
Advanced	
 x86:	

BIOS	
 and	
 System	
 Management	
 Mode	
 Internals	

Trusted	
 Compu-ng	
 Technologies	

Xeno	
 Kovah	
 &&	
 Corey	
 Kallenberg	

LegbaCore,	
 LLC	

All materials are licensed under a Creative
Commons “Share Alike” license.

http://creativecommons.org/licenses/by-sa/3.0/

2
ABribuEon	
 condiEon:	
 You	
 must	
 indicate	
 that	
 derivaEve	
 work	

"Is	
 derived	
 from	
 John	
 BuBerworth	
 &	
 Xeno	
 Kovah’s	
 ’Advanced	
 Intel	
 x86:	
 BIOS	
 and	
 SMM’	
 class	
 posted	
 at	
 hBp://opensecuritytraining.info/IntroBIOS.html”	

NOTE	

•  There’s	
 an	
 enEre	
 2	
 day	
 class	
 all	
 about	
 TPMs,	

and	
 what	
 they	
 can	
 and	
 can’t	
 do,	
 here:	

•  hBp://opensecuritytraining.info/
IntroToTrustedCompuEng.html	
 	

•  (Why	
 John	
 chose	
 not	
 to	
 reuse	
 some	
 of	
 that	

material,	
 I	
 don’t	
 know)	
 	

3	

MoEvaEon	

•  “Secure	
 Boot”	
 does	
 some	
 sort	
 of	
 check	
 on	
 the	
 integrity	

of	
 components	
 (such	
 as	
 a	
 digital	
 signature	
 check)	
 while	

booEng	
 up.	
 If	
 the	
 check	
 works,	
 it	
 conEnues.	
 	

–  So	
 you	
 basically	
 have	
 a	
 situaEon	
 where	
 it’s	
 either	
 “	

–  And	
 as	
 you	
 saw,	
 it	
 can	
 be	
 bypassed	

•  “Measured	
 Boot”	
 may	
 allow	
 the	
 system	
 to	
 sEll	
 boot	

even	
 if	
 an	
 integrity	
 violaEon	
 occurs,	
 but	
 it	
 allows	

integrity	
 evidence	
 to	
 be	
 collected	
 and	
 stored	
 into	
 a	

trustworthy	
 locaEon	
 like	
 the	
 TPM	

–  InformaEon	
 can	
 then	
 be	
 sent	
 back	
 to	
 an	
 “appraisal”	
 server	

(in	
 a	
 process	
 known	
 as	
 “remote	
 aBestaEon”)	
 for	
 making	

the	
 determinaEon	
 of	
 whether	
 a	
 system	
 is	
 infected	
 or	
 not	

4	

How	
 computers	
 do	
 measured	
 boot	

Boot	
 Loader	

ApplicaEons	

OS/Hypervisor	

BIOS	

(Basic	
 Input/Output	
 System)	

Measure	
 BIOS,	
 OpEon	
 ROMs,	
 etc	
 (before	
 invocaEon)	

Store	
 to	
 TPM	

Measure	
 boot	
 loader	
 (e.g.	
 MBR)	

Store	
 measurement	
 to	
 TPM	

Hand	
 off	
 to	
 boot	
 loader	

TPM	

Boot	
 loader	
 measures	
 OS/
hypervisor	
 before	
 handing	
 off	

OS/hypervisor	
 measures	
 apps,	
 etc	
 	

Trusted Platform Module* (TPM)
•  A physical chip soldered to the

motherboard
–  There are logical/software TPMs, but

not relevant to this course
•  And not a good idea

•  Passive chip. Programmed by
applications (like the BIOS)

•  Created by a committee of
companies and organization
collectively called the Trusted
Computing Group (TCG)

•  The goal of the TCG is to provide an
architecture that implements
Trusted Computing

•  Trusted Computing means that your
system will behave as expected or
at least be able to provide reports
indicating that it might not be

