SQL Injection
Rainbow Table

Weak Passﬁds

Password Reuse

Single Factor Aut

Privilege Escalatio

ary hack. Retrieved February 16, 2011, from
ipside-story-of-the-hbgany~hack.ars/
% 10, 2008. Retrieved September

20,2011 from https://secure.wikil cientology-protest.jpg

Welcome! Before we get started with the course, we though;] it would be fun to take a quick look at a really interesting attack that took place recently. To tellf You the truth, when the story

broke, we looked at each other and realized that you couldn't have scripted a better example for us. Many of the things that we will talk about today were part of this coordinated attack.

Now, we all know that the code we write must meet certain levels of quality and sophistication, and if developed incorrectly we could be enabling attacks on our critical systems. But it is hard
to understand how real this problem actually is and how big of a role our little application may play in an attack on our company. Or for that matter, an attack on our boss' personal computer.
Well, in February, as the opening kickoff of the Super Bowl was sailing down the field, we saw what our mistakes can lead to. A hacker group know as Anonymous leveraged many coding
mistakes to break into a database, crack passwords, steal research, read email, deface a website, and in the end result in the resignation of a CEO. And by the way, the victim, HBGary
Federal, was a security firm that does contract work with the Government. It could just have easily been your organization.

The story is actually quite impressive, not because of the sophistication of the attack, but because of the LACK OF SOPHISTICATION that was needed. HBGary Federal's website was
powered by a content management system (CMS). Rather than using an off-the-shelf tool, HBGary Federal decided to commission a custom CMS from a third-party developer. The custom
solution was poorly written and assuming HBGary Federal had conducted a vulnerability assessment of the software - which is, after all, one of the services the company offers - then this
assessment overlooked a substantial flaw. The CMS was susceptible to a kind of attack called SQL Injection. SQL injection is possible when the code that deals with parameters to an SQL
query is weak. Many applications need to join parameters from a Web front-end with hard-coded queries, and then pass the whole concatenated query to the database. Often, they do this
without verifying the validity of those parameters. This exposes the system to SQL injection. Attackers can use specially crafted parameters that cause the database to execute queries of the
attackers' own choosing.

This type of attack was used to retrieve from the CMS the list of usernames, e-mail addresses, and password hashes for many of the HBGary Federal employees.

In spite of the rudimentary SQL injection flaw, the designers of the CMS system were not completely oblivious to security best practices. For example, the user database did not store
passwords in readable plain-text form, rather it stored only hashed passwords. In other words, passwords that have been mathematically processed by a hash function to yield a number
from which the original password can't be deciphered. The CMS used the popular hashing algorithm MD5, but they used MD5 badly as there was no iterative hashing and no salting. The
result was that the downloaded passwords were highly susceptible to rainbow table based attacks, performed using a rainbow table based password cracking website. A rainbow table is a
pre-computed collection of hash values and the passwords that generated them. An attacker can then look up the hash value that they are m?erested in and see if it's in the table. If it is, they
can then determine the password that results in that hash value.

Even with the flawed usage of MD5, HBGary Federal could have been safe thanks to a key limitation of rainbow tables, namely that each table only spans a specific "pattern". So for
example, some tables may support passwords of 1-8 characters made of a mix of lower case and numbers, while other can handle only passwords of 1-12 characters using lower and upper
case only. Alas, two HBGary Federal employees - CEO Aaron Barr and COO Ted Vera - used passwords that were very simple. Each was just six lower case letters and two numbers.
Such simple combinations are likely to be found in any respectable rainbow table, and so their passwords were trivially compromised.

So now the hackers had the username and password for the CMS for two users, the CEO and COO. Unfortunately, neither Aaron nor Ted followed best practices by not reusing passwords
across different systems. Instead, they used the same password in a whole bunch of different places, including e-mail, Twitter accounts, and LinkedIn. The hackers quickly downloaded
email, attachments, tweets, and other correspondence. Some of these turned out to be proprietary and rather embarrassing.

Along with this, HBGary Federal had a Linux machine, support.hbgary.com, on which many HBGary Federal employees had shell accounts with SSH access, each with a password used to
authenticate the user. One of these employees was Ted Vera, and his SSH password was identical to the cracked password he used in the CMS. This gave the hackers immediate access to
the support machine. SSH doesn't haveto use passwords for authentication. Passwords are certainly common, but they're also susceptible to this kind of problem (among others). To
combat this many organizations, particularly those with security concerns, do not use passwords for SSH authentication. Instead, they use public key cryptography: each user has a key
made up of a private part and a public part. Many organizations use something like SecurelD along with a passcode. Had this been used for HBGary Federal's server, it would have been
safe. But is wasn't, so they weren't.

Although attackers could log on to this machine, the ability to look around and break stuff was curtailed: Ted was only a regular non-superuser. Being restricted to a user account can be
enormously confining on a Linux machine. The only way the hackers could have some fun would be to elevate privileges through exploiting a privilege escalation vulnerability. Unfortunately
for HBGary Federal, the system was vulnerable to just such a flaw. The error was published in October 2010, conveniently with a full wc»rkin%;< exploit. By November, most distributions had
patches available, and there was no good reason to be running the exploitable code in February 2011. Exploitation of this flaw gave the hackers full access to HBGary Federal's system. It
was then that they discovered many gigabytes of backups and research data, which they duly purged from the system.

Introduction to
Secure Coding

Larry Shields, CISSP
Drew Buttner

MITRE s s o s o o A e 30 (IO

The previous example does a great job of introducing many of the concepts
that we will talk about in this course. Our hope is that by the end of today you
will understand the concepts of secure coding and know what to think about
when you develop your next application. Obviously, with only one day to give
this course, the expectation is not that you will never make a mistake in you
code again, but rather that you will know where common mistakes are often
made and have some knowledge of what to be on the lookout for so that
further review of the code can be attempted. Let's get started!

All materials is licensed under a Creative
Commons “Share Alike” license.

http://creativecommons.org/licenses/by-sa/3.0/

You are free:

to Share — to copy, distribute and transmit the work
to Remix — to adapt the work

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or

: your use of the work

Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license

Attribution condition: You must indicate that derivative work "Is derived from Andrew Buttner and Larry Shields’
‘Introduction to Secure Coding' class, available at http://OpenSecurityTraining.info/IntroSecureCoding.html”

MITRE Except whers e e, s vor s cansd under rate ommons Auton Sharehe 0 Lerse.[EORDIOT]

Agenda

Roll Call
The Threats

Goals and Principles of Application Security
Introduction to Common Weakness Enumeration (CWE)
Security Mechanisms

Authentication

Authorization

Data Validation

Session Management

Error Handling

Logging

Encryption

After class introductions, we will walk through the types of threats to our
applications and some general application security concepts. We will introduce
a great resource for developers: CWE. We will then dive into the seven
security mechanisms that we all should be aware of.

Schedule

8:30
9:30
10:30
10:45
11:15
12:00
1:00
2:30
3:00
3:15
3:45
4:15

9:30
10:30
10:45
11:15
12:00

1:00

2:30

3:00

3:15

3:45

4:15

4:30

Introduction
Authentication
Break
Authorization
Session Management
Lunch

Data Validation
Error Handling
Break

Logging
Encryption
Closing Remarks

MITRE

e undr a Crsaive Commans Atrbuton-ShareAlike 3.0 Licenss. (€} (DO

INTRODUCTION

MITRE

ork is icensed under a Creative Commons Attribution-ShareAlike 3.0 License

228

Application Security Threats

Script Kiddie
24 + Leveraging tools and exploits created by others
3 J;,;;E-;uw,;gﬁgt + Hacking by pushing the big red shiny button
Hacktivist

» Hacker with a cause
« Denial of service, site defacement

Hacker

+ Malicious and non-malicious
» Because they can

Cyber Criminal

« Different levels of sophistication
« Scams, information theft, fraud

Advanced Persistent Threat

« Extremely sophisticated attackers; nation-states
« Low & slow, information theft, espionage

Hacker Image: Released to public domain by photographer Matthew Griffiths
World Flags Image: Retrieved from WikiMedia Commons, licensed under Creative Commons Attribution ShareAlike 3.0. Retrieved September 20, 2011 from https://
secure.wikimedia.orgiwikipedia/commons/wiki/File:The_world_flag_2006.png

MITRE Exceptwhers e e, s vor s cansed under e Commons At Sharehte 30 Lerse.[CORDIC) 7

There are many different threats to our applications that come from many different actors. These range
from inexperienced kids looking to have some fun to powerful nation states looking for a political or
military advantage.

Script kiddies are the least experienced individuals and are often more of nuisance then a malicious
threat. They are motivated by the learning experience and not usually after something of value. They
leverage existing exploits and usually need tools to do all the work for them. Keeping systems patched is
often enough to keep the script kiddies away.

Hacktivists are slightly more advanced but still are not usually out for personal gain. They want to send a
message by taking a site down or defacing the home page. Granted, the loss in dollars of such actions
can be extraordinary to some businesses. Hacktivists will usually move on to other targets if the
applications are not easy to break.

A hacker is the start of truly skilled attackers. They usually have spent years developing their trade and
often craft some very tricky exploits. Yet hackers are usually motivated by the advancement of their skills
and fame. They are not in it for serious monetary gain.

Cyber Criminals are much more motivated than your typical hacker. They often employee teams of
individuals and have resources that are well beyond those of hackers and hacktivists. They know how to
link different exploits together and are hard to stop. Of course the bigger concern is that they usually
target a specific application and will work until they find a way in.

The advanced persistent threat (APT) is the top of this food chain. Often driven by nation states, the APT
has unlimited resources and involves the best of the best in the world of hackers. They have specific
targets and, unlike the previous groups, they will not be easily deterred by the challenge and move on to

Application Security Goals

|:> Information is only available to
onfidentiality those who should have access
I |::> Data is known to be correct and
ntegrity trusted

|:> Information is available for use by
S legitimate users when it is needed
ailability

Application security is typically treated in terms of three separate goals:
Confidentiality, Integrity, and Availability. All three must be achieved for an
application to be considered secure.

Confidentiality involves making sure that information in the application is only
seen by those that should see it. Improper authentication, unauthorized
access, information exposure all lead to a breach of confidentiality. The more
sensitive the information held within an application, the more serious this goal
is.

Integrity involves making sure that information is correct and hasn't been
altered. The more important the role of the application, the more important it is
for its information to be trusted as decisions are made based on this
information. If a malicious user can change the information, then they can
affect the decisions being made.

Availability is concerned with the ability of a user to access the application and
complete their mission. If the information in an application is not available,
then decisions that are based on this information can not be made.

Application Security

Confidentiality
Goals = Integrity
Availability

o guiding concepts that aid in
Principles making security decisions

== secure coding techniques
Mechanisms

Adapted from Open Web Application Security Project. (2009). Category:Principle - OWASP. Retrieved February 8, 2011, from http:/www.owasp.org/index.php/
Category:Principle

MITRE Ecopthrs cinanss e, i ki e ndor e Cammans At Sharolks 50 Larss. ORI 0

To achieve the application security goals talked about on the previous slide, a
number of principles have been defined that will help a developer when
designing and coding an application. The principles will be discussed in the
following slides.

With a strong set of application security principles in place, developers are
then ready to learn the mechanisms to implement the principles. Itis the
mechanisms that will be the focus of this course.

MECHANISMS

- Authentication

- Authorization

- Data Validation

- Session Management
- Error Handling

- Logging

- Encryption

Principle — Minimize Attack Surfaces 1of10

a1 IR Il B IER
I B BN D B B O B B s

))] n] n AR 0 " 0

il NS I B R R N B R

o 0 o n " n n n n " n n

FE R ST T More points === More difficult
- of interaction ™ to defend
n n] n n n n n n n n
EE BN BN BB BN BN BN BE Em Em
L] o n 0 L] 0 L] 0 L o n
B BE BN BN BN BN BN BN aE .
L] 0 0] 0 L L] n n
- .
MITRE Excptuherceness e, s o s ndr roiv Cormons Ao St 50 erse.[CORDIOT] ©

The first application security principle is to minimize the attack surface. The
more places that a malicious user can interact with an application (usually the
inputs to the application), the more places that a developer has to put
defenses in place. If an input type is not needed, then don't allow it. If an
application doesn't need to listen on a given port, then don't let it. If all user
input can be collected in one place and then retrieved, this beats collecting the
information at varying points within an application. The less opportunity that a
malicious user has to interact, the easier it will be to focus development effort
on those places where the attacker can interact and to create a sound set of
defenses.

10

I
Principle — Establish Secure Defaults 20f10

Never rely on someone needing
to specially configure or enable

basic security functionality.

Image of Vault Door: © BrokenSphere / Wikimedia Commons. Retrieved September 20, 2011 from hitps://secure.wikimedia.org/wikipedia/commons/wiki/
File:SF_City_Hall_South_Light_Court_vault_1st_door.JPG
Image of Glass Door: Under Crealive Commons Altribution-Share Alike 3.0 license — taken by Infrogmation. Retrieved September 20, 2011, from https://
secure.wikimedia. le:StRochDec07GlassDy Jjpg

The second principle is to make sure that the default state is secure.
Installation may be performed by an unqualified individual, or by someone
without knowledge of how the application will be used and what information it
will contain. In addition, the person installing an application may assume the
user will configure, and the user will assume that the admin configured,
resulting in no one configuring the application. Make sure that people must
consciously make changes if those changes will reduce the security of the
application. For example, force them to open a port to allow communication
instead of relying on them to close a port if communication is not needed.

Don't prop the front door open assuming the person behind you will shut it.
What if that person never comes or was home sick that day?

11

Principle — Least Privilege 3of10

Not everyone should have access
to everything.

Even people or accounts you
might think should have access
don’t always need it.

The next application security principle is to understand that not everyone
needs access to everything all the time. As developers we need to understand
who needs access and only give it to those individuals. This is a key defense-
in-depth principle. If a malicious user is able to penetrate your defenses, make
sure that they don't get the keys to the kingdom.

Do the security guards really need keys to the vault? Most likely they only
need access to the area around the vault. Make the attackers job harder by
forcing them to manipulate the security guard AND the manager. For the few
times that a security guard may need to get into the vault, have them ask a
manager for access.

12

Principle — Defense in Depth 4 of 10

Don’t rely on a single security
method to protect everything.

Layer basic security practices
to ensure the overall safety of
an application.

Image of Vault Door: Licensed under Creative Commons Altribution 2.5 Generic— Taken by Spamguy. Retrieved September 20, 2011 from hitps://
secure.wikimedia.orghikipedia/commons/wiki/File:Cleveland_FRB_Vault_Doorjpg
Image of Alarm Pad: © BrokenSphere / Wikimedia Commons. Retrieved September 20, 2011 from hitps://secure.wikimedia.org/wikipedia/commons/wiki/
File:Honeywell_home_alarm.JPG

s st ommons et v 0 . (SOOI "

The next principle is defense in depth. Similar to least privilege, you don't want
to rely on just one security mechanism, but rather layer multiple defenses on
top of each other. That way if one mechanism fails, then an attack will still be
stopped by a different defense.

For example, a bank does not just lock its front door. Bankers also lock the
vault, have security guards, use motion detectors, etc. An attacker needs to
defeat all of these defenses in order to achieve their goal. The same needs to
be true regarding applications. Don't just rely on a login. Also implement least
privilege, logging, data validation, etc.

13

Principle — Fail Securely 50f 10

css CALIFORN[A it Security controls should be
DRIVER LICENSE o 4 designed to fail until they are
proven valid.

EXPIRES 2-21-12

Brad Pitt
Someplace in
Hollywood, CA

SEX:M HAIR:BRN
HT:6-00 WT:235

|

E
PFuan11922 When a security control does
o fail, it should place the
application in a secure state.

Original License Image: Licensed under Creative Commons Attribution 3.0 Unported— Taken by Dureo. Retrieved September 30, 2011, from hitps://
secure wikimedia.org/wikipedia/commons/wiki/File:MyL1jpg — Modified by Larry Shields on 9/20/2011

Another application security principle is to fail securely. Security controls
should assume an attack by default and only let something pass if it is proven
not to be an attack. By taking this approach, holes that we forget to cover will

not lead to a valid attack, but rather to a bug report.

For example, showing a cop the license above should fail since Larry is
obviously not Brad Pitt. But this failure should not result in Larry getting away
with the crime. The failure should occur before person in custody is released.
Failure after release means that there is no way of knowing who the person

really is.

In addition, WHEN a security control fails, the application should revert to a
secure state.

14

Principle — Don’t Trust Services 6 of 10

Don’t make assumptions that
can impact your application’s

security goals.

Original License Image: Licensed under Creative Commons Attribution — Share Alie 3.0 Unported- Taken by Stanislav Kozlovskiy. Relrieved September 20, 2011,
from wikimedia. ile:Dunbar_armored_car.JPG

The next application security principle is not to trust 3 party services. Just
because a service claims to do something right, doesn't mean it actually does.
Inherently distrust data being returned from a 3 party. You don't know the
quality of development, the adherence to best practices, or the motivations
behind the developers of 3 party services.

You wouldn't just give all your money to a person driving an armored truck,
rather you would first verify that the truck isn't a fake and hadn't been hijacked.

