Advanced x86:

BIOS and System Management Mode Internals
Trusted Computing Technologies

Xeno Kovah && Corey Kallenberg
LegbaCore, LLC

8

LEGBACORE

WE DO DIGITAL VOODOO

All materials are licensed under a Creative

Commons “Share Alike” license.
http://creativecommons.org/licenses/by-sa/3.0/

You are free:

@ to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

®

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

© ®

Attribution condition: You must indicate that derivative work
"Is derived from John Butterworth & Xeno Kovah'’s ‘Advanced Intel x86: BIOS and SMM’ class posted at http://opensecuritytraining.info/IntroBIOS.html” 2

NOTE

 There’s an entire 2 day class all about TPMs,
and what they can and can’t do, here:

* http://opensecuritytraining.info/
IntroToTrustedComputing.html|

* (Why John chose not to reuse some of that
material, | don’t know)

Motivation

* “Secure Boot” does some sort of check on the integrity
of components (such as a digital signature check) while
booting up. If the check works, it continues.

— So you basically have a situation where it’s either
— And as you saw, it can be bypassed

 “Measured Boot” may allow the system to still boot
even if an integrity violation occurs, but it allows
integrity evidence to be collected and stored into a
trustworthy location like the TPM
— Information can then be sent back to an “appraisal” server

(in a process known as “remote attestation”) for making
the determination of whether a system is infected or not

How computers do measured boot

Measure BIOS, Option ROMs, etc (before invocation
Store to TPM >

sﬁ

BOOt Loade r Boot loader measures OS/

hypervisor before handing off

‘ OS/hypervisor measures apps, etc

OS/Hypervisor

BIOS

(Basic Input/Output System) Measure boot loader (e.g. MBR)

Store measurement to TPM >
Hand off to boot loader

Applications

Trusted Platform Module™ (TPM)

* A physical chip soldered to the
motherboard
— There are logical/software TPMs, but
not relevant to this course
« And not a good idea
 Passive chip. Programmed by
applications (like the BIOS)

« Created by a committee of
companies and organization
collectively called the Trusted
Computing Group (TCG)

« The goal of the TCG is to provide an
architecture that implements
Trusted Computing

 Trusted Computing means that your The TPM chip on the E6400
system will behave as expected or
at least be able to provide reports
iIndicating that it might not be

*This is only a basic primer on TPM; just enough to understand the BIOS relation to the trusted computing technologies which the TPM provides. Also, this
is all based on the 1.2 Specifications, since 2.0 is not finalized, and therefore hardware using it is not common yet. 6

TPM Functionality:

Platform Integrity Reporting

A TPM has 3 basic functions:

1. Platform Integrity Reporting (aka: Root of Trust for Reporting)
2. Platform Authentication

3. Secure Storage

Platform Integrity Reporting is actually the only one that
Is really applicable to this class

Includes the measurement performed by the BIOS code
(including UEFI)

Also includes the integrity reporting feature of the TPM to
provide a snapshot of the measurement state

We’'ll cover this topic in a bit

TPM Functionality:

Platform Authentication

 ATPM has 3 basic functions:
1. Platform Integrity Reporting (aka: Root of Trust for Reporting)
2. Platform Authentication
3. Secure Storage

« Platform Authentication refers to creating Authentication
|dentity Keys (AIK)
— Used to sign PCR quotes

TPM Functionality:

Secure Storage

« ATPM has 3 basic functions:
1. Platform Integrity Reporting (aka: Root of Trust for Reporting)

2. Platform Authentication
3. Secure Storage

* Secure Storage provides two functions:

1. Binding — Encrypts data. Data can be encrypted with a
migratable key so that it is bound to a specific TPM/platform or
it can be encrypted with a migratable key so that the data can
be migrated to another system. Caller provides the valid key to
decrypt.

2. Sealing — Encrypts data (keys, etc.) so that it will only be
decrypted when the system PCRs are in a particular state.
Sealed data must be encrypted with non-migratable keys so the
data encrypted is bound to the platform/TPM.