The	
 TPM	
 chip	
 on	
 the	
 E6400	

*This	
 is	
 only	
 a	
 basic	
 primer	
 on	
 TPM;	
 just	
 enough	
 to	
 understand	
 the	
 BIOS	
 rela>on	
 to	
 the	
 trusted	
 compu>ng	
 technologies	
 which	
 the	
 TPM	
 provides.	
 Also,	
 this	

is	
 all	
 based	
 on	
 the	
 1.2	
 Specifica>ons,	
 since	
 2.0	
 is	
 not	
 finalized,	
 and	
 therefore	
 hardware	
 using	
 it	
 is	
 not	
 common	
 yet.	
 6	

TPM Functionality:
Platform Integrity Reporting

•  A TPM has 3 basic functions:
1.  Platform Integrity Reporting (aka: Root of Trust for Reporting)
2.  Platform Authentication
3.  Secure Storage

•  Platform Integrity Reporting is actually the only one that
is really applicable to this class

•  Includes the measurement performed by the BIOS code
(including UEFI)

•  Also includes the integrity reporting feature of the TPM to
provide a snapshot of the measurement state

•  We’ll cover this topic in a bit

7	

TPM Functionality:
Platform Authentication

•  A TPM has 3 basic functions:
1.  Platform Integrity Reporting (aka: Root of Trust for Reporting)
2.  Platform Authentication
3.  Secure Storage

•  Platform Authentication refers to creating Authentication
Identity Keys (AIK)
–  Used to sign PCR quotes

8	

TPM Functionality:
Secure Storage

•  A TPM has 3 basic functions:
1.  Platform Integrity Reporting (aka: Root of Trust for Reporting)
2.  Platform Authentication
3.  Secure Storage

•  Secure Storage provides two functions:
1.  Binding – Encrypts data. Data can be encrypted with a

migratable key so that it is bound to a specific TPM/platform or
it can be encrypted with a migratable key so that the data can
be migrated to another system. Caller provides the valid key to
decrypt.

2.  Sealing – Encrypts data (keys, etc.) so that it will only be
decrypted when the system PCRs are in a particular state.
Sealed data must be encrypted with non-migratable keys so the
data encrypted is bound to the platform/TPM.

•  Microsoft BitLocker uses the TPM Secure Storage
Sealing feature

9	

TPM Key Types
•  Endorsement Key

–  Permanently embedded in the TPM hardware at the time of
manufacture

–  The private part of the Endorsement Key is never released
outside of the TPM

–  Can be used to verify that software is communicating with an
actual TPM (as opposed to a malicious software application
pretending to be a TPM)

•  Storage Root Key
–  Created when the TPM is initialized by software
–  Used to encrypt/decrypt keys created by an application so that

they can be stored outside the TPM
–  Embedded in the TPM hardware, can be overwritten if the TPM

is cleared and re-initialized

10	

TPM Key Types
•  Migratable Keys

–  Can be migrated to another TPM/platform

•  Non-Migratable Keys
–  Stored within the TPM shielded storage
–  Cannot be migrated to another platform/TPM

•  Attestation Identity Keys (AIK)
–  Non-migratable keys
–  Used to sign "quotes" of PCR values when requested by an

application
•  Therefore the main key we often care about for “remote attestation”

11	

TPM	
 Components	

Base	
 diagram	
 from	

hBp://www.intel.com/content/dam/doc/white-­‐paper/uefi-­‐pi-­‐tcg-­‐firmware-­‐white-­‐paper.pdf	

PCRs	

Implemented	
 	

by the BIOS
developer

12	

Platform Integrity Reporting
•  This functionality combines what is called (in TPM-land) the

Root of Trust for Reporting (RTR) and the Root of Trust for
Measurement (RTM)

•  Per TCG: “The RTM is a computing engine capable of making
inherently reliable integrity measurements.*”

•  The code that performs the measurements are implemented
outside the TPM (as shown in the previous slide)
–  By the BIOS, for example.