15

Principle — Separation of Duties 70f10

CHANGE OF ADDRESS CARD [FlRST BANK 01-02-03

ActouNr PA

i — S ®0002L3 ™ OWwD2030 OMZILSE7?™

Change of Address Authorize a Check

Some combinations of permissions don’t work
well together.

Check Image: Licensed under Creative Commons Alrbution - Share Alike 3.0 Unported- Created by Sergio Ortega, madified by Trojan. Retrieved September 20,
2011, from https:/isecure.wikimedia UFile:British

Another application security principle is separation of duties. l|deally you want
to split the roles for actions related to a security decision. You want to avoid
having a single group being responsible for everything. This difference in
responsibility adds to an application's defense in depth as both groups or roles
must participate in a given attack.

Using the bank example again, you would not want the same person to be
able to change the address of an account and also authorize a check to be cut
against that account. Otherwise, an attacker who found a way to impersonate
that person could change the address to their own, authorize a withdrawal, and
then change the address back. A more secure approach would be to have one
group handle change of address requests and a separate group be
responsible for authorizing checks.

16

Principle — Avoid Security by Obscurity 8 0f 10

MITRE xcopt whorsoenviesnoad, i ek s Kcnsed undr a Crasive Commans Atiuion-Sharaik 3.0 s, DI ”

Another application security principle is to avoid security by obscurity.
Hackers, criminals, and the advanced persistent threat most likely can reverse
engineer your source code, or find things that are supposedly hidden. Relying
on obscurity is dangerous and is usually just a cover for real security not being
implemented.

It is better to assume the attacker has all your secrets and then devise security
mechanisms that protect the application in the face of this reality.

For example, the warfighter might be hidden from a typical attacker, but one
with heat sensitive goggles would have no problem getting past the
camouflage.

17

Principle — Keep Security Simple 9 of 10

VS.

‘‘‘‘‘‘‘‘‘‘‘‘

The simpler the design of the security,
the easier it is to understand and

implement correctly.

MITRE

®
1o
{©

This principle is keep security simple. All too often a developer will over-
engineer security and end up adding things that aren't necessary and
introducing errors due to the complexity. The goal should be to design a
security architecture that works, yet in the simplest way possible. Added
complexity will not only make it harder to implement, but it will make it harder
for a peer or a security team to review.

18

L
Principle — Fix Security Issues Correctly 100f10

MITRE Excethers e e, s ks snsed s ratve Commans Al S 30 Usse. [1

The final application security principle is to fix security issues correctly. This
sounds a bit funny, but people often are made aware of an attack and putin a
mechanism to stop that specific attack without fixing the underlying problem. A
malicious user just changes the attack and is back inside the application.

As a developer you need to fully understand the problem before trying to
engineer a fix.

Security Mechanisms

The gears that drive the
engine of application security.

All mechanisms must be used
correctly to ensure proper
security functionality.

&)

8
o
&

MITRE

In the end, secure coding really comes down to the different mechanisms that
are available to ensure adherence to the previously mentioned application
security principles. The rest of this class will discuss these different
mechanisms, breaking each down into a number of "words to live by".

These words to live by should be reviewed at the start of each project and be a
part of the security design that kicks off a development effort.

20

Security Mechanisms to Achieve Goals

Authentication
Authorization

S
7’) C onfidentiality

Session Management
Data Validation .
ntegrity

Error Handling

Logging A
Encryption ‘Wailability

MITRE

The security mechanisms that we will cover are:

- Authentication

- Authorization

- Data Validation

- Session Management
- Error Handling

- Logging

- Encryption

These security mechanisms each map back to our high level application
security goals and enable us to sufficiently meet all three goals.

21

MOST DANGEROUS
SOFTWARE
ERRORS

V) / Common Weakness Enumeration
V\ A Community-Developed Dictionary of Software Weakness Types

CWE-79: Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting’)

Improper Neutralization of Input During Web Page Generation ('Cross-site
Scripting')
Weakness ID: 79 (Wesknass £ase) Status: Usable
» Description
» Alternate Terms
» Time of Introduction
» Applicable Platforms
» Common Consequences
7 Likelihood of Exploit
» Enabling Factors for Exploitation
» Detection Methods
» Demonstrative Examples
» Observed Examples
» Potential Mitigations
» Background Details
» Weakness Ordinalities
» Relationships
» Causal Nature
» Taxonomy Mappings
» Related Attack Patterns
» References
» Content History

http://cwe.mitre.org

One project that everyone should be aware of, and a project we will mention a
lot throughout this course, is the Common Weakness Enumeration (CWE).
This is a MITRE-run initiative to enumerate and provide standard identifiers for

the different coding-level security-related mistakes that developers often make.

This standard identifier enable security personnel to share information about
weaknesses and for tools to report findings in a way that review teams can
easily grasp.

Each of our words to live by is presented in terms of CWE and it is
recommended that everyone take some time to review these specific CWE
entries.

The CWE team also compiles a Top 25 list each year that helps identify the 25
most dangerous and prevalent software errors that we see today. This listis a
great way to keep the most common issues in the forefront of a developer's
mind and help focus effort to make sure that these errors are not introduced.

22

Exploit Demos

The Intelligence Secret Service

The ISS needs an application to h
house all of their secrets:

Developed in-house
Hosted on the DMZ

Will be Internet accessible (for agents
in the field)

We have been hired by General Disaster (arch-nemesis of the
ISS) to attack the application and steal what secrets we can

find
| |

Finally, we will attempt to bring the flaws we talk about to life via a demo
representing a fictional online application. The application does not follow the
security mechanisms we will talk about and we will show how this leads to

successful attacks by malicious users.

** During class, instructors will take this opportunity to bring up the website and
give a quick look & feel for the site. **

23

Security Mechanism:

AUTHENTICATION

MITRE

Authentication

Authorization
Session Management
Data Validation
Error Handling
Logging
Encryption

(i
to
ko

24

Authentication Core Concepts

A manner for identifying a user is who they claim to be.

User ID: user
Password: 00000000 e

. Login |

Something you Something you Something you
know have are

Two-Factor Authentication

Leverage two of these methods for a single authentication transaction.

Fingerprint Scanner Image: Licensed under Creative Commons Attribution — Share Alike 3.0 Unported— Created by Rachmaninoff. Retrieved September 21, 2011,
from S r jpg

e.wikimedia. i le:Fingerprint_scanner_|

MITRE Except whers e e, s vor s cansd under rate ommons Auton Sharehe 0 Lerse.[EORDIOT]

Authentication is the act of confirming that someone (or something) is who
they say they claim to be. The most common authentication that we do in our
applications is confirming that a user is in fact who they claim to be, and not an
imposter claiming to be someone they aren't. The ways in which someone may
be authenticated fall into three categories, based on what are known as the
factors of authentication: something you know, something you have, or
something you are. For information or functionality that requires a heightened
level of protection, two-factor authentication is common. This uses two of the

three factors during the authentication process. Many use a combination of
passcode and SecurelD.

25

Authentication Words to Live By

Enforce basic password security
Implement an account lockout for failed logins
“Forgot my password” functionality can be a problem

For web applications, use and enforce POST method

A we go through this class, for each security mechanism we will call out a set
of "words to live by". It must be noted that these lists are not intended to be
the "only" words to live by. Rather, they represent the most basic points and
many of them represent what we find lacking during our reviews of source
code. Given that we only have one day for this course, we have chosen to
focus on these few important points.

As a developer, there are four key things to focus on related to authentication.
First is to correctly enforce basic password security. In short, don't let your
users enter "123" as their password. Second, to guard against brute force
attacks on your login functionality, be sure to implement some sort of account
lockout after a set number of failed attempts. Third, pay attention to how the
forgotten password functionality is implemented. Getting this right is just as
important as getting your login functionality right. Finally, when web
applications need to pass sensitive data, always use and explicitly enforce the
POST method. We will now delve deeper into each of these.

26

Authentication Words to Live By: #1

[0}

Enforce basic password security

CWE-521: Weak Password Requirements

The product does not require that users should have strong
passwords, which makes it easier for attackers to compromise user

accounts.

Minimum length enforcement

Require complex composition Users must be able to change password
Should not contain the user name as a Consider password expiration over time
substring Prevent reuse of some previous passwords

when changed

MITRE

o Crete Gommns At Shrelns 30 e, |[EORDO) .

The first of our words to live by related to authentication is "enforce basic
password security". This corresponds to CWE-521 titled "Weak Password
Requirements". This includes things like adequate password length,
enforcement of complex character combinations, password expiration, and
preventing reuse of previous passwords.

Real World Example - Twitter

Weak Password Brings ‘Happiness’ to Twitter Hacker

By Kim Zetter B3 January 6. 2009 | 4:35 om | Cateaories: Crime

An 18-year-old hacker with a histary of celebrity pranks has admitted to Manday's hijacking of multiple
high-profile Twitter accounts, including President-Elect Barack Obama's, and the official feed for Fox
News

The hacker, who goes by the handle GMZ, told Threat Level on Tuesday he gained entry to Twitter's
admin ol panel by pointing an automated password-gu
(The user turned out ta be a member of Twitter's support vho'd chosen the weal
"happiness."
L

ser at a popular u

Cracking the site was easy, because Twitter allowed an unlimited number of rapid-fire log-in attempts

"I feel it's another c
I

of administrators not putting forth effort toward one of the most obvious and

overused security s," he wrote in an IM interview. "I'm sure they find it difficult to admit it."

Zetter, K. (2009, January 6). Weak password brings ‘happiness’to Twitter hacker. Retrieved February 3, 2011,
from http://www.wired.com/threatlevel/2009/01/professed-twitt/

MITRE

Even though this topic is engrained within the today’s culture and we all use
overly strong passwords ... right? ... as developers we need to protect our
applications from those that have not yet seen the light. Users continue to
ignore guidance and set passwords that are easy to remember - and hence
easy for an attacker to guess. In 2009 an 18 year old kid was able to guess
(albeit with the help of a password cracker) the password of a Twitter support
staff, giving the attacker access to Twitter's administrative control panel. From
there it was trivial to hijack any number of user accounts, including the account
of the President of the United States. What was the password? "happiness"
Only slightly better than "123"! This should never have been allowed by the
underlying code.

28

** UPDATE **

2010

In a report likely to make IT administrators tear out their hair, most users still rely on
easy passwords, some as simple as "123456," to access their accounts. - Imperva Inc.

till-make-hacking h-weak html

http:/

2012

Approximately 76 percent of attacks on corporate networks involved weak passwords. -
Verizon RISK team "2013 Data Breach Investigations Report"

K \ f-data-breaches-tips-f 4

hitp:/iwwew. cloudentr. y-news/2014/3/19/weak-p g-top ips-for-p: y

2013

During its penetration tests Trustwave collected 626,718 stored passwords and
managed to recover more than half of them in minutes. 92 percent of the sample were
able to be cracked in 31 days. - Trustwave

hitp: com/2014/09/30/weak till-a-major-problem-for-b

Every year we think that the weak password issue will go away as users
become more educated and aware of the problem. However, every year it
continues to be a major problem.

Secure Coding ...

Minimum password length = 8

Passwords must contain characters from three of the following
four categories:

uppercase characters (A through Z)

lowercase characters (a through z)

base 10 digits (0 through 9)

non-alphabetic characters (for example, !, $, #, %)
Password must not contain the user's account name
Maximum password age = 6 months
Minimum password age = 1 day

Password history = 12 passwords remembered

An organization may have the following corporate policy outlined on this slide.
As developers, this policy should be enforced in our code wherever passwords
are required. Our code should not allow our users to break corporate policy

and put our systems at risk.

Note that ideally there would be some communication in the application with a
shared corporate policy file so that if the policy changes the code itself doesn't

fall out of date.

30

Authentication Words to Live By: #2

[Implement an account lockout for failed logins

CWE-307: Improper Restriction of Excessive Authentication
Attempts

The software does not implement sufficient measures to prevent
multiple failed authentication attempts within in a short time frame,
making it more susceptible to brute force attacks.

MITRE Ecopthrs cinanss e, i ki e ndor e Cammans At Sharolks 50 Larss. ORI

The second of our words to live by is "implement an account lockout for failed
logins". This corresponds to CWE-307 titled "Improper Restriction of
Excessive Authentication Attempts". The goal here is to stop an attacker from

being able to run through a long list of usernames and passwords in an
attempt to brute force their way through.

Real World Example - Twitter

Weak Password Brings ‘Happiness’ to Twitter Hacker

By Kim Zetter &1 Januarv 6. 2009 | 4:35 om | Catecories: Crime

An 18-year-old hacker with a histary of celebrity pranks has admitted to Manday's hijacking of multiple
high-profile Twitter accounts, including President-Elect Barack Obama's, and the official feed for Fox
News

The hacker, who goes by the handle GMZ, told Threat Level on Tuesday he gained entry to Twitter's
administrative control panel by pointing an automated pa '
The user turned out to he a memher of Twitter'
"happiness."

J

[Cra‘:kmg the site was easy, because Twitter allowed an unlimited number of rapid-fire log-in attempts

"I feel it's another case of administrators not putting forth effort toward one of the most obvious and
overused security flaws," he wrote in an IM interview. "I'm sure they find it difficult to admit it."

Zetter, K. (2009, January 6). Weak password brings ‘happiness’to Twitter hacker. Retrieved February 3, 2011,
from http://www.wired.com/threatlevel/2009/01/professed-twitt/

In this real world example, the password cracker application was able to try a
large number of potential passwords since there was no limit on the number of
login attempts that could be made. Eventually, a valid password was

discovered.

Password Basics — Exploit Demo

Open Source Tool: Hydra

“/133t/hydra (44) hydra -e ns -f -L users,txt -P simple-password-list,txt 127,0,
0,1 http-post-form "/cgi-bin/authenticate,cgiiuser="UJSER"&password="PAS5":Login
Failure"

Hydra v6,0 {c) 2011 by van Hauser / THC - use allowed only for legal purposes,
Hydra (http:/Zuww,the,org) starting at 2011-02-03 12:03:03

[DATA] 16 tasks, 1 servers, 503 login tries (1:1/p:503), “31 tries per task
[DATA] attacking service http-post-form on port 80

[80][www-formn] host: 127,0,0,1 login: mmoleRiss,org password: password
[STATUS] attack finished for 127,0,0,1 (valid pair found)

Hydra (https/dwww,the,org) finished at 2011-02-03 12:03:08

“/133t/hydra (45) 1

 Crste Gamman vt s 30 e, € "

Demo: Demonstrate high level reconnaissance of the account creation page
that leads to discovery of a valid email format (describe other ways this could
be gained from Google). Explain the Hydra tool and how it can be used to
process large password files against a defined list of users, running many
parallel tasks to speed up the process. Use the example in example.txt to
demonstrate it successfully popping the password on the application, and
demonstrate successfully logging into the site.

Discuss the lack of complex composition requirements being part of the
problem, combined with account lockout. Address the fact that lockout isn’t
enough — a ‘reverse brute force’ can still try one password against many
accounts.

33

int validateUser (char *host, int port) i\\\\\
{

int isValidUser = 0;

char username [USERNAME SIZE];
char password[PASSWORD SIZE];

—
O Lo U u)Zj:>\

while (isValidUser == 0)
{
if (getUserInput (username,USERNAME SIZE) == 0) error();
11 if (getUserInput (password,PASSWORD SIZE) == 0) error();
12
13 isValidUser = AuthenticateUser (username, password);
14 }

=
w

=
~l o

return (SUCCESS) ; /

The validateUser() method will continuously check for a valid username and password
without any restriction on the number of authentication attempts made.

MITRE capthors ere e, i o anse dor et Commons At Shree 30 corse.[EIRDICY u

In this example, notice that the validateUser() method will continuously check
for a valid username and password without any restriction on the number of
authentication attempts made. This is a classic example of CWE-307.

I
Secure Coding ...
1 int validateUser (char *host, int port)
| N
3 int isValidUser = 0;
4 int count = 0;
5
6 char username [USERNAME SIZE];
7 char password[PASSWORD SIZE];
8
9 while ((isValidUser == 0) && (count < MAX ATTEMPTS))
10 {
11 if (getUserInput (username, USERNAME SIZE) == 0) error();
12 if (getUserInput (password,PASSWORD SIZE) == 0) error();
13 isValidUser = AuthenticateUser (username, password);
14 count++;
15 }
16
17 if (isValidUser) return (SUCCESS);
18 else return (FAIL);
19 }

To fix this code, we need to add a MAX_ATTEMPTS check to the loop and falil
the validation if the maximum attempts is reached. Note that we still need to
make sure an attacker can't just call validate() many times. There needs to be
some type of lockout on the validate function after MAX_ATTEMPTS is
reached. Some possible implementations are:

- Disconnecting the user after a small number of failed attempts
- Implementing a timeout

- Locking out a targeted account

- Requiring a computational task on the user's part.

One other point to make here is that developers should attempt to use
established authentication routines when possible instead of creating their
own. An established routine will most likely have these security features built-
in and implemented correctly.

35

Real World Example - eBay

A famous example of this type of weakness being exploited is the
eBay attack. eBay always displays the user id of the highest
bidder. In the final minutes of the auction, one of the bidders could
try to log in as the highest bidder three times. After three incorrect
log in attempts, eBay password throttling would kick in and lock
out the highest bidder's account for some time. An attacker could
then make their own bid and their victim would not have a chance
to place the counter bid because they would be locked out. Thus
an attacker could win the auction.