* Microsoft BitLocker uses the TPM Secure Storage
Sealing feature

TPM Key Types

 Endorsement Key

— Permanently embedded in the TPM hardware at the time of
manufacture

— The private part of the Endorsement Key is never released
outside of the TPM

— Can be used to verify that software is communicating with an
actual TPM (as opposed to a malicious software application
pretending to be a TPM)

« Storage Root Key

— Created when the TPM is initialized by software

— Used to encrypt/decrypt keys created by an application so that
they can be stored outside the TPM

— Embedded in the TPM hardware, can be overwritten if the TPM
Is cleared and re-initialized

TPM Key Types

* Migratable Keys
— Can be migrated to another TPM/platform

* Non-Migratable Keys

— Stored within the TPM shielded storage
— Cannot be migrated to another platform/TPM

 Attestation Identity Keys (AIK)

— Non-migratable keys

— Used to sign "quotes” of PCR values when requested by an
application
» Therefore the main key we often care about for “remote attestation”

TPM Components

Functional TPM Diagram

TPM Root of Trust for Reporting RTR

* Provides cryptographic mechanism to digitally
sign TPM state and information

RTR RTS Root of Trust for Storage RTS

* Provides cryptographic mechanism to protect
information held outside of the TPM

G
RIM Root of Trust for Measurement
ﬁ * Provided by platform to measure platform state
Implemented * Defined by platform specification
by the BIOS Interaction between RTR and RTS is important TPM capability
developer

Base diagram from
http://www.intel.com/content/dam/doc/white-paper/uefi-pi-tcg-firmware-white-paper.pdf

12

Platform Integrity Reporting

« This functionality combines what is called (in TPM-land) the
Root of Trust for Reporting (RTR) and the Root of Trust for

Measurement (RTM)

« Per TCG: “The RTM is a computing engine capable of making
inherently reliable integrity measurements.*”

* The code that performs the measurements are implemented
outside the TPM (as shown in the previous slide)
— By the BIOS, for example.

« There are two types of RTMs, Dynamic and Static.

« Dynamic means that trust is established after the operating
system has booted. Trust is established even when the
system booted in an insecure state

 Intel’'s Trusted Execution Technology (TXT) uses DRTM

— TXT is an entire course unto itself which Xeno is preparing

— www.invisiblethingslab.com/resources/2011/

Attacking Intel TXT via SINIT hijacking.pdf
*I1SO/IEC 11889-1 Information Technology Trusted Platform Module, Pt.1

Static Root of Trust for Measurement*
(SRTM)

« Also called Measured Boot (Not to be confused with Secure
Boot, that’s a different entity discussed in the UEFI portion)

« (General idea is that the next component of the boot
sequence is measured before control is handed off to it

* Thus forms a “chain of trust” where each component has
been measured before it executes

o “Static” refers to the idea that the same components are
measured each time and that their measured values
should not change

« Begins life in the BIOS so its implementation is thus the
responsibility of the vendor

 The first of these measurements is called the Core Root
of Trust for Measurement (CRTM)

*Often referred to as S-CRTM, Static-Core RTM

Core Root of Trust for Measurement
(CRTM)

Whereas it's said the SRTM forms a “chain of trust”, the
CRTM forms the “anchor”

CRTM is responsible for measuring the next component
in the boot sequence (next link in the chain)

Being part of the overall SRTM, it always begins life in
the BIOS

As a guideline, CRTM should perform its measurements
as soon as possible (start establishing trust sooner than
later)

According to the TCG, the “TPM and CRTM are the only
trusted components on the Motherboard” (TCG PC
Client Specification for Conventional BIOS)

M e a S U re d BOOt ("measured boot" != UEFI "secure boot")

Master Boot Record

Partition Table

Measure 4 £

Measure 5

BIOS code on flash chip
Core Root of Trust for Measurement
(CRTM)

BIOS configuration
J in non-volatile RAM

Measure 1

("nvram"/"CMOS"))

Measure O

Extend PCR4
Extend PCR5

Extend PCR3

Extend PCR2

Extend PCR1

Extend PCRO
<

~
N

[

J

Trusted Platform Module (TPM)

Y
This collection of measurements going forward is the

Static Root of Trust for Measurement (SRTM)

16

CRTM (im)Mutability

* “The Core Root of Trust for Measurement (CRTM) MUST
be an immutable portion of the Host Platform’s
initialization code that executes upon a Host Platform
Reset”

 “Immutable means that in order to maintain trust in the
Host Platform, the replacement or modification of code or
data MUST be performed by a Host Platform

manufacturer-approved agent and method.”™

« Basically they are telling vendors that they know the
CRTM will be implemented on mutable flash hardware,
but that they will be in compliance as long as its only
their code that ever changes it.