•  There are two types of RTMs, Dynamic and Static.
•  Dynamic means that trust is established after the operating

system has booted. Trust is established even when the
system booted in an insecure state

•  Intel’s Trusted Execution Technology (TXT) uses DRTM
–  TXT is an entire course unto itself which Xeno is preparing
–  www.invisiblethingslab.com/resources/2011/

Attacking_Intel_TXT_via_SINIT_hijacking.pdf
*ISO/IEC	
 11889-­‐1	
 InformaEon	
 Technology	
 Trusted	
 Plaform	
 Module,	
 Pt.1	
 	
 13	

Static Root of Trust for Measurement*
(SRTM)

•  Also called Measured Boot (Not to be confused with Secure
Boot, that’s a different entity discussed in the UEFI portion)

•  General idea is that the next component of the boot
sequence is measured before control is handed off to it

•  Thus forms a “chain of trust” where each component has
been measured before it executes

•  “Static” refers to the idea that the same components are
measured each time and that their measured values
should not change

•  Begins life in the BIOS so its implementation is thus the
responsibility of the vendor

•  The first of these measurements is called the Core Root
of Trust for Measurement (CRTM)

*Ogen	
 referred	
 to	
 as	
 S-­‐CRTM,	
 StaEc-­‐Core	
 RTM	
 14	

Core Root of Trust for Measurement
(CRTM)

•  Whereas it’s said the SRTM forms a “chain of trust”, the
CRTM forms the “anchor”

•  CRTM is responsible for measuring the next component
in the boot sequence (next link in the chain)

•  Being part of the overall SRTM, it always begins life in
the BIOS

•  As a guideline, CRTM should perform its measurements
as soon as possible (start establishing trust sooner than
later)

•  According to the TCG, the “TPM and CRTM are the only
trusted components on the Motherboard” (TCG PC
Client Specification for Conventional BIOS)

15	

Measured	
 Boot	
 ("measured	
 boot"	
 !=	
 UEFI	
 "secure	
 boot")	

BIOS	
 code	
 on	
 flash	
 chip	

Core	
 Root	
 of	
 Trust	
 for	
 Measurement	

(CRTM)	

BIOS	
 configuraEon	

in	
 non-­‐volaEle	
 RAM	

("nvram"/"CMOS")	

Measure	
 1	

Master	
 Boot	
 Record	

	

	

ParEEon	
 Table	

M
ea
su
re
	
 5
	

M
ea
su
re
	
 4
	

Peripheral's	
 	

opEon/expansion	

ROMs	
 code	

	

Config	

Peripheral's	
 	

opEon/expansion	

ROMs	
 code	

	

Config	

Peripheral's	
 	

opEon/expansion	

ROMs	
 code	

	

Config	

Measure	
 0	

Trusted	
 Plaform	
 Module	
 (TPM)	

Ex
te
nd

	
 P
CR

0	

Ex
te
nd

	
 P
CR

1	

Ex
te
nd

	
 P
CR

2	

Ex
te
nd

	
 P
CR

3	

Ex
te
nd

	
 P
CR

4	

Measur
e	
 3	

Ex
te
nd

	
 P
CR

5	

…	

This	
 collecEon	
 of	
 measurements	
 going	
 forward	
 is	
 the	
 	

StaEc	
 Root	
 of	
 Trust	
 for	
 Measurement	
 (SRTM)	
 16	

CRTM (im)Mutability
•  “The Core Root of Trust for Measurement (CRTM) MUST

be an immutable portion of the Host Platform’s
initialization code that executes upon a Host Platform
Reset”

•  “immutable means that in order to maintain trust in the
Host Platform, the replacement or modification of code or
data MUST be performed by a Host Platform
manufacturer-approved agent and method.”*

•  Basically they are telling vendors that they know the
CRTM will be implemented on mutable flash hardware,
but that they will be in compliance as long as its only
their code that ever changes it.