Mitigations:
Shorten the length of account lockout
Don't show who the highest bidder is
Don't expose user id, only expose name
Name should never be used as a key

MITRE

®
1o
{©

Of course it is not always as simple as following the previous secure coding
guidelines. In this example, eBay implemented password throttling to help
protect against a brute force attack on a user's login. After some number of
incorrect attempts the user's account would be locked for some set period of
time before it was enabled again. This is exactly what one would want to do in
most applications. However, in this instance, the account lockout feature
actually opened eBay up to another type of attack. Individuals involved in an
auction would wait until just before the auction was set to expire and then
purposely attempt to log into the current high bidder's account the set number
of times. Eventually that account would be locked and the individual would
submit a new high bid. The previous high bidder might want to respond with
another bid but would be unable to do so as their account is locked.

This example shows how security can be very complex and requires some
careful thinking before applying any given mechanism. Developers must work
closely with the design team in an attempt to make an application as secure as
possible.

36

Authentication Words to Live By: #3

@

D “Forgot my password” functionality can be a problem

CWE-640: Weak Password Recovery Mechanism for
Forgotten Password

The software contains a mechanism for users to recover or change
their passwords without knowing the original password, but the
mechanism is weak.

MITRE

o

trbution ShareAlke 3.0 License. (GO a7

The third words to live by say "forgot my password' functionality can be a
problem". This corresponds to CWE-640 titled "Weak Password Recovery
Mechanism for Forgotten Password". In this case we are drawing attention to
the fact that developers often make mistakes in the logic behind this
functionality. All too often we see cases where an application allows someone
to change a password without asking for the original password first, thus
enabling an attacker to take over an existing account. Another issue is that the
strength of the recovery mechanism may not be as strong as the real
password, in short enabling a much simpler path into the application.

37

Password Reset — Exploit Demo

Open Source Tool: Hydra

“/133t/hydra (47) hydra -F -L users.txt -P passud-reset-teams,txt 127,0,0,1 http
-post-form "/cgi-bin/resetaccount,cgituname="USER"&sa="PASS": Incorrect answer"
Hydra v6,0 {c) 2011 by van Hauser / THC - use allowed only for legal purposes,
Hydra (http://wwu,the,org) starting at 2011-02-03 14:45:58

[DATA] 16 tasks, 1 servers, B0 login tries (1:1/p:B0), “3 tries per task

[DATA] attacking service http-post-form on port 80

[80][wwu—Form] host: 127,0,0,1 login: mmole@iss,org passwords Red Sox
[STATUS] attack Finished for 127.0,0,1 {(valid pair found)

Hydra (http:/Zwww.the,org) finished at 2011-02-03 14:46:06

“/133t/hydra (48) 1

£
L

Password reset is just a login — we can use the same tool!

MITRE

Demo: Demonstrate the choices for the account password reset available for
user perusal in the account creation process. Point out that the questions are
generally weak, because the answers often are from a small, finite list of
possible answers. Show the passwd-reset-teams.txt file, noting how easy it is
to put together a list of every available team of every major (and many minor)
sport (courtesy of Wikipedia). Note that the password reset process is
essentially just another “something you know” authentication challenge. Point
out that this method almost never has an account lockout after a number of
bad attempts. Given that this is just taking a user name and a security
challenge answer, we can use the same Hydra tool to brute-force our way
through this form as well.

Use the interface to provide the security answer, and show that the user can
now directly set the password. Observe that since the application has the
email address of the users, sending a one-time use password instead would
be a better design. This way the attacker would also have to compromise the
user’s email account in some manner to exploit the application. Note that the
application should NEVER email the current password (since it should not be
recoverable anyway, if stored correctly), but instead send a new strong
password that must be changed after one use.

38

I
Real World Example — Yahoo! & Sarah Palin

Yahoo! email used three security questions:
Birthday
Zip code
Where she met her husband

Sarah Palin email hack

From Wikipedia, the free encyclopedia

On SeplembeMB 2008 dunng the 200!

nited States presidential election campaign, the Yahoo! personal email account of vic
esqd The hacker had guessed Palin's password hint quasnons by

quklng up bmgraphlcal details such as her high school and birthdate The hacker then posted several pages Uf her email on the internet.

Was UTTNateTy procecuied as tour reony BE pomenanle by up to 50 years in federal prison. @

So, he logged on, toldYahoo! that he had
forgotten the password to Palin's account

and started trying to gain access. It could hardly have been easier.The first security
question - asking him to confirm Palin's birthday - was answered in a matter of seconds,
courtesy of a quick visit towikipedia. Guessing her postcode took just a couple of
attempts.The last question took longer to solve, since it asked where Palin met her
husband, Todd. After a few failed guesses, Rubico punched in the name of the school that
they had attended: Wasilla High.

Sarah Palin email hack. (2010, May 26). Retrieved June 2, 2010, from http://en.wikipedia.org/wiki/Sarah_Palin_email_hack
Johnson, B. (2010, May 23). Sarah.palin@hacked-off.com. Retrieved June 3, 2010, from http://findarticles.com/p/news-articles/sunday-telegraph-
the-london-uk/mi_8064/is_20100523/sarahpalinhacked-offcom/ai_n53726137/

MITRE

Just a few years ago, this issue was at the center of an attack on Sarah Palin.
The hacker broke into her Yahoo! email account and then posted her email
archives for all to see. How did he accomplish this? Well, he took advantage
of a very weak password recovery mechanism. Yahoo! asked three questions
of each user when they signed up. The answers to these questions (instances
of "something you know") were used to authenticate a user is they happen to
forget the password they has selected. Unfortunately the answers to these
questions are not hard to find. The attacker easily got the first answer, got the
second answer after a few guesses, and arrived at third answer after entering
the name of the high school that Sarah and her husband attended: "Wasilla
High".

Even if a strong password had been chosen, utilizing all four types of character
complexity, an attacker only needs to know the answers to some simple

questions to gain access.

39

Real World Example — Apple iForgot

iforgot.apple.com — enter Apple ID
Select authentication method — “answer security questions”

Enter date of birth
. . Store Mac iPha
Answer two security questions
Enter new password My Apple ID
Password is reset
Reset your password

Knowing someone’s Apple ID and DOB would
allow construction of the URL after step #5.

The exploit was published on the day that Apple launched two-factor authentication
for Apple ID accounts, which would have prevented the attack for anyone that had
enabled it. Once activated, the feature replaces the security question based
verification with a 4-digit code sent to the user's mobile device

Welch, C. (2013, March 13). Major security hole allows Apple passwords to be reset with only email address, date of birth. Retrieved November 5,
2014, from http://www.theverge.com/2013/3/22/4136242/major-security-hole-allows-apple-id-passwords-reset-with-email-date-of-birth

MITRE

o Cnt Conmons At vt 0 ers. ["

Even major vendors get this wrong. Apple had an embarrassing hole in their
password reset function that allowed an adversary to change a user’s
password and take control of their account. An adversary just needed to
“‘guess” easily obtainable answers. (e.g., date of birth) Note the change to two
factor authentication just as an exploit was released. We will talk about this
example again later in the class.

More information can be found at: http://www.imore.com/anatomy-apple-id-
password-reset-exploit

40

Secure Coding ...

Make sure any s i o 0 guess and hard
in e answer.

The system must only email the new password to the email
account of the user resetting their password.

Assign a new temporary password rather than revealing the
original password and force the user to set a new one.

Consider throttling the rate of password resets so that a
legitimate user can not be denied service by an attacker that
tries to recover the password in a rapid succession.

MITRE

s [.

o

There are a few guidelines to follow when developing the “forgot my password”

functionality.

- Make sure any security question is hard to guess and hard to find the answer.

As an example, a question asking about someone's favorite color would be
easy to guess as there are only a handful of answers. Asking about their
hometown is something that a little internet searching would probably uncover.

- The system must only email the new password to the email account of the
user resetting their password.

- Assign a new temporary password rather than revealing the original
password and force the user to set a new one.

- Consider throttling the rate of password resets so that a legitimate user can
not be denied service by an attacker that tries to recover the password in a
rapid succession.

41

Authentication Words to Live By: #4

[0}

D For web applications, use and enforce POST method

CWE-598: Information Leak Through Query Strings in GET
Request

The web application uses the GET method to process requests that
contain sensitive information, which can expose that information
through the browser's history, referers, web logs, and other sources.

The fourth and final words to live by for the Authentication section is "for web
applications, use and enforce POST method". This corresponds to CWE-598
titted "Information Leak Through Query Strings in GET Request". GET
requests not only show information in the title bar of the browser, but they also
lead to potentially sensitive information being stored in logs. One thing to note
is that it's not enough to just be explicit in your forms on the client (GET is
often the default if you don’t specify the POST method), but you must also
enforce in the server-side code to prevent mistakes and only allow POST
requests to be processed. (Don't just forward a GET request to the POST
handler.)

42

Password Disclosure — Exploit Demo

ol authenticate.cgi

>
(J 00QlIC
-
00O xterm o
~/133t (72) grep password Jvar/log/apache2/access,log
127,0,0,1

0,1 - - [03/Feb/2011311356327 -0500] "GET /cgi-bin/authenticate,cqi?user=n
nole@iss,orgépassuord=password HTTP/1,1" 302 187 "-" "lwp-request/5,834 libuwu-p

erl/5,834

127,0,0,1 - - [04/Feb/2011:08:47:58 -0500] "GET /cgi-bin/authenticate,cgi?user=s
|squirrel@iss,orgipassword=agent000 HTTP/1.1" 200 948 "-" "Mozilla/5.0 (X11: Us L
{inux 686 en-US: rv:1,9,2,13) Gecko/20101206 Ubuntu/10,04 (lucid) Firefox/3,6,1

B
“/133t (73)

Demo — Perform a grep on the Apache logs to pull some of the GET method
examples of when passwords were sent to the server not using POST. It
should pull up multiple examples from prior testing. The browser should also
be able to be used to show an example of where it’s possible for a browser to
cache copies of requests along with their query string information, which can

result in an information disclosure.

43

I
Real World Example — Watchguard SSL-VPN

Watchguard Fireware SSL-VPN Vulnerability

By A chri-Fostedon 0z August 2009

Vandeplas, Christophe. (2009, August 2). Watchguard Fireware SSL-VPN vulnerability. Retrieved February 3,
2011, from http://christophe.vandeplas.com/2009/08/02/watchguard-fireware-sslvpn-vulnerability

In this example from 2008, the Watchguard's Fireware SSL-VPN Client was
found to use a GET request during the connection process which unfortunately
included the username and password. This means that both the username
and password were stored in the webserver logs thereby exposing them to any
admin of the system, or an attacker that was able to exploit some other
vulnerability on the server in order to read the log. This problem became a big
issue when it was discovered that a poor job of authentication was being done
(the client didn't fully check the server certificate), enabling an attacker to
impersonate the server. The fake server would receive real requests from
clients that contained their real credentials. Since the credentials were sent
using a GET request and is in the URL received by the attacker's fake server,
the URL (and hence the credentials) were now in the logs that the attacker can
read.

http://christophe.vandeplas.com/2009/08/watchguard-fireware-ssl-vpn_02.html

44

protected void doGet(...)
{

doPost(...) // forward request) doPost ()
}

>rotected void doPost(...)

f
{

KO(X)\I@U’\»DLA)I\))_\

ProcessLoginRequest () ;
} J
The above code forwards the GET request on to the doPost() handler.
Even though the current client front end may not make a GET request, the
door is now open for a future client or a custom client interacting with the

server. If the page is dealing with information that shouldn't be leaked, then
don't even allow for the possibility.

€

MITRE

oo Conmons vt s 20 srs.) "

The above code forwards the GET request on to the doPost() handler. Even
though the current client front end may not make a GET request, the door is
now open for a future client or a custom client interacting with the server. If the
page is dealing with information that shouldn't be leaked, then don't even allow
for the possibility.

Secure Coding ...

protected void doGet(...)

throw new Exception("GET reque no wed") ;

protected void doPost(...)

Looo\lo\umbwl\)'_\

ProcessLoginRequest () ;

T
.

The above code does not allow a GET request and simply throws
an error if one is received.

To correct the previous code, throw an exception if a GET request is received.

Do not even allow a GET request to be processed.

Technically, in this case the server will still log the GET request. But future
developers that may try to build a client will not have success sending GET
requests and will be forced to use a POST request to communicate to the
server. As application devels, there isn't much we can do to stop a request
from being sent, but we can make sure that our apps don't work when bad
requests are sent and thus keep developers from using those flawed
mechanisms.

46

Security Mechanism:

AUTHORIZATION

MITRE

Authentication
Session Management
Data Validation
Error Handling
Logging
Encryption

(i
to
ko

47

Authorization Core Concepts

Is the user allowed to perform this action, within this context?

1 st Should the user be allowed this function at all?

2 n d Should the user have only limited context access?

MITRE e e o v st oG s e 0D

Authorization is the act of verifying that a previously authenticated user is
allowed to perform a given operation or act on a given resource, and is often
known as access control. There are actually two things going on here. The
first is a check to verify that the user is allowed to visit a section of the
application or perform a certain function. For example, is the user allowed to
delete records? Maybe this is only reserved for administrators? The second is
a check to verify that the user is allowed to work within the specified context.
For example, after verifying that the user is allowed to use the delete record

functionality, we then need to verify that the user is allowed to delete the
specific record in question.

48

Authorization Words to Live By

Every function (page) must verify authorization to access
Every function (page) must verify the access context

Any client/server application must verify security on server

MITRE

o

W oXoLo) w

There are three words to live by related to authorization that we as developers
must keep in mind. The first is to verify that the user is allowed to access the
requested page or function. The second is to verify that the user can operate
within the given context. For example, can the user read everyone's mail or
just their own? And finally, related specifically to client-server applications, we
must make sure that any authorization check is done on the server as client
side security can often be bypassed.

49

Authorization Words to Live By: #1

[Every function (page) must verify authorization to access

CWE-425: Direct Request (‘"Forced Browsing')

When access control checks are not applied consistently (or not at
all) users are able to access data or perform actions that they should
not be allowed to perform. This can lead to a wide range of
problems, including information exposures, denial of service, and
arbitrary code execution.

MITRE

o

trbution ShareAlke 3.0 License. (GO 50

The first of our words to live by in the area of Authorization is "every function
(page) must verify authorization to access". This corresponds to CWE-425
titled "Direct Request (‘Forced Browsing')". Applications are often susceptible
to direct request attacks when a false assumption is made that resources can
only be reached through a given navigation path and developers only applied
authorization at to the start of that path. Any alternative paths that exist would
bypass the authorization check put in place.

50

Not Protecting All Pages — Exploit Demo

<« Organize v Views v Import and Backup v y

- @ History Name Location
Today © Welcome to InNSQR http:/localhost/
o Tags o dostatus.cgi http://localhost/cgi-bin/dostatus.cgi?check=server
+/8ll All Bookmarks o) status.cgi http:/localhost/cgi-bin/status.cgi
o) login.cgi http://localhost/cgi-bin/login.cgi

o) logout.cgi http://localhost/cgi-bin/logout.cgi

@) dostatus.cgi host/cgi-bin/dostatus.cgi

@) authenticate.cgi http://localhost/cgi-bin/authenticate.cgi
) Report Page http://localhost/cgi-bin/reports.cgi

Name: dostatus.cgi

Location: http:/localhost/cgi-bi .

Tags:
nSQR Home Create Account Reports Status
Status Results
Completed server validation: Server is functioning properly.
© 2010-2011, The MITRE Corporation

Demo — Should have previously demonstrated the basic functionality of the
site while logged in as our ‘popped’ account. Demonstration of the various
status views can be performed. Click the logout button to remove the
credentials and then show that the ‘status’ button no longer lets you get access
to that functionality without logging in. Then show bringing up the browser
history with control-shift-H, and drilling into the recent URLs. Demonstrate that
by going directly to the actual dostatus.cgi without using the form frontend, the
CGl isn’t verifying the user’s authorization to the page/function.

51

Real World Example — CuteFlow Exploit

cute:flow
0 eatures ownloads Se @ yevelopmen

e
t circulations. A »
nt types. The fields ¥
u nt directly in the P
users E-Mail-Client. After a completed circulation you will have a & - R4
completely filed document. Also attachments to the document are § -
possible (i.e. for ilustration material). 2 v
All operations like starting a workflow, tracking, workfow-definition or <
status observation can be done within a comfortable and easy to use
webinterface,
v Cut ion 2.10.3 "edituser.php" Security Bypass Vulnerability Aug 21 2009 06:17PM

never neve
It's possible edit the users (including the admin account), bypassing the
authentication through the address:

http: /flocalhost/cuteflow/pages/edituser.php?userid=1&language=pt&sortby
=st

rLastName&sortdir=ASC&start=1

om hr

The vulnerability is caused due to the application not properly restricting access to the pages/fedituser.php script. This can be exploited
to modify a user's username and password without having proper credentials.