« That works great until it doesn't...
*TCG PC Client Implementation for BIOS

Platform Configuration Registers
(PCRs)

The measurements of each component are stored on the
TPM in registers

There are at least 16 PCRs on a TPM, each 20 bytes
long

Initialized to 0 each time the platform is reset
Can only be modified by an extend function
PCR[n] = SHA-1 (PCR[n] || measured data)

— where || denotes concatenation

So basically, each PCR represents the state of one or
more boot components (at the time of measurement)

Each boot component is represented as a SHA-1 hash

PCR Standard Usage
e

0 S-CRTM, BIOS, Host Platform Extensions, and
Embedded Option ROMs

Host Platform (Motherboard) Configuration
Option ROM code

Option ROM Configuration and Data

IPL Code (usually the MBR) and Boot Attempts
IPL Code Configuration and Data

Power State Transition (sleep, hibernate, etc.)
Defined by OEM

8-15 Unassigned

N o o AW N e

« Each PCRis intended to store a different measured
component, defined by TCG

* The implementation is actually up to the vendor

IPL = Initial Program Loader, typically the Master Boot Record (MBR)

19

General Problems with PCR Hashes

« Opagueness
— Generally no golden set of PCRs is provided by the OEM.

« Some vendors like HP have started to finally provide this! Yay!

— No description of what is actually being measured and incorporated into
the PCR values.’

— “Homogeneous” systems can have different PCR values.?

— (IjDuthicate PCR values are unexpected if they're measuring different
ata...

Example E6400 PCR Set:

hexadecimal value index | TCG-provided description
Se078ata88ab65d0194d429¢43¢0761d93ad2f97 | O S-CRTM. BIOS, Host Platform Extensions,

and Embedded Option ROMs

Host Platform Configuration

Option ROM Code

Option ROM Configuration and Data

IPL Code (usually the MBR) and Boot Attempts
IPL Code Configuration and Data

a891b8188caa9590e6129b633b144a68514490d5
a891b8188caa9590e6129b633b144a68514490d5
a891b8188caav390e6129b633b144a68514490d5
5dr3d741116ba76217926bfabebbd4eb6de9fech

2ad94¢cd3935698d6572bad7 1 5¢946d6dfechb2dsS

N | L] B

1. The TCG specification gives vague guidelines on what should be incorporated into individual PCR values, and
many decisions are left to the vendor.

2. Based on our own observation of PCR values across various systems.

E6400 PCRO (CRTM) Measurement

I —
FF6E_0000™ -

FFF8_0000 7

/l

se|npow

passaldwod
Jo ureyp

FFFB_231A
FFFF_0000

FFFD_09A2
FFFD_097C

FFFF_FFFF

abuel sO|I9
=

-_—

abuel
%00|q
joogd

OEM SRTM

-

« PCRO should contain a measurement of the CRTM and other
parts of the BIOS.

* In the above diagram, the dark areas represent what the E6400
actually incorporates into the PCR0O measurement.

* Only 0xA90 of the total 0x1A0000 bytes (.15%) in the BIOS
range are incorporated, including:

— The first 64 bytes of the 42 compressed modules.
— Two 8 byte slices at 0xDF4513C0 and OxDF4513C7.
— The CRTM is not incorporated at all.

*Typo in image: BIOS Base on the E6400 is located at FFE6_0000h

Implications of the weak SRTM

Measurements for things like PCI option ROMs and BIOS
configuration are not actually captured.

We can modify the majority of the E6400 BIOS without
changing any of the PCR values.
— Yuriy Bulygin presented a similar discovery at CanSecWest 2013

regarding his ASUS P8P67

« "Evil Maid Just Got Angrier: Why Full-Disk Encryption With TPM is Insecure
on Many Systems" — Yuriy Bulygin — March 2013
http://cansecwest.com/slides/2013/Evil%20Maid%20Just%20Got
%20Angrier.pdf

As long as the Flash can be modified, the measurement code
which executes from the flash can be modified to report false
negatives

Let's take a look at some weaknesses that come along with a
S-CRTM that provides incomplete coverage

Reading PCRs W|th OpenTPM

Et DebugView on \\HAR

File Edit Capture Options Computer Help

sEHE | | @» A BEBT

S = 4

Time

.00000000
.00000293
.00002713
.06757768
.07585349
.08479290
.09151092
.09612746
.10285245
.10794120

=
o

H OO J0 Ok WN
O OO OO OO OO

Debug Print

MITRE TPM Driver Loading

Papa Legba, Hear my call!!!

TIS Init: vendor id: 0x200114e4

Dumping PCR Registers
a3ead4175898c8e1£9d7828943e47a7523a48fdel
a89fb8f88caa%590e6129b633b144a68514490d5
a89fb8f88caa%9590e6129b633b144a68514490d5
a89fb8f88caa%9590e6129b633b144a68514490d5
5df3d741116ba76217926bfabebbd4eb6de9fecb
2ad9%4cd3935698d6572ba4715e946d6dfecb2d55

Corey Kallenberg wrote OpenTPM which queries and

dumps the PCR register set
* Open source: https://code.google.com/p/opentpm/

Activate/enable your TPM in your BIOS settings to use it

23

vulnBIOS Example: Incomplete S-
CRTM Coverage

o HxD - [C:\Copernicus_BIOS.bin]

i) File Edit Search View Analysis Extras Window ?