•  That works great until it doesn’t…
*TCG PC Client Implementation for BIOS 17	

Platform Configuration Registers
(PCRs)

•  The measurements of each component are stored on the
TPM in registers

•  There are at least 16 PCRs on a TPM, each 20 bytes
long

•  Initialized to 0 each time the platform is reset
•  Can only be modified by an extend function
•  PCR[n] = SHA-1 (PCR[n] || measured data)

–  where || denotes concatenation

•  So basically, each PCR represents the state of one or
more boot components (at the time of measurement)

•  Each boot component is represented as a SHA-1 hash

18	

PCR Standard Usage
PCR	
 Use	

0	
 S-­‐CRTM,	
 BIOS,	
 Host	
 Plaform	
 Extensions,	
 and	

Embedded	
 OpEon	
 ROMs	

1	
 Host	
 Plaform	
 (Motherboard)	
 ConfiguraEon	

2	
 OpEon	
 ROM	
 code	

3	
 OpEon	
 ROM	
 ConfiguraEon	
 and	
 Data	

4	
 IPL	
 Code	
 (usually	
 the	
 MBR)	
 and	
 Boot	
 ABempts	

5	
 IPL	
 Code	
 ConfiguraEon	
 and	
 Data	

6	
 Power	
 State	
 TransiEon	
 (sleep,	
 hibernate,	
 etc.)	

7	
 Defined	
 by	
 OEM	

8-­‐15	
 Unassigned	

•  Each PCR is intended to store a different measured
component, defined by TCG

•  The implementation is actually up to the vendor

IPL	
 =	
 IniEal	
 Program	
 Loader,	
 typically	
 the	
 Master	
 Boot	
 Record	
 (MBR)	
 19	

General Problems with PCR Hashes

1.  The	
 TCG	
 specificaEon	
 gives	
 vague	
 guidelines	
 on	
 what	
 should	
 be	
 incorporated	
 into	
 individual	
 PCR	
 values,	
 and	

many	
 decisions	
 are	
 leg	
 to	
 the	
 vendor.	

2.  Based	
 on	
 our	
 own	
 observaEon	
 of	
 PCR	
 values	
 across	
 various	
 systems.	

Example E6400 PCR Set:	

	

•  Opaqueness
–  Generally no golden set of PCRs is provided by the OEM.

•  Some vendors like HP have started to finally provide this! Yay!
–  No description of what is actually being measured and incorporated into

the PCR values.1

–  “Homogeneous” systems can have different PCR values.2
–  Duplicate PCR values are unexpected if they're measuring different

data…

20	

E6400 PCR0 (CRTM) Measurement

•  PCR0 should contain a measurement of the CRTM and other
parts of the BIOS.

•  In the above diagram, the dark areas represent what the E6400
actually incorporates into the PCR0 measurement.

•  Only 0xA90 of the total 0x1A0000 bytes (.15%) in the BIOS
range are incorporated, including:
–  The first 64 bytes of the 42 compressed modules.
–  Two 8 byte slices at 0xDF4513C0 and 0xDF4513C7.
–  The CRTM is not incorporated at all.

*Typo in image: BIOS Base on the E6400 is located at FFE6_0000h

*	

21	

Implications of the weak SRTM

•  Measurements for things like PCI option ROMs and BIOS
configuration are not actually captured.

•  We can modify the majority of the E6400 BIOS without
changing any of the PCR values.
–  Yuriy Bulygin presented a similar discovery at CanSecWest 2013

regarding his ASUS P8P67
•  "Evil Maid Just Got Angrier: Why Full-Disk Encryption With TPM is Insecure

on Many Systems" – Yuriy Bulygin – March 2013
http://cansecwest.com/slides/2013/Evil%20Maid%20Just%20Got
%20Angrier.pdf

•  As long as the Flash can be modified, the measurement code
which executes from the flash can be modified to report false
negatives

•  Let’s take a look at some weaknesses that come along with a
S-CRTM that provides incomplete coverage