Hever Costa Rocha

Rocha, Hever. (2009, August 21). Cuteflow version 2.10.3 “edituser.php” security bypass vulnerability. Retrieved February 11, 2011, from http://
www.securityfocus.com/archive/1/506000/100/0/threaded

o Cnt Conmons At vt 0 ers. ["

In this example, CuteFlow, which is a document workflow tracker, was
supposed to verify a user's access to certain pages before granting permission
to use the functionality on the page. Here, an attacker is trying to gain access
to the edituser functionality. Under normal conditions, the user would first
browse to edituser.php where he would be authorized before being redirected
to the actual edituser functionality. Unfortunately, this authorization check
could be bypassed by supplying the userid in the URL. Upon seeing the
userid in the URL, the edituser script then assumed authorization had already
been performed and proceeded to perform the specified function.

By directly editing this URL, an attacker could easily edit any user's information
including their username and password. This included the admin user which
more often than not is assigned a userid of 1.

52

Authorization Words to Live By: #2

[Every function (page) must verify access context

CWE-639: Access Control Bypass Through User-Controlled
Key

The system's access control functionality does not prevent one user
from gaining access to another user's records by modifying the key
value identifying the record.

MITRE

o

trbution ShareAlke 3.0 License. (GO 53

The second words to live by is "every function (page) must verify access
context". This corresponds to CWE-639 titled "Access Control Bypass
Through User-Controlled Key". The example most commonly seen is an
attacker changing the web address that contains an id of a resource, and the
altered request being processed by the server without verifying authorization,
resulting in access to the resource being granted.

53

Context Change — Exploit Demo

@ Report Page X o (Untitied) =
=The InSQR Application
o D focaihostg inviewreport) v [y)
:':IL:” PurpleRain - . “’ . |
Rl.’plll‘l Access Cards | @ Report Page X (o) (Untitied) x
Name:

Report Ensure that all team membe:
. pick up their new Access Ca] *
[Content: destroy your old cards once The InSQR Appllcatlon
Create Account eports Status min

20102011, The MITRE Corporation

Project

Name: CleanHanky
Report ;) dercover Success
Name:

Be aware that our top undercover agent Wiley Mann has successfully infiltrated General
Disaster’s organization. He is now posing as the bartender in the General's "5 Stars" pub, which

acts as a front for their secret organization. We have already received valuable intel, with more
expected to come shortly.

Report
Content:

© 2010-2011, The MITRE Corporation MITRE Internal Information

MITRE

Excapt uhers overss noted. his ok s e under a Crative Commons Atuton-ShareAliks 3.0 Ucenss. () (DO

Demo — Log into the application with our compromised jdoe@iss.org
credential. Click to view a report, and then simply change the number in the
querystring / URL in the browser bar. Show that this provides access to a
report that the user did not originally have access to.

54

Real World Example - Fidelity Canada

Glitch at Fidelity Canada exposes customer info

lan Allen, a computer science professor at Algonguin College in Ottawa, brought
the glitch to Fidelity Canada's attention when he sent the company an e-mail last
weekend. Allen said he received a user identification from Fidelity Canada in the
mail and then went to the \ e to check on his account information. Fidelity
Canada doesn't allow online regis! on and sends users information for logging
in to their accounts via the postal service

"I got my paper user ID, brought up my staternent and looked up at the URL. |
hnughtth at is inte ng, the URL ended with 'cache/statement799 pdf,' " he
aid. "l wondered, if they pu[[the account information] in the cache, how do they
top me from uettmu other things in the cache, and the answer is thEy don't”

illen said he changed the nine to an eight, hit the return key and up popped

50meone else's statement. He randomly changed numbers about 30 times and
ot a different account each time

"They blew it completely," Allen said. "l am somewhat surprised."

Usually, when users can directly access a PDF or other non-code file from the
web server, (e.g., resource is located in the web root) there is no opportunity for
authorization code to execute.

With a predictable structure to the filename, it only takes minutes to create a
script capable of retrieving all of the statements/reports on the site!

Sullivan, B. (2002, May 30). Glitch at Fidelity Canada exposes customer info. Retrieved June 3, 2010, from http://
www.itworldcanada.com/news/glitch-at-fidelity-canada-exposes-customer-info/124086

&

In this real world example, the user was allowed to modify the document id in
the URL and pull up financial statements for other people. If a predictable
structure to the filename is used, it only takes minutes to create a script
capable of retrieving all of the statements/reports on the site!

my $q = new CGI; ‘\\\\

my Smessage_id = $g->param('id');

if (!AuthorizeRequest (GetCurrentUser ())

{

=
O\O(D\]O\U‘Ibwl\)}

ExitError ("not authorized to perform this function");
}
my $Message = LookupMessageObject ($message id);
11
12 print "From: " . encodeHTML ($Message->{from}) . "
\n";
13 print "Subject: " . encodeHTML ($Message->{subject});
14 print "\n<hr>\n";

ﬂ

print "Body: " . encodeHTML ($Message->{body}) . "\n"; l////

While the program properly exits if authentication fails, it does not ensure that the
message is addressed to the user. As a result, an authenticated attacker could provide
any arbitrary identifier and read private messages that were intended for other users.

MITRE

 Crste Gamman vt s 30 e, € 5

While the program properly exits if authorization fails, it does not ensure that
the message is addressed to the user. As a result, a user authorized to look at
messages could provide any arbitrary identifier and read private messages
that were intended for other users. One way to avoid this problem would be to
ensure that the "to" field in the message object matches the username of the
authenticated user.

56

Secure Coding ...

new CGI; ‘\\\\\

wy $q
my $message_id = $g->param('id');
my $Message = LookupMessageObject ($message_id);

if (AuthorizeRequest (GetCurrentUser (), $Message))

' . encodeHTML ($Message->{from}) . "
\n";
: " . encodeHTML ($Message->{subject});

' . encodeHTML ($Message->{body}

H R
Ubd W OWwoe o U s W

[y
o

ExitError ("not authorized to view message");

[y
~
[

/

To correct the code, the message being requested is added to the
authorization request. Verification is now made that the user is authorized to
retrieve the message being requested.

Authorization Words to Live By: #3

[0}

[Any client/server application must verify security on the server

CWE-602: Client-Side Enforcement of Server-Side Security

The software is composed of a server that relies on the client to
implement a mechanism that is intended to protect the server. An
attacker can modify the client-side behavior to bypass the protection
mechanisms.

o

MITRE

trbution ShareAlke 3.0 License. (GO 58

The final words to live by for Authorization is "any client/server application must
verify security on the server". This corresponds to CWE-602 titled "Client-Side
Enforcement of Server-Side Security". An attacker can modify the client-side
behavior to bypass the protection mechanisms. Note that this is also important
with input validation, make sure the input is validated on the server and not on
the client as an attacker can bypass any client side validation.

58

I
Client Enforced Security — Exploit Demo

Tamper Data - Ongoing requests

\ ADD ONS Start Tamper Clear Options Help
' -
4

Filter

Time Duration Total.. Size Method Status ContentType URL
htty

. ja

e o o et Etanaicts e D 11:04:2. 27ms 81lms 521 GET 200 flocalhost/index.html L
11:042... Oms oms unkno... GET pending focalho L
a T ~ Date 11:043.. 177ms 233ms 619 GET tp:/flocalhos L
L. 4 l{il”[)(‘?l Data 11.0.1 11:04:3... 0ms oms unkno... GET pending unknown http://localhostsi L
D/ SR Sudeon 11:04:4.. 184ms 184ms 0 POST 302 textplain http:/flocalhost/cgi-bin/authenticate... L...
11:04:4. 148 ms 191 ms 589 GET 200 text/htm tp:/localhost/ L
Updated 11:04:4. oms oms unkno... GET pending unknown L
Webane e 11:04:4.. 157Tms 208ms 673 GET 200 text/htm L
11:04:4... Oms oms unkno... GET pending unknown L
[Works ity SRS e S 11:04:4... 136 ms 213ms 543 GET 200 text/htm L
Rating 11:04:4... Oms oms unkno... GET pending unknown L
Donntoads 11:04:4.. 145ms 188ms 459 POST 200 text/ntm L
11:04:4... Oms oms unkno... GET pending unknown L
Request Header... Request Header Value Response Header Name Response Header Value
Host localhost s Found - 302
User-Agent Mozilla/5.0 (X11; U; Linux i686; en-US; Tue, 15 Feb 2011 16:04:40 GMT

H . Accept ext/! pplication/xhtmi+xml,applic erve Apache/2.2.14 (Ubuntu)
Debug Proxies: Acceptlanguage enus,enq=05 insaradmin=o; path=,

pt-Encoding fl t
Accept-Charset

Acc

1,utf-8,9=0.7,+,q=0.7 Length

A key reason why a client | reconive Keep-Alive 15, max=97
Connection keep-alive Connection
Referer ocalhost/cgi-binflogin.cgi Type
H Cookie)=9b02b8a324392d0920fb3. avoid browser bug
cannot be entrusted with [r
Content-Length 38
POSTDATA user=mmole%40iss.org&password=pa.

performing security.

Demo - Using a debug proxy like Tamper Data is an easy way to see the
requests coming from a client and modifying those requests before they reach
the server. This demo show why a client cannot be trusted to make security
decisions.

I
Real World Example — PayPal & Vendor Issue

“hange any PayPal price with Data Tamper for FireFo
d by trafficvisitor | 1:23 PM Paypa
3 comments

Thanks to a little add-on for Mozilla FireFox, you will be able to buy things online with
PayPal for $0.01 instead of the normal price. Now this works by literally changing the
price: you're going to tell the PayPal payment system to make you pay $0.01 instead of
the normal price of the product you're buying. This works really well when it's a
computer that automatically sends you the product when they see that you've paid
but it works less well when it's an actual person that sends the order. However, they
might think it's an error and send it anyway

So here are the instructions that will help you getting your stuff online for practically
free:

Step 5

This is where the fun starts: on the right side of the Tamper Popup window, you should
see Loads of white boxes, most of them with text in them. To the left of these boxes,
there are names like "currency code" or "item number” for example. If there aren't more

4. If
however, there are more than § boxes, find the one called amount and change
whatever is inside to 0.01

Step 6

Then, check that boxes called shipping and tax are set to 0.00

Trafficvisitor. (2009, July). Change any PayPal price with Data Tamper for FireFox. Retrieved February 15, 2011,
from http://letsearndollar.blogspot.com/2009/07/change-any-paypal-price-with-data.html

In 2009 it was discovered that PayPal was not validating the price on the
server. So an attacker could modify the data being sent from the client and
name their own price. There are many tools out there that enable an HTTP

request to be caught and altered before being delivered to the server.

///z $cC tomerid = AskForCustomerId(); . ‘\\\
2 $address = AskForAd Cllent
3
4 writeSocket ($sock, 1 r JTH $cust i)
5 $resp = readSocket ($sock);
6
7 if (Sresp eq "authorized")
8 {
9 ’]
10 writeSocket ($sock, "Suser CHANGE-AD id 1)
\\if 1 I t
(:
2

else { brint "ERROR: You're nc horized to customer's address. f",‘y
(Suser, $cmd, $customerid, $address) = ParseRequest ($sock); ‘\\\\

if ($cmd eq "AUTH")

{
Sresult = AuthorizeRequest ($user, $customerid);
writeSocket ($sock, "Sresult\n");

}

elsif ($cmd eq "CHANGE-ADDRESS")
{
if (validateAddress ($Saddress)) {
Sres = UpdateAddress (
writeSocket ($sock, "SI

stomerid, $address);

S\n");

O WNHOWLW®IO U W

e e

}

else { writeSocket ($sock, "FAILURE -- address is malformed\n"); } 4////
}

An attacker can bypass authentication by just sending a CHANGE-ADDRESS command.

MITRE

=k
o

wise noted.

The client performs the authentication/authorization first and then only sends a
CHANGE-ADDRESS for that user if the authentication succeeds. Because the
client has already performed the authentication, the server assumes that the
username in the CHANGE-ADDRESS is the same as the authenticated user.
An attacker could modify the client by removing the code that sends the
"AUTH" command and simply executing the CHANGE-ADDRESS.

61

Secure Coding ...

1 Scustomerid = AskForCustomerId();
2 $address = AskForAddress(); Client
3
4 writeSocket ($sock, "Suser CHANGE-ADDRESS $cus \n")
5 $resp = readSocket ($sock);
6
7 if ($resp ne "success")
8 {
9 error ("$resp\n");
Qo } /
(Suser, cmd, Scustomerid, $address) = ParseRequest ($sock); ﬁ\\\\
Server

if ($cmd eq "CHANGE-ADDRESS")

{
$result = AuthorizeRequest ($user, $customerid) ;
if ($result eq "authorized")

{

if (validateAddress($args))

{
10 $res = UpdateDatabaseRecord($customerid, $address);
11 writeSocket ($sock, "SUCCESS\n");
12 }
13 else { writeSocket ($sock, "FAILURE - malformed address\n"); }
14 else { writeSocket($sock, "FAILURE - not authorized\n"); }
15 }

/

Excapt uhers otheriss noted, his ok i lansed under a Crastive Commans Atiuton-ShareAliks 3.0 Licenss

&)

In this fixed example, the authorization is done on the server as part of
handling the CHANGE-ADDRESS request. The client does not have the
ability to request this functionality separately.

Authentication
Authorization
Data Validation
Error Handling
Logging
Encryption

Security Mechanism:

SESSION MANAGEMENT

MITRE

(i
e
i©

63

Session Management Core Concepts

The need to track state in a stateless protocol = Session Management

A session identifier becomes a “something you have” method of authentication.

HTML Headers
(including Cookies) HTML Body

Options for passing
data between browser
and web or app server.

Session ID

All Data

Session lifetimes become a critical part of your application security.

Any client / server or web application that wants to keep track of state, must
perform some type of session management. In other words, in order to keep
track of a user's place in a multi-stage process (e.g., a workflow), certain
information must be passed in order to know where in the process the user
currently is. Often, data collected at one point in the workflow is used to make
decisions at another point. Therefore this data needs to be tracked throughout
the process.

A simple example of this is authentication. Many client / server applications
require a user to authenticate (log in) as the first step. The authentication
information from step 1 is used to determine if the request for step 2 or step 3
is allowed. If the authentication state was not saved, then the user would have
to log in with each request. Can you imagine the user's response if they had to
enter their username and password every time they clicked a link in their
online banking application? They would end up driving to the bank!!

Keeping track of this information related to a particular user can be
accomplished a number of different ways. For example, the client application
could store all the information provided and send it with each request made to
the server. Another option would be for the client and server to agree on a
unique "session ID" and for the server to store the information along with that

64

Session Management Words to Live By

Enforce a reasonable session lifespan
Leverage existing session management solutions

Force a change of session ID after a successful login

o

MITRE

30 Ucanse. [DO 65

There are three words to live by related to session management that we as
developers must keep in mind. The first is to enforce a reasonable session
lifespan so that if a session is compromised there is at least a limit to how long
it can be exploited. (Hopefully it is compromised after it expires!) The second
is to leverage existing session management solutions and avoid rolling your
own. Finally, to avoid session fixation attacks, force a change of session ID
after a successful login.

65

Session Words to Live By: #1

Enforce a reasonable session lifespan

CWE-613: Insufficient Session Expiration

The lack of proper session expiration may improve the likely success
of certain attacks. For example, an attacker may intercept a session
ID, possibly via a network sniffer or Cross-site Scripting attack.
Although short session expiration times do not help if a stolen token
is immediately used, they will protect against ongoing replaying of
the session ID. In another scenario, a user might access a web site
from a shared computer (such as at a library, Internet cafe, or open
work environment). Insufficient Session Expiration could allow an
attacker to use the browser's back button to access web pages
previously accessed by the victim.

MITRE

The first words to live by focuses on session expiration. A session that "lives"
for a long time give an attacker either a long time to try and discover the
session identifier, or gives them a long time to work within the session once the
identifier has been discovered.

66

Session Lifespan — Exploit Demo

ann Mozilla Firefox
(Untitled) +

RACNEN

faceboo m ~ Determine or capture

e.g., Firesheep

valid until the server
reboots...

Sua->cookie_jar(Scookie_jar)s

my Surl = "http://localhost/cgi-bin/reports.cai’s
(while (1) {

| print "Refreshing cookie.\n"s

ny Sreq = HTTP: :Request->new(GET => "Surl");
ny Sres = Sua-request (Sreq):
die "Server was unavailable o

r request othervise failed.\n” unless ($res-dis_s
uccess);
sleep 305

|"133t/session (72) I

v Ganrens i Srcae 30 . [

e T another user’s session ID -

Keep the session alive and

Demo — Discuss how Firesheep works, but explain we won’t be doing a demo
on that part because we’re not using an unsecured wireless network here.
Discuss that the session could be compromised in other ways on the network,
from PCAP logs, from application vulnerabilities like cross-site scripting, etc.
The key is that a session can potentially become known to someone else, and
when that happens the main objective is to limit the lifetime of usefulness to

the attacker.

Show that placing the session ID value into the cookies.txt file in the 133t/
session folder, and then running the keepalive.pl script will keep making valid

requests... thus the inactivity timeout that is usually in place in many

application servers will never be reached.

67

Real World - Session Lifetimes

ast jated: Friday, 3 August 2007 10:36 GMT 11:36 UK
B8 E-mail this to a friend & Printable version
Warning of webmail wi-fi hijack

Using public wi-fi hotspots
has got much riskier as
security experts unveil tools
that nab login data over the
air.