® oM ey 16 [v|| AnsI v|| hex v

i Copernicus_BIOS.bin

Y
v ‘

Offset (h) 00 01 02 03 04 0S5 06 07 08 0S 0OA OB OC OD OE OF

003FFFS0 S0 EA FO FF 30 00 00 00 00 0O 0O 00 00 00 00 0O
003FFFAO 00 00 00 00 00 00 00 00 00 0O 0O 0O 0O 00 00 0O
003FFFBO 00 00 00 00 00 00 00 00 0O 0O 0O 0O 0O 00 00 0O
003FFFCO 00 00 00 00 00 00 00 00 0O 0O 0O 0O 0O 00 00 0O
003FFFDO 00 00 00 00 00 00 00 00 0O 0O 0O 0O 0O 00 00 0O

OO3FFFEO 00 00 00 00 00 00 00 00 00 00 0O 00
O0O3FFFFO ES 3D FE 00 00 00 00 00 00 00 0&_00 00 00 00 OO

Offset: 3FFF5D Overwrii

Either view your existing BIOS dump or make a new one
using Copernicus

Open in HxD and skip to the end (entry vector)
Notice bytes 3F FFFB — 3F _FFFE are Oh

vulnBIOS Example: Incomplete S-
CRTM Coverage

0 HxD - [C:\Copernicus_BIOS.bin]

i File Edit Search View Analysis Extras Window ?

Wl ier16 o] AnsI o[hex |5

i Copernicus_BIOS.bin

5
X v

Offset (h) 00 01 02 03 04 0S5 06 07 08 0S OA OB OC OD OE OF

003FFFS0 S0 EA FO FF 30 00 00 00 00 0O 00 00 0O 00 00 0O
003FFFAO 00 00 00 00 00 00 00 00 00 0O 0O 0O 0O 00 00 00O
003FFFBO 00 00 00 00 00 00 00 00 0O OO 0O 0O 0O 0O 00 0O
003FFFCO 00 00 00 00 00 00 00 00 0O 0O 0O 0O 0O 00 00 0O
0O3FFFDO 00 00 00 00 00 00 00 00 0O 0O 0O 0O 0O 00 00 0O

O0O3FFFEO 00 00 00 00 00 00 00 00 00 00 0O 00
0O0O3FFFFO ES 3D FE 00 00 00 00 00 00 00 O0&QDE AD BE EEJO0O

Offset: 0 Overwr

This will only run on E6400 systems!

Execute the ‘tpm_spi_write_no_change pcr.sys’ driver

This writes DEADBEEFh as you can see (in this case, on this
system, this does not prevent the system from booting, YMMV!!!)

Reboot

vulnBIOS Example: Incomplete S-
CRTM Coverage

B\ DebugView on \\HAR

File Edit Capture Options Computer Help
SHE | QA S» A BEBT 99 | #

Time Debug Print

1 0.00000000 MITRE TPM Driver Unloading...

2 5.08360577 MITRE TPM Driver Loading

3 5.08361340 Papa Legba, Hear my call!!!

4 5.08364820 TIS Init: vendor id: 0x200114e4

5 5.14654732 Dumping PCR Registers

6 5.15417433 a3ea4175898c8e1£9d7828943e47a7523a48fdel
7 5.16169834 aB89fb8f88caa9590e6129b633b144a68514490d5
8 5.17112827 aB89fb8f88caa9590e6129p633b144a68514490d5
9 5.17752743 aB89fb8£f88caa9590e6129p633b144a68514490d5
1.5.18293333 5df3d741116ba76217926bfabebbd4eb6de9fechb

After rebooting the system,

— Required because the BIOS has to re-run the measured boot process and
re-populate the PCRs

Re-run the OpenTPM driver
Notice in particular PCRO is the same (they are all the same)

So an attacker can modify big chunks of the BIOS without triggering
a change to PCRO!

But wait — it gets worse! .

The Real Weakness: Mutab

le CRTM

Still weak; assuming the
attacker can get into
SMRAM or overwrite the
flash either by exploiting a
code vulnerability or
misconfigured system

 —— |
FF6E_0000 —
FFF8_0000 —\—3 o
Q
ol 325
o5
o |3 fa <
FFFB_231A E Y
FFFF_0000 o -
FFFD_09A2 22w
- OEM SRTM 3588
FFFD_097C /‘8 %2

FFFF_FFFF

Don’t let the sparse measurement coverage in the previous slide

distract you from the real issue — it is a red herring!