22	

Reading PCRs with OpenTPM

•  Corey Kallenberg wrote OpenTPM which queries and
dumps the PCR register set

•  Open source: https://code.google.com/p/opentpm/
•  Activate/enable your TPM in your BIOS settings to use it

23	

vulnBIOS Example: Incomplete S-
CRTM Coverage

•  Either view your existing BIOS dump or make a new one
using Copernicus

•  Open in HxD and skip to the end (entry vector)
•  Notice bytes 3F_FFFB – 3F_FFFE are 0h

24	

vulnBIOS Example: Incomplete S-
CRTM Coverage

•  This will only run on E6400 systems!
•  Execute the ‘tpm_spi_write_no_change_pcr.sys’ driver
•  This writes DEADBEEFh as you can see (in this case, on this

system, this does not prevent the system from booting, YMMV!!!)
•  Reboot

25	

vulnBIOS Example: Incomplete S-
CRTM Coverage

•  After rebooting the system,
–  Required because the BIOS has to re-run the measured boot process and

re-populate the PCRs
•  Re-run the OpenTPM driver
•  Notice in particular PCR0 is the same (they are all the same)
•  So an attacker can modify big chunks of the BIOS without triggering

a change to PCR0!
•  But wait – it gets worse!

26	

The Real Weakness: Mutable CRTM

•  Don’t let the sparse measurement coverage in the previous slide
distract you from the real issue – it is a red herring!

•  What *really* makes the S-CRTM weak is the fact that the CRTM is
implemented on mutable flash hardware (the BIOS)

•  As we’ve seen, it can be trivial to overwrite the BIOS flash
•  An attacker who identifies the part of the BIOS that performs the

CRTM measurement can simply overwrite it and therefore control it
•  It doesn’t matter even if the ENTIRE BIOS is being measured

–  The attacker may just have to work a little harder

*	

SEll	
 weak;	
 assuming	
 the	

aBacker	
 can	
 get	
 into	

SMRAM	
 or	
 overwrite	
 the	

flash	
 either	
 by	
 exploiEng	
 a	

code	
 vulnerability	
 or	

misconfigured	
 system	

27	

Normal	
 BIOS	
 PCR0	
 Measurement	

SPI	
 Flash	

System	
 RAM	

BIOS	

SHA1(self)	

0xf005b411…	

PCR0=SHA1(020	
 |	
 0xf005b411…)	

0	
 4GB	

28	

PCR0	
 Measurement	
 with	
 a	
 Tick	

SPI	
 Flash	

System	
 RAM	

BIOS	

SHA1(self)	

PCR0=SHA1(020	
 |	
 0xf005b411…)	

0	
 4GB	

29	

Mutable S-CRTM Problem

•  But actually, if the attacker can write to the BIOS, they can modify
any/all of the BIOS regardless of whether its being measured and
simply forge the PCR values

•  hBp://www.youtube.com/watch?v=S0lRcm3jvFo
30	

Quick Diversion: RW Everything Scripting

•  RW Everything is a good tool for gathering all kinds of
information about the system

•  It has a scripting interface and a good command set so
it’s good for prototyping commands that touch bare-metal
without writing a kernel driver (assuming windows, if
Linux then just IOPL your way to Ring0 bliss)
–  Just be wary of syntax and expect a kernel crash now and then if

you make a mistake
–  I’ve found that 64-bit Windows is more sensitive to RWE-related

crashing

•  This lab serves to show you some of RWE’s scripting
capabilities and how to use it for quick testing of ideas

31	

Use RW-E Scripting to Read a PCR
•  Open RW

Everything
•  Click on the CMD

icon

32	

Use RW-E Scripting to Read a PCR
•  On your Desktop

find the file named
“ReadPCR0.rw”

•  The file contents
are on the next
slide in case you
have to enter it by
hand or don’t want
to do the lab but
just see what
features RW
Everything offers