Demonstrated at the Black Hat
hacker conference in Las
vegas, the tools make it far
easier to steal account details, =
said Robert Graham of Errata o /07"
Security.

Identifying files called cookies are stalen in the attack which
let hackers pose as their victim

This gives attackers access to mail messages or the page
someone maintains on sites such as MySpace or Facebook.

Help forum > Gmail » Manacing Settings and Mail = Gmail logged-in users session never expires as long as browser window is open.

Gmail logged-in users session never expires as long as browser window is open.

When i log into gmail through IE 7 (even with ie B) or any other browser at 10.00 AM in the morning, keep that
browser window open and leave the computer idle for 12 hours, the session doesnt expire and | am not asked
to re-login into gmail account. This shows that the session remains alive as along as the browser window is
open. It seems the browser cookie never expires.

This is a huge security issue becasue someone might forget to logout and keep the browser open in office
computer or in cyber cafe in the night. Even if the user changes his gmail account password at home, the
gmail window open in cyber cafe computer will still allow cyber cafe users to access gmail inbox through
already open gmail browser window as the session didnt expire

Parikh, D. (2010, December 5). Gmail logged-in users session never expires as long as browser window is open. Retrieved February 17, 2011, from
http://www.google.com.vc/support/forum/p/gmail/thread ?tid=3984 1202c60f6b08&hl=en
Warning of webmail wi-fi hijack. (2007, August 3). Retrieved February 17, 2011, from http:/news.bbc.co.uk/2/hitechnology/6929258.stm

Note that the first article discusses the release of the tools that allow easier
harvesting of session ID cookies that could be used to compromise sites like
MySpace & Facebook. The article goes on to talk about Gmail also having the
same vulnerability as well, and as can be seen people have raised the issue
about a lack of session timeout around Gmail, even very recently. Mention
that as a user — you can help protect yourself by remembering to use the
‘logout’ function on a site when you're done using it, don’t just close the
browser window.

click to build slide Point out that although FireSheep got a lot of press in the
security news last year because it made it *so* easy for the script kiddie level
attackers, over 3 years ago, people had already started releasing tools to
exploit this weakness.

68

Secure Coding ...

General rule of thumb
30 minute timeout for inactivity
12 hour hard time out

Session management setting are usually part of the
application server configuration

As developers we need to understand how these options affect our

application and verify that the system admin has configured the
server correctly

As a general rule, sessions should timeout after 30 minutes of inactivity. In
addition, after 12 hours the user should be asked to log in again. THe hard
timeout is important since after a full day, most people need to go to sleep and
a session that continues to be "active" is a sign that it has been potentially

broken.

Note that most application servers implement an inactivity timeout, but very

few provide a hard timeout option. This may be something that you as a

developer needs to encode in you application.

69

Session Words to Live By: #2

Leverage existing session management solutions

CWE-331: Insufficient Entropy
CWE-334: Small Space of Random Values
CWE-642: External Control of Critical State Data

The lack of proper session expiration may improve the likely success
of certain attacks. For example, an attacker may intercept

It's easier and generally more secure to use a vetted session management
solution that has already been tested for these types of flaws.

The second words to live by deals with leveraging existing session
management solutions. Session management is complex and there are many
opportunities to make mistakes. A lot of time has been put into existing
solutions, and it is often better to leverage these solutions rather than build
your own.

Session Strength — Exploit Demo

c8ac482a4
2d2cd4921a

Can you guess the next Session ID that will be issued in each case?

MITRE

ot Comnons Ao sharotks 30 ears.[©)

Demo is a quick example of both strong and a weak session passing
techniques in the application.

71

Real World — Session ID Weakness

Just because it looks random...

For servers Netcraft has identified as vulnerable, the session ID is encoded using a simple rule. S bits at a time
Y SES 0-25 are

6-31 are encoded by the digits 0-5 respectively. It's a

encoded with the corresponding letters A-2;
kind of "base32" encoding - which can be decoded trivially.

29 81 97 5 0
This breaks up as: (all integers are in network byte order)
« Bytes 0-3: Timestamp

* Bytes 4-7: Session count

e Bytes 8-11: IP address of the server issuing the session ID

¢ Bytes 12-13: Random number {or zero, see below)
Timestamp goes up predictably, session count just increments, IP is
static, and the 2 random bytes at the end are fixed at server start time.

Tovey, M. (2003, January 1). Security advisory 2001-01.1. Retrieved February 17, 2011, from http://news.netcraft.com/archives/2003/01/01/
security_advisory_2001011_predictable_session_ids.html|

MITRE

We discuss the vulnerability in the Java WebServer, including the application
server used by IBM WebSphere. Even though the string looks very random at
first glance... it doesn’t hold up to more scrutiny. Walk through the flow of “get
one session at 12:00:00, get another at 12:00:05”. Notice that the session
count went from 10 to 12. That means someone else got a session
somewhere between 12:00:00 and 12:00:05. Just replay all those static
values and try 6 times... one for each second that the session *might* have
been created in. This can be done in mere moments via automation.

72

Real World Example — Apple iForgot

22 March 2013
iforgot.apple.com — enter Apple ID

Select authentication method — “answer security questions”

Enter date of birth
. . Store Mac iPha
Answer two security questions
Enter new password My Apple ID
Password is reset
Reset your password

Knowing someone’s Apple ID and DOB would
allow construction of the URL after step #5.

The exploit was published on the day that Apple launched two-factor authentication
for Apple ID accounts, which would have prevented the attack for anyone that had
enabled it. Once activated, the feature replaces the security question based
verification with a 4-digit code sent to the user's mobile device

Reuvisit the previous example on Apple iForgot and talk about how they tried to
pass all the data ... but didn’t.

http://www.theverge.com/2013/3/22/4136242/major-security-hole-allows-apple-
id-passwords-reset-with-email-date-of-birth

http://www.imore.com/anatomy-apple-id-password-reset-exploit

73

Secure Coding ...

As developers ...
We need to recognized when we need session management
We know not to roll our own

74

Session Words to Live By: #3

Force a change of session ID after a successful login

CWE-384: Session Fixation

Authenticating a user, or otherwise establishing a new user session,
without invalidating any existing session identifier gives an attacker
the opportunity to steal authenticated sessions.

75

I
Session Fixation — Exploit Demo

Name Value Name Value
nsqradmir 0 sqradmin 0
CGISESSID 5905374506a8de2704a720c2743549cf CGISESSID 59053 de2704a720c2743549cf

E—

| @ Encoded Decoded ® Encoded Decoded

oK OK

7 Pre-Login ‘ - Post-Login

Send a ‘baited’ message to a target user.

From: a
To: elds@]
Subject: This is a well crafted phish to steal sessions
Date: 09/19/2011 04:19:28 PM

There has been an urgent update to the General Disaster report. Please login to the
as soon as possible and review, as this could have a direct impact on operational security!

-- Da Baws

MITRE

®
1o
{©

Demo — Show that when we first connect to the site, we are issued a
CGISESSID value. After we successfully login, it’s still using the same session
value. This means we know the site is vulnerable to a fixation attack, where
an attacker can attempt to set the session of another user. Remember, if the
attacker has the ‘something you have’ authentication item... they’re going to be
the same as the person who has authenticated using that ID. To demonstrate,
take the session ID out of the Tamper Data window, and going to the ~/133t/
session folder, run the ./fix-email script passing the “CGISESSID=....” as a
command line parameter. This will send a specially crafted email to the demo
user we're using. Bring up the email tool, and show the email. By clicking the
link to the website, it's *really* the INSQR site, and it's *really* the real login
page with no other code. But the attacker has passed the session ID to use to
the webserver in the querystring. The server trusts this as being the person’s
session ID, and in fact, updates & sets a cookie for the user to contain that
session ID going forward. When the victim logs in, they have now
authenticated that session ID.

The attacker can now use that same session ID, still sitting at the login
screen...just click ‘Reports’ and you’re good to go!

76

Real World — Session Fixation

Session-fixation vulnerability in Joomla! (20100423)
Atthe end of last year, during a web-app pen-test on a target application based on Joomlal, a well-known
open-source web-based Content Management System (CMS), | discovered that the Joomlal core session

management system was prone to a session-fixation vulnerability. Joomlal failed to change the session
identifier after a user authenticates. The issue has been finally made public on April 23, 2010

Joomlal versions 1.5 through 1.5.15 are affected. Although | discovered the issue on version 1.5.14, and

notified the Joomlal Security Strike Team (JSST) appropriately, through the Joomla Security Center and by
e-mail on early November 2009, the fix couldn't get through the next version. The issue was fixed on version

1.5.16 {while the last available version as of today is 1.5.17)

* Joomlal' 16

Get MORE:
— ACL, SEO, Speed, Power, Control, Options —

Taddong. (2010, April 23). Session-fixation vulnerability in Joomla!. Retrieved February 17, 2011, from http://blog.taddong.com/2010/05/session-
fixation-vulnerability-in.htm|

MITRE Except whers e e, s vor s cansd under rate ommons Auton Sharehe 0 Lerse.[EORDIOT]

Even big applications include simple issues.

7

1 public int authenticate (HttpSession session)

2 {

3 string username = GetlInput ("Enter Username");
4 string password = GetInput ("Enter Password");
5

6 Check maximum logins attempts

7 if (session.getValue("loginAttempts") > MAX LOGIN_ATTEMPTS)
8 {

9 lockAccount (username) ;

10 return (FAILURE) ;

11 }

12

13 if (ValidUser (username, password) == SUCCESS)
14 {

15 session.putValue ("login'", TRUE);

16 return (SUCCESS) ;

17 }

18 else return (FAILURE);

19 }

In order to exploit the code above, an attacker could first create a session (by visiting the login page of the application)
from a public terminal, record the session identifier assigned by the application, and then leave the login page open.
Next, a victim sits down at the same public terminal, notices the browser open to the login page of the site, and enters
credentials to authenticate against the application. The code responsible for authenticating the victim continues to use
the pre-existing session identifier, now the attacker simply uses the session identifier recorded earlier to access the
victim's active session, providing nearly unrestricted access to the victim's account for the lifetime of the session.

MITRE Except whers e e, s vor s cansd under rate ommons Auton Sharehe 0 Lerse.[EORDIOT] 7

78

Secure Coding ...

public int authenticate (HttpSession session)

MITRE

W ~Jo Ul W N

{

string username = GetInput ("Enter Us e");
string password = GetInput ("Enter Password");

Check maximum logins attempt
if (session.getValue("loginAttempts") > MAX LOGIN_ATTEMPTS)
{

lockAccount (username) ;

return (FAILURE) ;

if (ValidUser (username, password) == SUCCESS)

{
// Kill the current session so it can no longer be used
session.invalidate() ;

// Create an entirely new session for the logged in user
HttpSession newSession = request.getSession(true);

newSession.putValue ("login", TRUE) ;
return (SUCCESS) ;

® -

lse return (FAILURE);

cepters e i, e s e st Commons At s 0 srss, | |EORDO]

79

Security Mechanism:

DATA VALIDATION

MITRE

Authentication
Authorization
Session Management
Data Validation

Error Handling
Logging
Encryption

(i
to
ko

80

Data Validation Core Concepts

Given that the client can bypass any client-side controls, all data
collected from the client must be considered suspect.

Is the data of a proper length and well formed for what was
expected by the application?

Known Good Exact Match (Whitelisting)
Known Good Characters (Whitelisting)
Known Bad Characters (Blacklisting)

Known Bad Exact Match (Blacklisting)

Data validation is considered by many to be the most important mechanism in
secure coding. Proper data validation will stop most exploits as it is through
manipulating input that an attacker often launches an attack. It is important to
remember though that ALL data validation must be done on the server since
an attacker can bypass a client and send requests directly to a server
application. One can not assume that input received from a request has been

validated by client code.

81

Data Validation Words to Live By

Validate data before use in SQL Commands
Validate data before sending back to the client
Validate data before use in ‘eval’ or system commands

Validate all data lengths before writing to buffers

o

MITRE

S OXolo) o

There are four words to live by for Data Validation. These align to the four big
vulnerabilities that we see today: SQL injection, cross-site scripting, command
injection, and buffer overflows.

82

Data Validation Words to Live By: #1

Validate data before use in SQL Commands

CWE-89 : Improper Neutralization of Special Elements used
in an SQL Command (‘SQL Injection’)

The software constructs all or part of an SQL command using
externally-influenced input from an upstream component, but it does
not neutralize or incorrectly neutralizes special elements that could
modify the intended SQL command when it is sent to a downstream
component.

MITRE

83

ing strUser = request.getParameter ("user
string strPwd = request.getParameter ("psz

string strQuery = £
" + strUser + "'
+ strPwd + "'";

ﬂ)\]O‘\U‘l&w[\)H\

ExecuteQuery(strQuery, db_ connection); l//

Adam'--

MITRE Except whers e e, s vor s cansd under rate ommons Auton Sharehe 0 Lerse.[EORDIOT]

Ay

ﬂ)\]O‘\U‘l&w[\)H\

string

string

|

strUser = request.getParameter ("user
strPwd = request.getParameter ("pa

strQuery =

+ strPwd +

ExecuteQuery(strQuery, db_ connection);

+ strUser + "'

mrn,
’

/

a' OR 1=1--

MITRE

Excapt uhers overss noted. his ok s e under a Crative Commons Atuton-ShareAliks 3.0 Ucenss. () (DO

85

ﬂ)\]O‘\U‘l&w[\)H\

strUser = request.getParameter ("u
strPwd = request.getParameter ("p

string strQuery =

ExecuteQuery(strQuery, db_ connection);

TN

’

rord") ;

+ strUser + "'
+ strPwd + "'";

/

a';

MITRE

DELETE FROM username; SELECT * FROM items WHERE 'a'='a

Excapt uhers overss noted. his ok s e under a Crative Commons Atuton-ShareAliks 3.0 Ucenss. () (DO

86

string strUser = request.getParameter ("user");
string strPwd = request.getParameter ("p .

string strQuery = "SELECT

" 4+ strPwd +

ExecuteQuery(strQuery, db_ connection);

ﬂ)\]O‘\U‘l&w[\)H\

+ strUser +

"o

mrn,
’

/

'; EXEC master..xp_cmdshell 'dir' --

MITRE

Excapt uhers overss noted. his ok s e under a Crative Commons Atuton-ShareAliks 3.0 Ucenss. () (DO

87

SQL Injection — Exploit Demo

Please login to access the reports or status functions.

User ID: foo' OR 'A'='A'#
Password:
Login

my $=ql=$dbh->prepare("SELECT first,last,admin FROM users WHERE uname='$uname'
AND pword='$pword’ AND state=1"):
$zql->executer

What just happened?

What is most often the first account in the database?

Demo a very simple SQL Injection vector via the login page. The attack will
inject the userid field, causing the SQL statement to return all users from the
user table back to the command. The program just reads the first line returned
from the DB, not checking if there was more than one match, and assumes the
user must have logged in successfully (user & password provided must have
matched).

Explain that this is an extremely simple case to illustrate the coding weakness.
There are much more sophisticated versions of this attack, leveraging UNION
statements to map table structure and return additional information as well as
Blind SQL Injection to return information from the DB even when the query
might never normally return any data to the client.

88

I
Real World — HBGary Federal vs. Anonymous

The hbgaryfederal.com CMS was susceptible to a kind of attack called SQL injection. In common with other
CMSes, the hbgaryfederal.com CMS stores its data in an SQL database, retrieving data from that database
with suitable queries. Some queries are fixed—an integral part of the CMS application itself. Others, however,
need parameters. For example, a query to retrieve an article from the CMS will generally need a parameter
nding to the article ID number. These parameters are, in turn, generally passed from the Web front-end

SQOL injection is possible when the code that deals with these parameters is faulty. Many applications join the
parameters from the Web front-end with hard-coded queries, then pass the whole concatenated lot to the
database. Often, they do this without verifying the validity of those parameters. This exposes the systems to
SQL injection. Attackers can pass in specially crafted parameters that cause the database to execute queries
of the attackers' own choosing

The exact URL used to break into hbgaryfederal.com was http://www. hbgaryfederal.com

/pages. php?pageNav=2 spage=27. The URL has two parameters named pageNav and page, set to the
values 2 and 27, respectively. One or other or both of these was handled incorrectly by the CMS, allowing the
hackers to retrieve data from the database that they shouldnt have been able to get

Bright, P. (2011, February 15). Anonymous speaks: The inside story of the HBGary hack. Retrieved February 16, 2011, from
http://arstechnica.com/tech-policy/news/2011/02/anonymous-speaks-the-inside-story-of-the-hbgary-hack.ars/
Image: From Wikimedia Commons — Image taken by Vincent Diamante, February 10, 2008. Retrieved September 20, 2011

from https://secure.wikimedia.org/wikipedia/commons/wiki/File:Anonymous_at_Scientology_in_Los_Angeles.jpg
MITRE et ers s e, e s rsiteCommans At Sl 30 e, |[@ORCD] o

Note that even a very basic validation ensuring that number was supplied
would have worked here. If you look at the two parameters (pageNav and
page) both appear to be only numeric.

89

Secure Coding ...