What *really* makes the S-CRTM weak is the fact that the CRTM is
implemented on mutable flash hardware (the BIOS)

As we’ve seen, it can be trivial to overwrite the BIOS flash
An attacker who identifies the part of the BIOS that performs the

CRTM measurement can simply overwrite it and th

It doesn’t matter even if the ENTIRE BIOS is being
— The attacker may just have to work a little harder

erefore control it
measured

27

Normal BIOS PCRO Measurement

0 4GB

'\QA(

L

System RAM

| ——{ PCRO=SHA1(0,, | 0xf005b411...)

BIOS

Intel® ICH9

0xf005b411...

28

PCRO Measurement with a Tick

nnel A 4(

0 4GB

A
OMI | Controller
l'ﬁ(f‘)cql Link

Intel® ICH9

N

System RAM

——{ PCRO=SHA1(0,, | 0xf005b411...)

BIOS

SPI Flash N)
*foo s
6477

29

Mutable S-CRTM Problem

But actually, if the attacker can write to the BIOS, they can modify
any/all of the BIOS regardless of whether its being measured and

simply forge the PCR values
http://www.youtube.com/watch?v=S0IRcm3jvFo

30

Quick Diversion: RW Everything Scripting

« RW Everything is a good tool for gathering all kinds of
information about the system

* It has a scripting interface and a good command set so
it's good for prototyping commands that touch bare-metal
without writing a kernel driver (assuming windows, if
Linux then just IOPL your way to Ring0 bliss)

— Just be wary of syntax and expect a kernel crash now and then if
you make a mistake

— I've found that 64-bit Windows is more sensitive to RWE-related
crashing
« This lab serves to show you some of RWE's scripting
capabilities and how to use it for quick testing of ideas

Use RW-E Scripting to Read a PCR

.Rw Read & Write Utility v1.4.9.7 | E)) | ¢ Open RW

Access Specific Window Help E h
H;daigd%v%al i \{eryt Ing
HE< &= w5 Click on the CMD

' Command E]@ i CO n

=

Starting Command Interpreter function...

32

Use RW-E Scripting to Read a PCR

"B RW - Read & Write Utility v1.4.9.7

o | B |t]

cific Window Help

;ﬂﬂg

=% W=

Starting Command Interpreter function

* On your Desktop
find the file named
‘ReadPCRO.rw”

* The file contents
are on the next
slide in case you
have to enter it by
hand or don’'t want
to do the lab but
just see what
features RW
Everything offers

33

This is the PCR Com
>W 0xfed40000 0x20
>W 0xfed40000 0x02
>W 0xfed40018 0x40
>W 0xfed40024 0x00
>W 0xfed40024 Oxcl
>W 0xfed40024 0x00
>W 0xfed40024 0x00
>W 0xfed40024 0x00
>W 0xfed40024 0x0e
>W 0xfed40024 0x00
>W 0xfed40024 0x00
>W 0xfed40024 0x00
>W 0xfed40024 0x15
>W 0xfed40024 0x00
>W 0xfed40024 0x00
>W 0xfed40024 0x00

mand Blob

RW Everything Commands

MMIO to the memory
address range reserved
for TPMs

THIS IS THE # PCR YOU WANT TO READ (0-16 OR WHATEVER)

>W 0xfed40024 0x00
>W 0xfed40018 0x20
ok now read the PC
>R Oxfed40024
>R 0xfed40024
>R 0xfed40024
>R Oxfed40024
>R 0xfed40024
>R Oxfed40024
>R 0xfed40024
>R 0xfed40024

>R 0xfed40024 &

>R 0xfed40024
>R Oxfed40024
>R 0xfed40024
>R 0xfed40024
>R Oxfed40024
>R 0xfed40024
>R Oxfed40024
>R 0xfed40024
>R 0xfed40024
>R Oxfed40024
>R 0xfed40024
>R 0xfed40024
>R 0xfed40024
>R 0xfed40024
>R Oxfed40024
>R 0xfed40024
>R 0xfed40024
>R 0xfed40024
>R 0xfed40024
>R Oxfed40024
>R 0xfed40024

N Change this one to

read a different PCR
(0-N)

Note how we just keep

reading the same data

location and will keep
getting back different data

Commands in ReadPCRO
are on the left

Be wary of syntax!

