax
44 89 c0 mov eax,r8d

894424 10 mov DWORD PTR [rsp+0x10].cax
44 89 c8 mov eax,r9d

894424 08 mov DWORD PTR [rsp+0x8].cax
4489 3¢ 24 mov DWORD PTR [rsp],r15d

44 8b4d c8 mov 194, DWORD PTR [rbp-0x38]
448b 45 cc mov r8,DWORD PTR [rbp-0x34]
4489 fI mov ecx,rl4d

44 89 ea mov edx,r13d

4489 ¢6 mov esi,rl2d

bfag 064000 mov edi,0x4006a8

b800000000 mov ecax,Oxf

816 fe ffff call 400410 <printf@plt>

4183 ¢4 01 add r12d,0xI

800000000 mov eax,0x0

4883 c4 68 add rsp,0x68

sb pop rbx

41 5¢ pop rl2

415d pop rl3

41 5¢ pop rld

41 51 pop 15

5d pop tbp

) ret

Caller-save registers pre-local variables?

void once(int a)

1
b

void twice(int a)

{

printf("%x\n", a);

once(a);
printf("%x\n", a);

b

int main()

{
twice(0xFOOD);

return O;

once:
000000V13F771000
000000O13F771004
000000V 13F771008
00000013F77100C
000000P13F771013
00000VO13F771018
000000013F77101C
twice:

000000P13F771030
000000O13F771034
000000013F771038
000000013F77103C
000000013F771041
0000PVO13F771045
000000O13F77104C
0000PPR13F771051
0000PVO13F771055
main:

00000V 13F771060
00000V 13F771064
00000 13F771069
00000VO13F77106E
00000VO13F771070
0000VO13F771074

mov
sub
mov
lea
call
add
ret

mov
sub
mov
call
mov
lea
call
add
ret

sub
mov
call
xor
add
ret

dword ptr [rsp+8],ecx
rsp,28h

edx,dword ptr [rsp+30h]
rcx, [3F7CE@00h]
00000VO13F771220
rsp,28h

dword ptr [rsp+8],ecx //<-caller-save
rsp,28h

ecx,dword ptr [rsp+306h]
000000013F771000

edx,dword ptr [rsp+30h]

rcx, [3F7CEQ04h]

000000013F771220

rsp,28h

rsp,28h
ecx,0FeeDh
000000P13F771030
eax,eax

rsp,28h