Restrict length (username doesn't need to be 100 chars long)
Whitelist characters (only allow a-z and A-Z for username)

Use prepared statements

string strUser = request.getParameter (" A ‘\\\
if(strUser.length > 100) error();

if (strUser.matches (""" [a-zA-Z]+5") == false) error():;

string strQuery = "SELECT * FROM users
WHERE sername

AND password

PreparedStatement stmnt = null;
stmnt = db_connection.prepareStatment(StrQuery);
11| stmnt.setString(l,strUser);

12| stmnt.setString(2,strPwd);
\\iE, stmnt.execute () ; ,///

MITRE e e o v st oG s e 0D .

}—'Loooqo\m;uwl\}
o

To properly protect our code from SQL injection, we should take a defense-in-
depth approach. First, we should perform some basic validation related to the
type of information we expect. In this case we are working with a username. It
is probably safe to assume that a username should be less than 100
characters long, so we should verify that input conforms to this. Next we
should use a whitelist if possible to restrict the input to a set of valid
characters. For most of us, all our usernames are just characters so maybe it
is correct to only allow characters in our input string. Finally, we should use
prepared statements instead of directly concatenating the input with the SQL
query. Using prepared statements automatically enforces that a data field will
be just a data field and will not allow an attacker to single-tic their way out of
the field and inject additional commands.

Note that escaping the single tic would be a start, but this might not be
enough. This is in a form of blacklisting where we try to exclude certain
characters. The problem is that different character encodings may be possible
that could pass the blacklist but still be interpreted as a single tic. For
example, x027 is the hex value for the single tic.

90

Data Validation Words to Live By: #2

Validate data before sending back to the client

CWE-79: Improper Neutralization of Input During Web Page
Generation (‘Cross-site Scripting’)

The software does not neutralize or incorrectly neutralizes user-
controllable input before it is placed in output that is used as a web
page that is served to other users.

MITRE

91

XSS Flow

D

Persistent XSS
create malicious site
malicious post
Reflected XSS
vulnerable site

©

- browse to site
- clicks on link

v

- wait for user to visit site

@ - send phishing email

MITRE

Attacker

attacker's code sent
to user and run in
their browser

(&

User

Persistent XSS vs. Reflected XSS

Persistent = a malicious site or a malicious post, get user to visit the site

Reflected = find a vulnerable site that "reflects back" the values in the URL,
send the code as part of the phishing URL and get the user to click the link, the
"trusted" server reflects back the code that is then rendered/run in the user's

browser.

g b w N

<% string strlLabel

N\
av}
\

Label: <%

</P>

strLabel

request.getParameter ("la

<SCRIPT SRC=http://hacker.org/malicious.js />

MITRE

Excapt uhers otheriss noted, his ok i lansed under a Crastive Commans Atiuton-ShareAliks 3.0 Licenss

&)

93

g b w N

<% string strlabel =

N\
av}
\

Label: <% strLabel

</P>

request.getParameter ("la

MITRE

&)

Excapt uhers otheriss noted, his ok i lansed under a Crastive Commans Atiuton-ShareAliks 3.0 Licenss

94

XSS Injection — Exploit Demo

Login Failure

Invalid userid: testuser. Please check your userid and try again.

© Tamper Popup

p cgi-bi icate.cgi

Request Header Name Request Header Value Post Parameter Name Post Parameter Value

Host ocalhost I user <script>alert(*powned")</script>

User-Agent Mozilla/5.0 (X11; U; Linux i686; en-US| password foo

© The page at http://localhost says:

powned

/0K

Actual usage by a threat actor will not be this obvious...

e i Conmons At shrst 30 e, [o

Demo a simple XSS attack. This can either be done directly from the login
page userid field or can be done leveraging the Tamper Data interface. Pop a
simple alert window to demonstrate how the data provided as input is being
interpreted by the browser as code from the server.

Discuss how the actual attack will be much worse in reality. Low-end
hacktivists & script kiddies might settle for apparent site defacement or
misleading data being provided on the page. Cyber criminals can use the
attack to provide misleading information (bogus AV software alerts for
example). Some cyber criminals and advanced threats may leverage this
weakness to steal/harvest session identifiers for your site or to cause a cross-
site request forgery (CSRF).

95

I
Real World — Myspace & samy is my hero

1 hour: 1 new friend ”“ *t
8 hours: 222 new friends

13 hours: 8803 new friends

18 hours: 1,005,831 new friends .niii o b et e it

\\MA’\A;)WI

~AA mbsreg(AB ABS
(AEmAE replace (i +sl A¥'av +s) A

"One clever MySpace user looking to expand his buddy list recently figured
out how to force others to become his friend, and ended up creating the first
self-propagating cross-site scripting (XSS) worm. In less than 24 hours,
‘Samy’ had amassed over 1 million friends on the popular online community
According to BetaNews, the worm's code utilized XMLHTTPRequest - a
JavaScript object used in AJAX Web applications and was spreading at a rate
of 1,000 users every few seconds before MySpace shut down its site sty wv‘k! ue)
Thankfully, the script was wiitten for fun and didn' try to take advantage of g2 setkequetHeader
unpatched security holes in |E to create a massive MySpace botnet.”

Cross-site scripting worm floods MySpace. (2005, October 14). Retneved February 15 2011, from http://
it.slashdot.org/story/05/10/14/126233/Cross-Sitt ipting-W Floods-My

MITRE Cecoptwers shanvssnead, h s s lensed unra Creative Comrons Atruton Sharelk 3.0 s, (COLCDIOL] o

96

Secure Coding ...

Validate input (only accept characters that make sense)
Encode output (escape characters like "<")

HTML encode
URL encode
JavaScript encode

-0
<%

if (strLabel.matches (""" [a-zA-Z0-9]1+5")

g

= false)

//,; d o0 W N Hﬁ\\\

string strLabel = request.getParameter ("label");

~

error () ;

/

&

<p>
Label: <%= encodeHTML (strlLabel) %>
</P>

97

I
Real World — Google's URL Redirection

In 2005, Watchfire reported the following XSS issue with Google ... G O /gle

The script http://www.google.com/url?q= was used for redirecting the browser from
Google's website to other sites. When the parameter q was passed to the script in an illegal
format, a "403 Forbidden" page was returned to the user, informing them that the query was
illegal. The parameter's value appeared in the html returned to the user.

For example, if http://www.google.com/url?q=EVIL_INPUT was requested, the text in the "403
Forbidden" response would have been: - "Your client does not have permission to get URL /
url?g=EVIL_INPUT from this server."

While Google escaped common characters used for XSS, such angle brackets and
apostrophes, it failed to handle hazardous UTF-7 encoded payloads. Therefore, when sending
an XSS attack payload encoded in UTF-7, the payload would return in the response without
being altered.

- ___http://shiflettorg |
header ('Conten pe: H ")

$string = ri 11 ; X

$string = mb_convert encoding ($string, 'UTE)

htmlentities($string, ENT QUOTES, 'UTE)

Google's XSS Vulnerability. Retrieved March 7, 2011, from http:/shiflett.org/blog/2005/dec/googles-xss-vulnerability

MITRE

noted.

A XSS vulnerabilities was identified in the Google.com website, which allowed
an attacker to mount a phishing attack. Although Google uses common XSS
countermeasures, a successful attack is possible, when using UTF-7 encoded
payloads.

The script (http://www.google.com/url?g=...) is normally used for redirecting the
browser from Google's website to other sites. When requesting a page which
doesn't exist under www.google.com, a 404 NOT FOUND response is returned
to the user, with the original path requested. While the aforementioned
mechanisms (URL redirection script, 404 NOT FOUND) escape common
characters used for XSS, such as <> (triangular parenthesis) and apostrophes,
it fails to handle hazardous UTF-7 encoded payloads.

The server response lacks charset encoding enforcement, such as: Response
headers: "Content-Type: text/html; charset=[encoding]". Therefore, when
sending an XSS attack payload, encoded in UTF-7, the payload will return in
the response without being altered.

If "Encoding" is set to "Auto-Select", and Internet-Explorer finds a UTF-7 string
in the first 4096 characters of the response's body, it will set the charset

98

Data Validation Words to Live By: #3

Validate data before use in ‘eval’ or system commands

CWE-95: Improper Neutralization of Directives in
Dynamically Evaluated Code (‘Eval Injection’)

The software receives input from an upstream component, but it
does not neutralize or incorrectly neutralizes code syntax before
using the input in a dynamic evaluation call (e.g. "eval").

MITRE

99

1 | my Soptions = readSocket ($sock) ;
2 | my $command = "/bin/ls " . S$options;
3 | system($command) ;

-lad

100

1 | my Soptions readSocket ($sock) ;
2 | my $command = "/bin/ls " . S$options;
3 | system($command) ;

-lad; rm -rf *;

&)

101

Eval Injection — Exploit Demo

Becoming a persistent threat: Fuzzing

Discovery of the eval injection @

Delivery of a crafted payload to make exploit Status Results

and future exploits easier
Bad name after check db'at (eval 7) line 1.

We own the server @

cat authenticate.cgi

cat /etc/apache2/modules/DBAuth.pm (\1 A

Delivery of new crafted payload for dumping -6
database information

SELECT * FROM users @

SELECT * FROM reports

We own the database

All your data are belong to us. ~

trbution ShareAlke 3.0 License. (GO 102

o

MITRE

Demo — Show looking at the status functionality in the site. Show an attempt
to ‘fuzz’ the ‘check’ name/value pair using TamperData. Use a string like ”<>;:
%. The error message returned gives the hint that this is an eval statement
that caused the error. Mention that at this point it’s just trial and error until you
perfect your payload. Cut & paste over a prepared malicious payload from the
eval-attack.txt file. The first one is f.cgi which will allow command execution
via the “c” name/value pair. The second is d.cgi which also uses the “c” name/
value pair to execute DB commands in the application database. Using the
f.cgi, you can do a Is -, show finding the authenticate.cgi source, then using
that to identify the file that the DB connection information is coming from along
with the ID & password. Then upload the 2" file to take advantage of that to
gain full access to the DB.

102

Real World Example — TWiki Exploit

CVE-2008-5305 — The search parameter of the website was being placed into an
eval function, allowing remote users to fully exploit the server

fends[§1i] = evalifends[1-%i].%oper[§i].Sends[$1i]);

TWiki Input Validation Flaw in %SEARCH{}% Parameter Lets Remote

Users Execute Arbitrary Commands

SecurityTracker Alert ID: 1021352

SecurityTracker URL: http:#/securitytracker.com/id?1021352

CVE Reference: CVE-2008-5305 ks to Extemal Site)

Date: Dec 52008

Impact: Execution of arbitrary code via network, User access via network

Fix Available: Yes Exploit Included: Yes Vendor Confirmed: Yes

Version(s): priorto 4.2.4

Description: A vulnerability was reported in TWiki. A remote user can execute arbitrary commands on the target system

A remote user can submit a specially crafted %SEARCH(}% parameter value containing a Perl backtick (™) character to execute arbitrary
shell commands on the target system. The commands will run with the privileges of the target web senice

A dernonstration exploit URL is provided

http://example.org/twiki/bin/view/Main/WebSearch?search=%25SEARCH%7Bdate%3D
%22P%60pr+-%3F%60%22+search%3D%22xyzzy%22%7D%25&scope=all

Twiki input validation flaw in %search{}% parameter lets remote users execute arbitrary commands. (2008,
December 5). Retrieved June 4, 2010, from http://securitytracker.com/alerts/2008/Dec/1021352.html

MITRE

wise noted.

Perl backtick runs a command and returns the command's output (stdout). For
example ... print “perl -le "print -t STDOUT" ... This prints the output of the
command ... perl -le "print -t STDOUT" ... This is very similar to the perl
system() function, however system() returns a status code, not stdout.

From http://twiki.org/cgi-bin/view/Codev/SecurityAlert-CVE-2008-5305 ...

The %SEARCH({}% TWiki variable or a specially crafted GET URL enables a
malicious user to compose a command line executed by the Perl backtick (")
operator. User input is passed to the perl "eval" command without first being

sanitized.

If access to TWiki is not restricted by other means, attackers can use the
SEARCH variable with or without prior authentication, depending on the
configuration.

Proof of concept:

Enter the following in the search box:

103

Secure Coding ...

Restrict length (option doesn't need to be 100 chars long)
Whitelist (only allow specific commands)

my S$Soptions = <STDIN>;

if length ($options) > 100

{
error () ;

}

if (Soptions =~ m/"[a-zA-Z\-]+$/)

{
my $command = "/bin/ls " . S$Soptions;
system (Scommand) ;

\ooo\loxmbwr\)n—\

=
o
—

104

104

Data Validation Words to Live By: #4

Validate all data lengths before writing to buffers

CWE-120: Buffer Copy without Checking Size of Input
(‘Classic Buffer Overflow’)

The program copies an input buffer to an output buffer without
verifying that the size of the input buffer is less than the size of the
output buffer, leading to a buffer overflow.

MITRE et hers s e, s work e under a Crsie Cominans Al ShareAls 30 Lisnss. (@) 105

105

g w N

char c[12];

char *bar;

printf ("Please enter your
get bar;

strcpy(c, bar);

name and press <Enter>\n");

Hello

MITRE

Char c[12]

L

! Char *bar E

Saved Frame pointer

Wikipedia, Retrieved March 7, 2011, from http://en.wikipedia.org/wiki/Stack_buffer_overflow

Excoptwhere herwise ncte, this work i icensed under a Creative Commans Atrbuton-ShareAlke 3.0 License. [CRCDION]

Unallocated Stack Space
§ Char c[12]
a Char *bar
Saved Frame pointer
Parent Routine’s Stack

106

106

char c[12];

char *bar;

printf ("Please enter your name and press <Enter>\n");
get bar;

strcpy(c, bar);

g w N

AAAAAAAAAAAAAAAAAAAA\X08\x35\xC0\x80

Char c[12]

Wikipedia, Retrieved March 7, 2011, from http://en.wikipedia.org/wiki/Stack_buffer_overflow

e
M I T RE Except where otherwise noled, this work is icensed under a Creative Gommons Atribuion-ShareAlike 3.0 License. [{€) AOXQII 107

107

Real World Example — Buffer Overflow

e (NVD)
ersions « SCAP

CVE-2011-0654 Learn more at National Vulne
+ Severity Rating « Fix Information « Yull
(under review) Mappings

Heap-based buffer overflow in Mrxsmb.sys in Microsoft Windows Server 2003 Active Directory
allows remote attackers to execute arbitrary code via a crafted BROWSER ELECTION request,

Microsoft Active Directory 'BROWSER ELECTION' Buffer Overflow Vulnerability

Microsoft Active Directory is prone to a remote heap-based buffer-overflow vulnerability because the application fails to perform
adequate boundary-checks on user-supplied data.

Successful exploits can allow attackers to execute arbitrary code with SYSTEM-level privileges. Successfully exploiting this issue
will result in the complete compromise of affected computers. Failed exploit attempts will result in a denial-of-service condition.

This issue affects Active Directory on Windows Server 2003; other systems may also be affected.

The following proof of concept is available:

e /data/vulnerabilities/exploits/4

CVE-2011-0654. (n.d.). Retrieved February 16, 2011, from http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0654
Microsoft active directory ‘browser election’ buffer overflow vulnerability. (n.d.). Retrieved February 16, 2011, from http:/
www.securityfocus.com/bid/46360/discuss

Issues in old code still being discovered. Released announcement on Full
Disclosure mailing list on 2/14/11, about a new zero-day in Windows Server

2003 and XP SP3.

108

Secure Coding ...

Use "safe" functions (e.g., strncpy())

Validate maximum and minimum size values

Verify that calculations result in valid ranges

Validate length of input strings (plus NULL terminator!)

Consider compiler switches that reduce danger of buffer
overflows

Whitelist when possible

Strategy: Input Validation

Assume all input is malicious. Use an "accept known good" input validation
strategy, i.e., use a whitelist of acceptable inputs that strictly conform to
specifications. Reject any input that does not strictly conform to specifications,
or transform it into something that does. Do not rely exclusively on looking for
malicious or malformed inputs (i.e., do not rely on a blacklist). However,
blacklists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

When performing input validation, consider all potentially relevant properties,
including length, type of input, the full range of acceptable values, missing or
extra inputs, syntax, consistency across related fields, and conformance to
business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is
not valid if you are expecting colors such as "red" or "blue."

109

Authentication
Authorization
Session Management
Data Validation

Error Handling
Logging
Encryption

Security Mechanism:

ERROR HANDLING

MITRE

(i
to
ko

110

Error Handling Core Concepts

Expect the unexpected — your data won’t always be what you assume
When you hit an error condition — log, cleanup, and STOP

Think carefully about what you send to the client and how you send it

MITRE

wsovene. [DR00) »

111

Error Handling Words to Live By

Don’t disclose information that should remain private

Remember to cleanup completely in an error condition

MITRE

°
H
&

112

112

Error Handling Words to Live By: #1

@

Don’t disclose information that should remain private

CWE-200: Information Exposure

An information exposure is the intentional or unintentional disclosure
of information to an actor that is not explicitly authorized to have
access to that information.

Think OPSEC!

MITRE

113

113

Information Leakage Examples

<option value="Who was your favorite teacher">Who was your favorite teacher?</option>
2010/02/28: We should add more security questions in next release - Morocco Mole (mmole

</selecto</tdme/trs
Login Failure
Invalid userid: foobar. Please check your userid and try again.