33	

#	
 This	
 is	
 the	
 PCR	
 Command	
 Blob	

>W	
 0xfed40000	
 0x20	

>W	
 0xfed40000	
 0x02	

>W	
 0xfed40018	
 0x40	

>W	
 0xfed40024	
 0x00	

>W	
 0xfed40024	
 0xc1	

>W	
 0xfed40024	
 0x00	

>W	
 0xfed40024	
 0x00	

>W	
 0xfed40024	
 0x00	

>W	
 0xfed40024	
 0x0e	

>W	
 0xfed40024	
 0x00	

>W	
 0xfed40024	
 0x00	

>W	
 0xfed40024	
 0x00	

>W	
 0xfed40024	
 0x15	

>W	
 0xfed40024	
 0x00	

>W	
 0xfed40024	
 0x00	

>W	
 0xfed40024	
 0x00	

#	
 THIS	
 IS	
 THE	
 #	
 PCR	
 YOU	
 WANT	
 TO	
 READ	
 (0-­‐16	
 OR	
 WHATEVER)	

>W	
 0xfed40024	
 0x00	

>W	
 0xfed40018	
 0x20	

#	
 ok	
 now	
 read	
 the	
 PCR:	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

>R	
 0xfed40024	

RW Everything Commands
•  Commands in ReadPCR0

are on the left
•  Be wary of syntax!
•  W 0xFED4000 0x20

–  Writes a Byte to 0xFED4000
(physical address)

–  W16 will write a Word
–  W32 will write a DWord

•  R 0xFED40024
–  Reads a Byte from physical

address 0xFED40024

•  Yes it’s ugly but can still be
leveraged to save you time
to test a PoC

Change	
 this	
 one	
 to	
 	

read	
 a	
 different	
 PCR	

(0	
 -­‐	
 N)	

34	

MMIO	
 to	
 the	
 memory	

address	
 range	
 reserved	

for	
 TPMs	

Note	
 how	
 we	
 just	
 keep	

reading	
 the	
 same	
 data	

locaEon	
 and	
 will	
 keep	

gevng	
 back	
 different	
 data	

Use RW Everything to Read a PCR
•  If OpenTPM works

on your system, then
this will too

•  Output is a bit
verbose, but the
PCR value will be in
there after the
header

•  I couldn’t expand the
output window to
capture the whole
PCR for the
screenshot

•  But still good for
prototyping, testing,
probing

35	

Trusted	
 CompuEng	
 Research:	

Timing-­‐Based	
 ABestaEon	
 (TBA)	

"Build your software so that if its code is modified, it runs slower."

•  CMU has done a lot of research in this area (Seshadri, et al)
and we applied it to the protection of Windows kernel memory
& the BIOS

•  Uses a timing side-channel to provide constant runtimes in
absence of an attacker

•  For the BIOS, it’s meant to replace the CRTM only, not the
entire SRTM

•  Presenting this briefly just to provide an example of one way
to protect a mutable codebase (e.g. embedded systems, HD
firmware, NIC firmware, phone bootloaders, etc)

•  Could be executed immediately upon system boot

36	

Two	
 Components	
 of	
 	

“BIOS	
 Chronomancy”	

1	

BIOS	
 Chronomancy	

2	

37	

•  Reads	
 its	
 own	
 data	

–  Incorporated	
 into	
 checksum	
 so	
 if	
 it	
 changes	
 the	
 checksum	

changes	

•  Reads	
 its	
 own	
 data	
 pointer	
 and	
 instrucEon	
 pointer	

–  Indicates	
 where	
 in	
 memory	
 the	
 code	
 itself	
 is	
 reading	
 and	

execuEng	

•  Nonce/PseudoRandom	
 Number	
 (PRN)	