W O0xFED4000 0x20

— Writes a Byte to OxFED4000
(physical address)

— W16 will write a Word
— W32 will write a DWord

R OxFED40024

— Reads a Byte from physical
address OxFED40024
Yes it's ugly but can still be

leveraged to save you time
to test a PoC

Use RW Everything to Read a PCR

@1 Command

BT

R Oxfed40024

Read Memory Address
>R 0xfed40024
Read Memory Address
>R 0xfed40024
Read Memory Address
>R 0xfed40024
Read Memory Address
>R 0xfed40024
Read Memory Address
>R 0xfed40024
Read Memory Address
>R 0xfed40024
Read Memory Address
>R 0xfed40024
Read Memory Address
>R 0xfed40024
Read Memory Address
>R 0xfed40024
Read Memory Address

OxXFED40024

OxXFED40024

OxXFED40024

OxXFED40024 3

OxXFED40024 ¥F

OxXFED40024

OxXFED40024

OxXFED40024 -

OxXFED40024

OxXFED40024

=0

Ox8A

OxFA

- Ox88

- OxAB

0x65

= 0xDO

=\0x19

If OpenTPM works
on your system, then
this will too

Output is a bit
verbose, but the
PCR value will be in
there after the
header

| couldn’t expand the
output window to
capture the whole
PCR for the

screenshot

But still good for
prototyping, testing,
probing

35

Trusted Computing Research:
Timing-Based Attestation (TBA)

"Build your software so that if its code is modified, it runs slower.’

« CMU has done a lot of research in this area (Seshadri, et al)
and we applied it to the protection of Windows kernel memory
& the BIOS

« Uses a timing side-channel to provide constant runtimes in
absence of an attacker

* Forthe BIOS, it's meant to replace the CRTM only, not the
entire SRTM

* Presenting this briefly just to provide an example of one way

to protect a mutable codebase (e.g. embedded systems, HD
firmware, NIC firmware, phone bootloaders, etc)

* Could be executed immediately upon system boot

Two Components of
“BIOS Chronomancy”

—

\l

eSS

> BIOS Chronomancy

37

Self-Check Requirements

Reads its own data

— Incorporated into checksum so if it changes the checksum
changes

Reads its own data pointer and instruction pointer

— Indicates where in memory the code itself is reading and
executing

Nonce/PseudoRandom Number (PRN)

— Prevent trivial replay, decrease likelihood of precomputation
due to storage constraints

Do all the above in millions of loop iterations

— So that ideally an instruction or two worth of conditional checks
per loop iteration leads to millions of extra instructions in the
overall runtime

Simplified Self-Check Component

checksum[@] += nonce;
checksum[1] ~= DP;
checksum[2] += *DP;
checksum[4] ~= EIP;

mix(checksum);

nonce += (nonce*nonce) | 5;
DP = codeStart + (nonce % codeSize);

iteration++;

 Each block differs from the
others so attacker will have
to forge every block

S

“blocks”

39

Self-Check “Pseudo-Random Walk”

 Pseudo-Random based
on Tick Session Nonce
obtained from TPM

e |terates through the
blocks a million times
or so

Entire BIOS

Chronomancy range

is measured by the

self-check, including
the portion that
performs the linear
sweep measurements

40

Measures BIOS,
Option ROMs,
SMRAM, IVT, and
anything else you
want.

Linear Sweeps

P R R

41

Attackers Dilemma: 1 of 3

Attacker wants to
implement a rootkit and
of course wants to hide
its presence.

Attacker is aware of BIOS
Chronomancy and
understands how to
works.

Attacker knows if he does
nothing the linear
sweeps will detect his
presence in the BIOS.
The timing measurement
will be okay, but the
calculated checksum will
differ from the expected.

BIOS Chip

Attackers Dilemma: 2 of 3

* Modifies the linear
sweep code to hide his
presence.

* Turns out the penalty for
modifying the linear
sweep code is negligible.

BIOS Chip

if (DP == myHookLocation)
checksum[2] += copyOfGoodBytes; A

else 7
checksum[2] += *DP; o

Attackers Dilemma: 3 of 3

 However, now the
attacker must also hide
the changes he made to
the linear sweep code
from the self-check
measurement.

checksum[@] += nonce;
checksum[1] ~= DP;
if (DP == myLinearSweepMod)
else

checksum[2] += *DP;
checksum[2] += *DP;
checksum[4] ~= EIP;
mix(checksum);
nonce += (nonce*nonce) | 5;
DP = codeStart + (nonce % codeSize);
iteration++;

Turns out the attacker
suffers tremendous
penalties when
modifying the self-
check.