Login Failure

Incorrect password. Passwords are case sensitive, please verify your spelling and try again.
Status Results

Completed file scan: InSQR files all functioning properly.

Status Results

Bad name after check 'at (eval 6) line 1.

These are examples we've already seen as we’ve been working through the
site. The first provides names & account name combinations, and talks about
upcoming changes to the code...why do the users need to see this?

The second example shows a bad userid vs. a bad password. This can be
used to harvest possible userid values.

Third example — Just the concept of confirming valid server, files, and db
connections to a normal user of an application is rather strange. Users don’t
need to know that kind of operational detail, and providing it to users just
makes an attacker’s job easier to understand what impact his attacks might be
having.

Final example — returning a coding related error message (see also — stack
traces in Java & such) to the browser/user.

114

Real World Example — Information Leak

Server Error in '/' Application.
Invalid object name 'user_acc'.

Description: An unhandled exception occurred during the execution of the current web request. Please review the
stack trace for more information about the error and where it originated in the code.
Exception Details: System.Data.SqlClient.SqlException: Invalid object name 'user_acc'.

Source Error:
Line 135: sglemd = new SglCommand(“select uid, password from user_acc where uid=""' + uidd + ", hookup);
Line 136: hookup.Open();
Line 137: reader=sqlcmd.ExecuteReader();
Line 138:
Line 139: while (reader.Read())

Source File: c:\inetpub\vhosts\cactusindia.com\httpdocs\Default.aspx.cs Line: 137

Stack Trace:
[SqlException (0x80131904): Invalid object name 'user_acc'.]

Version Information: Microsoft NET Framework Version:2.0.50727.4952; ASP.NET Version:2.0.50727.4955

Jating2. (2010, November 15). Server error in /" application. Retrieved February 21, 2011, from http://forums.asp.net/p/1623626/4169865.aspx

MITRE

This is an example of a real error page posted on the web from a lIS /

MS .NET application. Large amounts of information leakage are shown here.
The example shows information about DB table structure (notably the account
table), includes a source code snippet which helpfully shows that the site is
likely vulnerable to SQL Injection, shows the application as being installed on
the C: drive in the default location which will be helpful if successful in
attacking the application, and includes version numbers of the server install of
the .NET framework & ASP.NET software. This is really useful for a developer
during debugging... but a field day for a malicious attacker.

115

1 my S$username = param('username');

2 my S$password = param('password');

3

4 if (IsValidUsername (Susername) == 1)

5 {

6 if (IsValidPassword($Susername, $password) == 1)
7 {

8 print "

9 }

10 else

11 {

12 print " ord"
13 }

14 }

15 else

16 {

17 print "Login Failed - unknown username";

18 }

In the above code, there are different messages for when an incorrect username is supplied, versus
when the username is correct but the password is wrong. This difference enables a potential attacker
to understand the state of the login function, and could allow an attacker to discover a valid

username by trying different values until the incorrect password message is returned.

MITRE Except whers e e, s vor s cansd under rate ommons Auton Sharehe 0 Lerse.[EORDIOT]

&

116

116

Secure Coding ...

1 my S$username = param('username');

2 my S$password = param('password');

3

4 my $result = 0;

5

6 if (IsValidUsername (Susername) == 1)

7 {

8 if (IsValidPassword($Susername, $password) == 1)
9 {

10 Sresult = 1;

11 print "Login Successful";

12 }

13 }

14

15 if ($result '= 1)

16 {

17 print "Login Failed - incorrect username or password";
18 }

117

Information Leakage - Discussion

Is the following an example of information leakage or not?

User account does not have sufficient funds to perform this
transaction. Minimum required balance is $5,000.

User password must be a minimum of 8 characters.

Failed validation — username must not contain the characters <
>4 ();

MITRE

ke 30 Licanse. [(DO 18

o

Minimum Balance — This is a business logic decision, not a security one.
Telling people exactly what qualifies them to be able to partake in various
business functions or options is not an information leakage problem.

Password length — This is not an information leak issue, though this can
depend somewhat on where in the application this is provided and under what
circumstances. The password length requirement must be told to users during
the account creation process. Likely valid to report to users via client side
checking in a web application to prevent a typo causing an invalid login for a
user. However, it would need to be verified that the password error handling
on the server wasn’t causing different errors in the case of an invalid login vs.
invalid password on the server from this message.

DV fail requirements — not an information leak. An attacker is already going to
be able to harvest this information via brute-force methods... why irritate/annoy

legitimate users who are trying to do the right thing with a cryptic error that
doesn’t help them use your application successfully?

118

Error Handling Words to Live By: #2

@

Remember to cleanup completely in an error condition

CWE-460: Improper Cleanup on Thrown Exception

The product does not clean up its state or incorrectly cleans up its
state when an exception is thrown, leading to unexpected state or
control flow.

MITRE cpthers s e, s work s s ndr a Crsive Camnans Al Sharels 20 s, (GO 1o

119

Failure to Cleanup on Error — Exploit Demo

Application Logic Flow:

RUN 1 RUN 2

lock acquired 1) Acquire a lock on an admin log file ¢
ERROR: Cannot secure adminlog lock.
2) Grab value from insqradmin cookie

3) Verify / Cast value to an int (we expect only 0 or 1)
ERROR: insgradmin cookie not passing an int value?
4) If cast fails, report error and exit

5) Log admin user access if value was 1

6) Release lock on admin log file

After RUN 1, the admin function is broken for all users
as the lock is never released.

&)

120

Demo -

120

Real World Example — Improper Cleanup

CVE-2008-4302 Learn more at National Yulnerability Database (NVD)
« Severity Rating e Fix Information « Vulnerable Software Versions e
SCAP Mappings

(under review)

fs/splice.c in the splice subsystem in the Linux kernel before 2.6.22.2 does not properly
handle a failure of the add_to_page_cache_lru function, and subsequently attempts to unlock
a page that was not locked, which allows local users to cause a denial of service (kernel BUG
and system crash), as demonstrated by the fio 1/0 tool.

If function hits an error, it fails to secure
a page lock.

However, the fail code path attempts to
call an unlock on a page that was not
locked.

Bug in the kernel causes system DoS.

CVE-2008-4302. (n.d.) Retrieved February 21, 2011, from http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4302

121

1 boolean D ()

2 {

3 try

4 {

5 while (condition == true)

6 {

7 ThreadLock (TRUE) ;

8 1 Yol 1

9 an exception may r
10 ThreadLock (FALSE) ;

11 }

12 }

13 catch (Exception e)

14 {

15 System.err.println("Something bad happened!");
16 return (FAILURE);

17 }

18 return (SUCCESS);

19 }

If an exception is thrown while the thread is locked, then the function will return

without unlocking the thread.

122

Secure Coding ...

1 boolean DoStuff ()

2 {

3 try

4 {

5 while (condition == true)

6 {

7 ThreadLock (TRUE) ;

8 do sor stuf £

9 AN exXcef may I t
10 ThreadLock (FALSE) ;

11 }

12 }

13 catch (Exception e)

14 {

15

16 if (isThreadLocked == TRUE) ThreadLock (FALSE) ;
17

18 System.err.println("Something bad iy
19 return (FAILURE);
20 }
21 return (SUCCESS);
22 }

123

Authentication
Authorization
Session Management
Data Validation
Error Handling

Logging

Encryption

Security Mechanism:

LOGGING

124

124

Logging Core Concepts

What happened?

Who was doing what, when & where?
important to have an application log
in addition to the server log

Not just bugs & error events...

Determine what security events should be auditable.
For example:

Use of administrative functions

Login success & failures

Password reset attempts

Password changes

125

Logging is important as it can provide information that will help an admin

determine what was going on when a problem arose so that they can

troubleshoot the problem. This is especially true when there is a security
breach and someone needs to determine what happened and what resources
an attacker might have had access to. It is advisable to log not just error

conditions, but also the occurrence of security related events like login failures.

However, we must be careful what we log as an attacker must not have the
ability to manipulate the logs and alter the history that they are describing.

125

Logging Words to Live By

Avoid logging sensitive data (e.g., passwords)
Beware of logging tainted data to the logs
Beware of logging excessive data

Beware of potential log spoofing

126

There are four "words to live by" related to logging. 1) Avoid logging sensitive
data as attackers that have gained access to a system through some other

vulnerability may gain access to logs and could potentially see this information.

2) Beware of logging tainted data as this data may be constructed to execute
unexpected code under certain conditions. 3) Beware of logging excessive
data that might fill up a log and stop logging of future actions. 4) Finally,

beware of potential log spoofing that may allow an attacker to cover their
tracks.

126

Logging Words to Live By: #1

D Avoid logging sensitive data (e.g., passwords)

CWE-532: Information Leak Through Log Files

Information written to log files can be of a sensitive nature and give
valuable guidance to an attacker or expose sensitive user
information.

MITRE e e o v st oG s e 0D

The first word to live by is "Avoid logging sensitive data" which is captured via
CWE-532 (Information Leak Through Log Files). Even if your application is
well developed and does not contain any vulnerabilities, it will most likely be
installed on a system with other applications. If any of these other applications
have a vulnerability that allows an attacker to gain elevated privileges, then the
attacker may gain access to your log files. If sensitive information like
passwords, social security numbers, or credit card numbers are saved in log
files (which usually are stored unencrypted), then the attacker will be able to
see it.

127

Sensitive Logging — Exploit Demo

Logging even incorrect passwords is insecure.

Incorrect password can often be VERY close to real password...

“/133t f20) grep "incorrect password" /tmpfaccesslog,log

Hon Feb 21 15:19:15 2011: Login as mmoleRiss,org failed - incorrect password (PASSWORD),
Mon Feb 21 15:43:09 2011: Login as mmole@iss,org failed - incorrect password (Password),

Not hard to guess what the real password might be...

MITRE

Demo: Run the command: grep "incorrect password" /tmp/accesslog.log

This will show how log statements with too much information can help an
attacker.

128

I
Real World Example — Logging Sensitive Data

ffD MediaPortal

... the open source media center

0002030: TV Service is writing the password into logs
writing password into error logs can expose users into unneeded risk (if they are using the same password for multiple palces 1))

2009-03-03 01:05:45.656250 [TVServ \ce] Exception :Error: DatabaseUnavailableUnclassified

Gentle.Common.GentleExcaptio nd (provider SQLServer) could not be reached

Check the connection string: Passv \md I‘IaancnnI fersist Security Info=True;User ID=saInitial Catalog=MpTvDb:Data
Source=htpc\SQLEXPRESS: Connection Timeout=300; ---» System.Data.SqlClient. SqlException: Cannot open database "MpTvDb"
requested by the login. The login failed
Login failed for user "sa’

0002030: TV Service is wirting the password into logs. (2009, March, 26). Retrieved February 21, 2011, from http://mantis.team-mediaportal.com/
view.php?id=2030

If an attacker can gain access to the system, then they can read this log and
learn the password. Maybe MediaPortal isn't a critical system, but if a user is
reusing their password on some other system then the attacker has just

obtained credentials for that system.

129

Secure Coding ...

Consider seriously the sensitivity of the information written
into log files. Do not write secrets into the log files.

Passwords

Credit card information
Trade secrets

Social security number
Medical data

This is especially true if the log file is unencrypted.

130

Logging Words to Live By: #2

@

D Beware logging tainted data to the logs

CWE-117: Improper Output Neutralization for Logs

The software does not neutralize or incorrectly neutralizes output
that is written to logs.

Interpretation of the log files may be hindered or misdirected if an attacker can
supply data to the application that is subsequently logged verbatim. In the
most benign case, an attacker may be able to insert false entries into the log

file by providing the application with input that includes appropriate characters.

Forged or otherwise corrupted log files can be used to cover an attacker's
tracks, possibly by skewing statistics, or even to implicate another party in the
commission of a malicious act. If the log file is processed automatically, the
attacker can render the file unusable by corrupting the format of the file or
injecting unexpected characters. An attacker may inject code or other
commands into the log file and take advantage of a vulnerability in the log
processing utility.

131

Logging Words to Live By: #3

Beware of logging excessive data

CWE-779: Logging of Excessive Data

The software logs too much information, making log files hard to
process and possibly hindering recovery efforts or forensic analysis
after an attack.

MITRE

132

132

Logging Words to Live By: #4

Beware of potential log spoofing

CWE-93: Improper Neutralization of CRLF Sequences
(‘CRLF Injection’)

The software uses CRLF (carriage return line feeds) as a special
element, e.g., to separate lines or records, but it does neutralize or
incorrectly neutralizes CRLF sequences from inputs.

MITRE et hers s e, s work e under a Crsie Cominans Al ShareAls 30 Lisnss. (@) =

133

Hon
Hon
Hon
Hon

MITRE

Sep 19 16:10:18 2011:
Sep 19 16332132 20113
Feb 30 33:93:93 2011:
Feb 30 33:33:33 2011:

CRLF Log Injection — Exploit Demo

The InNSQR application appears to URL Decode submitted values.
%0D%0A will be decoded to a CR and LF and then logged.

Login bHJlormal user jdoeRissz,org,
Login as admin@izs,org failed - no such user,

jdoefiss,org initiated a wipe of the entire database,

Loain as notrealuser@iss.ora failed - no such user.

1

It is possible to spoof any event in the logs desired...

134

Once we know what the log format might look like... which we can use our
eval injection exploit to determine... we can leverage the fact that the userid
field is not being safely encoded before being written to the logfile. In the 133t/
logs folder is an example string we can use to craft some bogus log entries.

Before running the attack, bring up an xterm and use “tail —f /tmp/

accesslog.log” to monitor the end of the logs. Run the attack, and then show

how the new entries were spoofed.

134

Real World Example — Log Spoofing

\\
Mailman, the GNU Mailing List Manager ~ Mailiian % (

(

——
———

CVE-2006-4624:
The following partial URL demonstrates this issue:

[BaseURI]/mailman/listinfo/doesntexist%22:%00%0A1un%2012%2018:22:08%202033%20mai Imanct1(24851):
%20%22vour%20Mai Iman%2011cense¥20has%20expired.%20P1ease¥20obtain%20an%20upgrade’20at%20
www. phishme.site

This will result in a message similar to the following to
be written into /var/log/mailman/error.log:

Jun 11 18:50:43 2006 (32743) No such list "doesntexist":
Jun 12 18:22:08 2033 mailmanct1(24851): "your mailman license
has expired. please obtain an upgrade at www.phishme.site"

SA0013 — public advisory. (2006, September 13). Retrieved February 21, 2011, from http://moritz-naumann.com/adv/0013/mailmanmulti/0013.txt

135

Secure Coding ...

string streetAddress = request.getParameter ("stre

if (streetAddress.length() > 150) error();
streetAddress = RemoveCarriageReturns (streetAddress);

oUW N

logger.info("User's street address: " + streetAddress);

Appropriately filter or quote CRLF sequences in user-
controlled input.

MITRE Exceptwhers e e, s vor s cansed under e Commons At Sharehte 30 Lerse.[CORDIC)

136

We really should encode any character that doesn't satisfy a white list.

136

Authentication
Authorization
Session Management
Data Validation
Error Handling

Logging

Security Mechanism:

ENCRYPTION

137

137

Encryption Core Concepts

s D

Encryption Choices

/\

: One Way or Reversible?
Hash } [Encryptlon (e.g., SHA-256 vs. AES)

Do NOT attempt to create your
own encryption algorithms.

AN J

~

4 D\ N
Stream Cipher| Block Cipher| Bitsvs. Blocks
N) (e.g., RC4 vs. AES)

e < ~N

. . Shared vs. Public & Private Keys
Symmetric [Asymmetrlc} (e.g., AES vs. RSA)
/)

—— W
ECB][CBC CTR . Which Mode to Use?
\ Y,

J

First - Don't roll your own.

Second - We need to decide whether we are just worried about data integrity
(hash) or whether we need to recover the data at the other end (encryption).
By hashing, we can assure that the data hasn't been altered, but we won't be
able to figure out what the data is.

Third - if we want to go with encryption, we need to choose a certain cipher.
We need to either read each bit or read blocks at a time. Usually you want a
block cipher. If you don't know what you need, then you should ask someone
who does.

Fourth - Once we decide to use a block cipher, we need to decide what type of
key to use. Symmetric means that the encryption and decryption key is the
same. You need to guard this key and can't just give it out to everyone. With
Asymmetric, there is one key to encrypt and a different key to decrypt. This
allows you to give out the decryption key. One can now enable anyone to
verify that the person that sent something is the one that actually sent it.

138

ECB vs. Other Modes

Original ECB Other/
Image Mode Desired

Images retrieved from WikiMedia Commons on December 6, 2012. Released to public domain
by creator Larry Ewing (lewing@isc.tamu.edu). Imaged created using The GIMP.

MITRE Except whers e e, s vor s cansd under rate ommons Auton Sharehe 0 Lerse.[EORDIOT]

139

A striking example of the degree to which ECB can leave plaintext data
patterns in the ciphertext can be seen when ECB mode is used to encrypt a
bitmap image which uses large areas of uniform color. In ECB mode, the
message is divided into blocks and each block is encrypted separately using
the same key. While the color of each individual pixel is encrypted, the overall
image may still be discerned as the pattern of identically colored pixels in the
original remains in the encrypted version.