BIOS Chip

LI U

44

17300

17200

17100

17000

TPM Ticks

16800

16700

1 tick =64 Us

18 E6400s with customized BIOS Chronomancy firmware
625k self-check iterations (diff = ~4.8ms)

Diff is ~4.8 ms. Attacker can win
| sometimes, as shown by measurement - -
times that overlap.

A A T \V="g ey
< ;:5‘32\‘()(/ %* 7% TSRO
(2 RETPKS ‘,«;,\9;;&_ PCRNNARSH

/ 5 " \ N \/

I O BOY A\ LA e e
16900

— . ? /
4‘)'0\6‘:&'1*:5 'A\: D)Ai\!\ ;,é.(= 4§} \>;'f’ 4

PN DAVAV L VIO SO 0 20 . 04 V4
/
| .
Without attacker With bare-minimal attacker

1234567 8 910111213141516171819202122232425262728293031323334353637383940

Measurement Instance
45

22200

22000

21800

21600

TPM Ticks

21400

21200

21000

1 tick =64 Us

18 E6400s with customized BIOS Chronomancy firmware
1.25M self-check iterations (diff = ~32ms)

Diff is ~¥32 ms. Attacker does not win \

in this scenario. SR ST AN

Without attacker

\

Y

|
With bare-minimal attacker

1234567 8 910111213141516171819202122232425262728293031323334353637383940

Measurement Instance
46

33000

32500

32000

31500

TPM Ticks

31000

30500

30000

29500

1 tick =64 Us

18 E6400s with customized BIOS Chronomancy firmware
2.5M self-check iterations (diff = ~ 128ms)

Diff is ~¥128 ms. Attacker does not
win in this scenario. [L A - L

Without attacker

f

With bare-minimal attacker

1234567 8 910111213141516171819202122232425262728293031323334353637383940

Measurement Instance
47

TBA Summary

« TBA was discussed briefly just to introduce you to one
technique that can mitigate the weakness of a mutable
CRTM

« Is it perfect? Nope — and I'll explain why in a sec

« TBA code is open sourced for others to investigate if you
feel inspired to experiment with it and improve it:
— http://code.google.com/p/timing-attestation/

 Timeline of other related work here:
— http://bit.ly/11xEmIV

Of course the simplest fix would be to:

Implement the CRTM on a small, truly immutable, ROM

Provided the remainder of the chain of trust is measured properly

The past decade

(available at http://bit.ly/11xEmIV)

» Remote attestation on legacy ope

& » Software-Based F
» Attack paper: Side effects are not sufficient to authenticate software » Refutation of “On ti
» Mechanisms to Provide Integrity in SCADA
» An analysis of proposed attacks against genuinity tests ~ » SAKE: Software Attestation for Key Establi:
» SCUBA: Secure Code Update By Attestation in Sensor Networks
52) » Software Integrity Protection Using Timed Executable Agents » Retroal
» Attack paper: A generic attack on checksumming-based software tamper resistance
» Remote Software-Based Attestation for Wireless Sensors
» Using Software-based Attestation for Verifying Embedded Systems in Cars >

» SWATT: SoftWare-based ATTestation for Embedded Devices

» Pioneer: Verifying Code Integrity and Enforcing Untampered Code
» Establishing the Genuinity of Remote Computer Systems

& » SBAP: So
Attack paper: On tr

2003 2004 2005 2008 2007 2008 2009 2010
Lrrrerererrrrrerrerererrrrrrrrreerrerrereererrereerererereererrere e e e rrre e e e e e e e

timeglider Nov 16, 2007

TBA Problems: There are a few

* Does not prevent a TOCTOU attack

 The timer on the TPM must be reset to zero each time
the system is reset

— Provide a consistent “window of time” in which a good
measurement was initiated

— Otherwise the attacker could simply perform the measurement at
a later time after having made the proper preparations
* There is no trusted way to determine whether a
measurement has been “skipped” due to platform reset
before (or after) TBA execution (BIOS reset, etc.)
— Still doesn’t solve the evil maid problem

— Measurement will run while Evil Maid’s evil boot loader is
installed, but after the evil maid resets the system and removes
herself the next measurement will report a clean system

Measured Boot Early in Boot Process

One question about the measured boot process is regarding
the question of ‘when’ it is to begin

Since the spec wants each boot component to be measured
before execution control is handed off to it, it seems logical
that the measured boot process should begin as early as
possible in the boot process

Of course this is vendor-dependent as to when they start this
process

I've observed that on the Dell E6400 that this process begins
very “late” after “a lot” of code has already executed (chipset
configuration, SMM instantiation, etc.)

| believe it should be done following the entry vector after the
system has switched to protected mode

And not because “it’s better if it's run early” since the flash is
still mutable regardless...

My reason: because an analyst will be able to easily find the
CRTM code and verify that it “looks right” without having to
RE so much of the BIOS just to find it

51

Measured Boot Early in Boot Process

Technically, this is feasible because the TPM extends
hashing functions to the BIOS and it is a memory-
mapped device

So this is technically feasible:

— Ensure TPM is mapped to memory (location is typically hard-
coded in chipset)

— Initialize the TPM itself and extend measurements to PCRO

— As in accessing the memory-mapped BIOS, we’re not actually
reading memory, we’re accessing a different device

Why isn’t this done? Probably because the BIOS flash
and TPM are both very slow when compared to memory

And booting quickly is the most important thing in the
world!

Vendors should at least provide the option for those who
care and need it...it only has to measure a small amount
of binary. (Ok I'm off my soap box now)

Better CRTMs coming down the pipe:
Intel Boot Guard

« Can’t say much on this at the moment (most docs under NDA, and
haven't evaluated it yet anyway)

* Intel says "Hardware-based boot integrity protection that prevents
unauthorized software and malware takeover of boot blocks critical
to a system’s function, thus providing added level of platform
security based on hardware.”

* Implements the CRTM notionally on the processor itself

* Firmware boot block is measured/verified before the processor
starts executing the SPI flash entry vector

* Provides the following two basic functions
— Measured Boot
— Verified Boot

http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/4th-gen-
core-family-mobile-brief.pdf

Better CRTMs coming down the pipe:
Intel Boot Guard

 It's effectively bringing to the client a superset of the way
Intel Trusted Execution Technology (TXT) on Intel Xeon
servers has apparently always worked: Running a TXT
Authenticated Code Module (ACM) right from CPU reset

Static Chain of Trust Dynamic Chain of Trust
ON Measure Boot Measure Verify Platform
Measure SBIOS A Measure 1fusted Meets Trust Policy
& Validate Code & Valigate 0S Code Additional
AddPonal Measurements Measurements
o MLE (VMM)
] If Platform &
MLE Trusted
>
‘Time

Security
Checks

Lock
Configuration

Figure 1-1. Intel *® TXT launch timeline with static and dynamic chain of trust

From "Intel Trusted Execution Technology for Server Platforms"

54

Better CRTMs coming down the pipe:
HP Sure Start

New integrity & availability technology
Implemented in Embedded Controller (EC)

— They say the EC starts from a true ROM, which would
essentially be the S-CRTM for subsequent measurement of
BIOS

Integrity: Checks a portion of the flash chip (likely only
the boot block), and if it does not have the expected
configuration, restores that portion from EC

Availability: If the integrity check fails, as it might if the
chip was wiped to attempt to brick the BIOS, then this
provides a non-attach-probes-to-the-SPI-chip recovery

We generally see this as a Good Thing™ , and we'd like
to see more and more robust tech like this from other
vendors

HP Sure Start

e Supported models as of April 2014, according
to an email to us from HP

— Elitebook 820 G1

— Elitebook 840 G1

— EliteBook 850 G1

— Zbook 15

— Zbook 17

— EliteBook Folio 1040 G1
— EliteBook Revolve 810 G2

TPM and Bootkits

We have learned that signed firmware updates ensure
that only an authorized BIOS can be installed to flash

However firmware signing won't protect the system from
a malicious boot loader, for example, which can be
located on the hard disk

We know that the measured boot process can detect

changes to critical boot components like the BIOS and
MBR

But unless that detection is paired with something which
provides protection (like Bitlocker or Secure Boot), a
malicious MBR, for example, can still execute

Detection alone could be enough if your TPM is active
and you are actively observing your PCRs

— Few seem to be

TPM: Additional thoughts

You should activate your TPM in your BIOS
Flawed or not, it's better than nothing ®

Typically the BIOS will recognize automatically that the
TPM is activated and you will get all the vendors
measured boot functionality “for free”

Additionally you have to actually observe your PCRs for
changes

— Believe it or not, some people enable the TPM, check
a box, and say “I'm secure now”

Your OEM *might* have a tool you can use to that effect;
otherwise use OpenTPM

Another High-Level Problem:

Untrusted Tools
So we’ve covered how the TPM CRTM may not really
provide trustworthy information

But every tool we use to gather system information
shares this problem

We're relying on tools which have no means of attesting
that the data we intended to read was in fact the data
that was reported to us

We saw this in the Flea attack video where the PCRs
were forged

— We thought we were reading good BIOS, but in fact it was pure
concentrated evil!

An attacker could either attack the tool itself or MitM the
data as it's being read by the application (via VMX for
example)