139

Encryption Words to Live By

If storing passwords — hash with a salt value
If you’re using authentication — encrypt in transmission

Properly seed random number generators

MITRE xcoptvhrsoenvissnoed, i ek s Kcnsed udc Craative Comenons At Sharshls 3.0 s, (KDY

140

140

Encryption Words to Live By: #1

If storing passwords — hash with a salt value

CWE-759: Use of a One-Way Hash without a Salt

The software uses a one-way cryptographic hash against an input
that should not be reversible, such as a password, but the software
does not also use a salt as part of the input.

MITRE

141

141

Hash Password Cracking — Exploit Demo

~#133t/encryptiond john-1,7 ,6-jumbo-12/run (24) cat tocrack,txt
adming70e76albda00eb301lade?18cc9416F79
JjdoeRisz,org:BhfAcd0bbda37ba23836F 24011 f foelda
alystRiss,org:7fad8f2h42b0f8926bbl7Eaf eadl7da1
iyouzerliss,org:BE157a7807F7dEEFOFI3FEf cabdd3efn
dbawzlizs,org:ddsd2ebl14bB3fE74d1f88c6ccabe3653

¢

Loaded & password hashes with no different salts (Raw MDS [raw-mdS B4x1])

dbaws {dbawsRiss,org)
maverick { jdoeRiss,org)
adminpu {admin)

Even though we have access to this system already, it is useful for an
adversary to crack the hashes... people tend to reuse passwords.

MITRE capthors ere e, i o anse dor et Commons At Shree 30 corse.[EIRDICY .

Demo — cd into the 133t/encryption/john folder. cd into the run folder. Show
the “tocrack.txt” file that we've pulled from the DB using the exploits we
demonstrated earlier to get access to the user table. Explain that the format of
the passwords being an MD5 hash is a pretty intuitive guess based on its
length (32 hex bytes — 16 bytes of data — 128 bits. MD5 is best known hash
with an output of 128 bits). Then fire up the application using “./john —
format=raw-MD5 tocrack.txt”. It should rather quickly pop 3 accounts, you can
stop it at this point.

Point out that obviously just hashing wasn’t enough. Point out that salting also
wouldn’t save these users with really bad passwords from themselves. This
program is brute-forcing, however if we precompute these values, creating a
rainbow table the process can go even faster. Salts help to mitigate some of
the rainbow table risk by requiring multiple rainbow tables to be pre-generated
for every possible salt that might be present in the database.

142

Password Cracking

Update: New 25 GPU Monster Devours
Passwords In Seconds

Editor’s note: I've updated the article with some new (and in some cases) clarifying detail from Jeremi. I've
left changes in where they were made. The biggest changes: 1) an updated link to slides 2) clarifying that
VCL refers to Virtual OpenCL and 3) that the quote regarding 14char passwords falling in 6 minutes was
for LM encrypted — not NTLM encrypted passwords. Long (8 char) NTLM passwords would take much
longer-...around 5.5 hours. @ - Paul

There needs to be some kind of Moore’s law analog to capture the tremendous advances in the speed of
password cracking operations. Just within the last five years, there’s been an explosion in innovation in this
ancient art, as researchers have realized that they can harness specialized silicon and cloud based computing

pools to quickly and efficiently break passwords.

A presentation at the Passwords”12 Conference in
Oslo, Norway (slides available here - PDF), has
moved the goalposts, again. Speaking on Monday,
researcher Jeremi Gosney (a.k.a epixoip)

demonstrated a rig that leveraged the Open

Camnnting Tanmsazs (OnanCT) framawarl and 3

https://securityledger.com/2012/12/new-25-gpu-monster-devours-passwords-in-seconds/

Advances in technology continue to make cracking passwords easier.

143

Real World Example — Hash Compromise

Remember the Anonymous attack discussed earlier?

0 rainbow taple-

As luck would have it, the hbgaryfederal.com CMS used MD5. What's worse is that it used MD5 badly: there
was no iterative hashma and no salting. The result was that the downloaded passwords were highly susceptibl

ase S, penormed Using a rambow table-based password cracking websie. Angd so

this is precisely what Ihe anackers did; they used a rainbow table cracking tool to crack the hbgaryfederal.com
CMS passwords,

Even with the flawed usage of MD5, HEGary could have been safe thanks to a key limitation of rainbow tables
each table only spans a given "pattern” for the password. So for example, some tables may support
"passwords of 1-8 characters made of a mix of lower case and numbers " while other can handle only
"passwords of 1-12 characters using upper case only."

A password that uses the full range of the standard 95 typeable characters (upper and lower case letters,
numbers, and the standard symbols found on a keyboard) and which is unusually long (say, 14 or more
characters) is unlikely to be found in a rainbow table, because the rainbow table required for such passwords
will be too big and take too long to generate

Alas, two HBGary Federal employees—CEO Aaron Barr and COO Ted Vera—used passwords that were very
simple; each was just six lower case letters and two numbers. Such simple combinations are likely to be
found in any respectable rainbow table, and so it was that their passwords were trivially compromised

MITRE

Bright, P. (2011, February 15). Anonymous speaks: The inside story of the HBGary hack. Retrieved February 16, 2011, from
http://arstechnica.com/tech-policy/news/2011/02/anonymous-speaks-the-inside-story-of-the-hbgary-hack.ars/

Image: From Wikimedia Commons — Image taken by Vincent Dlamante February 10, 2008. Retrieved September 20, 2011
from https://secure.wikimedia.org/wiki nmons/wiki/File: 1s_at_ /_in_Los_Angeles.jpg

Excapt uhers overss noted. his ok s e under a Crative Commons Atuton-ShareAliks 3.0 Ucenss. () (DO

144

144

Secure Coding ...

How to create salt?
Create small random value
The salt should be different for each user
Can use a hash of the userid in some use cases

Where to store salt?
In the database with the userid/password
Often pre-pended to the password in storage

145

Encryption Words to Live By: #2

If you’re using authentication — encrypt in transmission

CWE-523: Unprotected Transport of Credentials

Login pages not using adequate measures to protect the user name
and password while they are in transit from the client to the server.

SSL (Secure Socket Layer) provides data confidentiality and
integrity to HTTP. By encrypting HTTP messages, SSL protects from
attackers eavesdropping or altering message contents.

146

146

I
Not Encrypting Sessions — Exploit Demo

PCAP - packet capture

Can capture all of the information passing over the network

@0

The InSQR Application

Demo — cd into the 133t/encryption/pcap folder, run the commands in the
example-string file. This will mount a Shared drive location between the VM &
the hosting OS, then start a packet capture of the loopback network interface.
Bring the browser forward and use it to go to the site, login, read a report, etc.
Hit control-C to stop the packet capture. Open the “Netwitness” application on
the hosting OS and import the packet capture file from the Shared drive
location. Demonstrate how the tool has captured all of the information,
including the userids, passwords, etc. Show how all of the request & response
information is captured, and the tool can even preview what the HTML would
have looked like to the users of the real session.

Point out that this can capture initial passwords. Some sites encrypt *just* the
login submission but nothing else. Point out that this could then capture the
session ID and allow anyone to become this user (similar to the Firesheep
plug-in mentioned in an earlier demo). Finally, note that the data itself which is
rather sensitive, can also be fully captured.

147

Real World Example — Packet Capture

Remember the Firesheep plug-in attack discussed earlier?

Firefox Add-On “Firesheep” Brings Security
Problem For Popular Websites Over Insecure
Wireless Networks

How Firesheep Works:

Firesheep is basically a packet sniffer lhat can analyze all the unencrypted Web traffic on an open
Wi-Fi connection between a Wi-Fi router and the personal computers on the same network.
intercepting and
ookies are small text files

on hijacking, which i

Firesheep initiates a type of attack known as

stealing session cookies when they get transmitted over the air. Session
containing unique identifiers, which are stored inside the browser and are used by websites to

determine if a user is logged in or not.

Facebook offers protection against wireless Firesheep
attack

Starting today, users can connectto Facehook using HTTPS

Pillai, J. (2010, October 28). Firefox Add-on “Firesheep” brings security problem for popular websites over insecure wireless networks. Retrieved February 25,
2011, from http://news.ebrandz.com/miscellaneous/2010/3657-firefox-add-on-firesheep-brings-security-problem-for-popul. ites-over-insecul i
networks-.html
McMillan, R. (2011, January 26). Facebook offers protection against wireless Firesheep attack. Retrieved March 3, 2011, from http://www.networkworld.com/
news/2011/012611-facebook-offers-protection-against-wireless.html

MITRE Except whers e e, s vor s cansd under rate ommons Auton Sharehe 0 Lerse.[EORDIOT] 148

148

Real World Example - POODLE

CBC encryption in SSL 3.0 S5t Proken, again, in POODLE attack
for 18 years

Block cipher padding is
not deterministic
not covered by the MAC

Man in the Middle
control request
padding fills an entire block
reveals one byte at a time

[Encryption is HARD!]

Retrieved October 27, 2014, from http://arstechnica.com/security/2014/10/ssl-broken-again-in-poodle-attack/

MITRE Except whers e e, s vor s cansd under rate ommons Auton Sharehe 0 Lerse.[EORDIOT]

SSL has been around oy Peter Bright - Oct 152014, 12.15am EDT —

149

http://arstechnica.com/security/2014/10/ssl-broken-again-in-poodle-attack/

https://www.openssl.org/~bodo/ssl-poodle.pdf

149

Encryption Words to Live By: #3

Properly seed random number generators

CWE-330: Use of Insufficiently Random Values

The software may use insufficiently random numbers or values in a
security context that depends on unpredictable numbers.

When software generates predictable values in a context requiring
unpredictability, it may be possible for an attacker to guess the next
value that will be generated, and use this guess to impersonate
another user or access sensitive information.

MITRE

The third of our words to live by is "properly seed random number generators".
This corresponds to CWE-330 titled "Use of Insufficiently Random Values". As
developers, we often find ourselves needed a random number. There are
many options available to us and choosing an incorrect option can leave our
application vulnerable to an attack.

150

Use of Random Numbers

Symmetric keys and initialization vectors for block ciphers
Session IDs

Gambling games
lotteries
slot machines

Statistical sampling

Seed for a Pseudo Random Number Generator

MITRE

e 30 Ucense. [DO 151

o

Random numbers are needed in many different types of applications.
Cryptography is first type that comes to mind. The block ciphers that we talked
about in a previous section rely on random numbers for their symmetric keys
and for the initialization vectors used to encrypt the first block. Session ids also
rely on random number to make sure that an attacker can't guess a valid id
and hijack a session. Games focused on gambling, and statistical sampling
also leverage random number generation to operate correctly. Finally, a
random number is needed to seed a Pseudo Random Number Generator. This
is a bit of chicken and the egg problem that we will touch on in a few slides.

151

Real World Example - Chip and Pin

Many ATMs and point-of-sale
terminals use a predictable
random number

Attack:

attacker predicts “unpredictable
number” (UN)

customer uses a controlled terminal

"extra" transaction is performed [t 9 IOt O - PO TS < o |
using the UN and a future date

chip on credit card produces an
Authorization Request Cryptogram
(ARQC) based on UN

when time is right, attacker uses
fake card with pre-recorded ARQC
at ATM to withdraw cash

Vamosi, R. (2012, September 13). Researcher: Lack of Random Number ion Hurts EMV. R d November 5, 2014, from
http://www.mocana.com/blog/2012/09/13/researcher-lack-of-random-number-generation-hurts-emv

Payment cards contain a chip so they can execute an authentication protocol.
This protocol requires point-of-sale (POS) terminals or ATMs to generate a
nonce, called the “unpredictable number” (UN), for each transaction to ensure
it is fresh. If attackers can predict what "unpredictable number" (UN) a
particular model of ATM or point of sale (PoS) terminal will generate at a future
point in time, they can force genuine cards to compute an Authorization
Request Cryptogram (ARQC) for a transaction with a future date and then use
that ARQC with rogue chip cards. Researchers have discovered that some
EMV (Europay, MasterCard and Visa standard) implementers have merely
used counters, timestamps or home-grown algorithms to supply this number.
This exposes them to a "pre-play" attack.

In one scenario, for example, a customer goes into a coffee shop that happens
to be controlled by a criminal gang and which uses payment terminals with
maliciously modified firmware. The customer would insert his payment card
into one of the rogue terminals in order to pay for his coffee. The card uses a
secret encryption key that is securely stored on its chip to compute an
authorization request cryptogram (ARQC) from the transaction data and the
UN provided by the PoS. The terminal would process the current transaction
and, in addition to initiating the legitimate payment, would force the card to

152

Secure Coding ...

Pitfalls
Use of predictable random number generators
C: rand()
Java: java.util.Random()

Forgetting to seed the random number generator -or- Using the
same seed every time

will generate identical sequences of numbers

Java.Security.SecureRandom
(typically) uses the SHA1PRNG generator
seeds itself using /dev/urandom
collects random data from disk reads, mouse movement, keystrokes, etc.

be careful overriding the PRNG or seed, make sure you know what
you are doing

MITRE e e o v st oG s e 0D

As developers, we need to focus on two things when we attempt to generate a
random number. 1) Use a strong Pseudo Random Number Generator (PRNG)
that does not produce predictable output. An attacker that has access to past
values, must not be able to guess what the next value will be. 2) Seed the
PRNG with a random value and make sure that the seed is different each time
the generator is initiated. This will prevent the PRNG from generating an
identical sequence of random number which would violate point #1 above.

For those that use Java, the library Java.Security.SecureRandom is
recommended as the underlying SHA1PRNG generator have been proved to
be sound. It also self-seeds itself using /dev/urandom.

153

CLOSING REMARKS

MITRE cpthers s e, s work s s ndr a Crsive Camnans Al Sharels 20 s, (GO 158

154

Security Mechanisms to Achieve Goals

Authentication _—> C

Authorization 77) onfidentiality
Session Management

Data Validation I nterity

Error Handling

Logging A
Encryption - Wailability

155

Secure Coding Words to Live By

Authentication
Enforce basic password security
Implement an account lockout for failed logins
“Forgot my password” functionality can be a problem
For web applications, use and enforce POST method

Authorization
Every function (page) must verify authorization to access
Every function (page) must verify the access context
Any client/server app must verify security on the server

Error Handling
Don't disclose information that should remain private
Remember to cleanup completely in an error condition

Encryption
If storing passwords — hash with a salt value
If you're using authentication — encrypt in transmission
Properly seed random number generators

Data Validation
Validate data before use in SQL Commands
Validate data before sending back to the client
Validate data before use in ‘eval’ or system commands
Validate all data lengths before writing to buffers

Session Management
Enforce a reasonable session lifespan
Leverage existing session management solutions
Force a change of session ID after a successful login

Logging
Avoid logging sensitive data (e.g., passwords)
Beware of logging tainted data to the logs
Beware of logging excessive data
Beware of potential log spoofing

&

156

CWE Top 25

CWE-89

CWE-78

CWE-120
CWE-79

CWE-306
CWE-862
CWE-798
CWE-311
CWE-434
CWE-807
CWE-250
CWE-352
CWE-22

CWE-494
CWE-863
CWE-829
CWE-732
CWE-676
CWE-327
CWE-131
CWE-307
CWE-601
CWE-134
CWE-190
CWE-759

Improper Neutralization of Special Elements used in an SQL Command (‘SQL Injection’)
Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection’)
Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow')

Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting')
Missing Authentication for Critical Function

Missing Authorization

Use of Hard-coded Credentials

Missing Encryption of Sensitive Data

Unrestricted Upload of File with Dangerous Type

Reliance on Untrusted Inputs in a Security Decision

Execution with Unnecessary Privileges

Cross-Site Request Forgery (CSRF)

Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
Download of Code Without Integrity Check

Incorrect Authorization

Inclusion of Functionality from Untrusted Control Sphere

Incorrect Permission Assignment for Critical Resource

Use of Potentially Dangerous Function

Use of a Broken or Risky Cryptographic Algorithm

Incorrect Calculation of Buffer Size

Improper Restriction of Excessive Authentication Attempts

URL Redirection to Untrusted Site (‘Open Redirect')

Uncontrolled Format String

Integer Overflow or Wraparound

Use of a One-Way Hash without a Salt

MITRE

ceper e i i i e G ammans it St 30 e, (RO

157

External Resources

DHS: Secure Coding Pocket Guide
https://buildsecurityin.us-cert.gov/swa/downloads/Secure_Coding_v1.1.pdf

SAFECode: Fundamental Practices for Secure Software Development, 2nd Edition
http://www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf

Microsoft: Writing Secure Code, 2" Edition
http://www.microsoft.com/learning/en/us/book.aspx?ID=5957&locale=en-us

CERT: Secure Coding in C and C++
http://www.cert.org/books/secure-coding

Viega/McGraw: Building Secure Software
http.//collaboration.csc.ncsu.edu/CSC326/Website/lectures/bss-ch1.pdf

OWASP: Secure Coding Principles
http://www.owasp.org/index.php/Secure _Coding_Principles

MITRE Exceptwhers e e, s vor s cansed under e Commons At Sharehte 30 Lerse.[CORDIC) 158

158

THANK YOU!

MITRE et hers s e, s work e under a Crsie Cominans Al ShareAls 30 Lisnss. (@) 159

159