–  Prevent	
 trivial	
 replay,	
 decrease	
 likelihood	
 of	
 precomputaEon	

due	
 to	
 storage	
 constraints	

•  Do	
 all	
 the	
 above	
 in	
 millions	
 of	
 loop	
 iteraEons	

–  So	
 that	
 ideally	
 an	
 instrucEon	
 or	
 two	
 worth	
 of	
 condiEonal	
 checks	

per	
 loop	
 iteraEon	
 leads	
 to	
 millions	
 of	
 extra	
 instrucEons	
 in	
 the	

overall	
 runEme	

Self-­‐Check	
 Requirements	

38	

Simplified	
 Self-­‐Check	
 Component	

•  Each	
 block	
 differs	
 from	
 the	

others	
 so	
 abacker	
 will	
 have	

to	
 forge	
 every	
 block	

“blocks”	

39	

Self-­‐Check	
 “Pseudo-­‐Random	
 Walk”	

En>re	
 BIOS	
 	

Chronomancy	
 range	

is	
 measured	
 by	
 the	
 	

self-­‐check,	
 including	

the	
 por>on	
 that	

performs	
 the	
 linear	

sweep	
 measurements	

•  Pseudo-­‐Random	
 based	

on	
 Tick	
 Session	
 Nonce	

obtained	
 from	
 TPM	

•  Iterates	
 through	
 the	
 	

blocks	
 a	
 million	
 >mes	

or	
 so	

40	

Linear	
 Sweeps	

BIOS	
 Chip	

•  Measures	
 BIOS,	

Op>on	
 ROMs,	

SMRAM,	
 IVT,	
 and	

anything	
 else	
 you	

want.	

41	

ABackers	
 Dilemma:	
 1	
 of	
 3	

BIOS	
 Chip	

•  Abacker	
 wants	
 to	

implement	
 a	
 rootkit	
 and	

of	
 course	
 wants	
 to	
 hide	

its	
 presence.	

•  Abacker	
 is	
 aware	
 of	
 BIOS	

Chronomancy	
 and	

understands	
 how	
 to	

works.	

•  Abacker	
 knows	
 if	
 he	
 does	

nothing	
 the	
 linear	

sweeps	
 will	
 detect	
 his	

presence	
 in	
 the	
 BIOS.	

•  The	
 >ming	
 measurement	

will	
 be	
 okay,	
 but	
 the	

calculated	
 checksum	
 will	

differ	
 from	
 the	
 expected.	

>:(

Gotcha!

42	

ABackers	
 Dilemma:	
 2	
 of	
 3	

BIOS	
 Chip	

•  Modifies	
 the	
 linear	

sweep	
 code	
 to	
 hide	
 his	

presence.	

•  Turns	
 out	
 the	
 penalty	
 for	

modifying	
 the	
 linear	

sweep	
 code	
 is	
 negligible.	

>:(

Conceal!

43	

ABackers	
 Dilemma:	
 3	
 of	
 3	

BIOS	
 Chip	

•  However,	
 now	
 the	

abacker	
 must	
 also	
 hide	

the	
 changes	
 he	
 made	
 to	

the	
 linear	
 sweep	
 code	

from	
 the	
 self-­‐check	

measurement.	

>:(

Conceal!

•  Turns	
 out	
 the	
 abacker	

suffers	
 tremendous	

penal>es	
 when	

modifying	
 the	
 self-­‐
check.	

44	

16700	

16800	

16900	

17000	

17100	

17200	

17300	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	
 21	
 22	
 23	
 24	
 25	
 26	
 27	
 28	
 29	
 30	
 31	
 32	
 33	
 34	
 35	
 36	
 37	
 38	
 39	
 40	

TP
M
	
 T
ic
ks
	

Measurement	
 Instance	

18	
 E6400s	
 with	
 customized	
 BIOS	
 Chronomancy	
 firmware	

625k	
 self-­‐check	
 itera>ons	
 (diff	
 =	
 ~4.8ms)	
 	

Without	
 aBacker	
 With	
 bare-­‐minimal	
 aBacker	

1	
 >ck	
 =	
 64	
 μs	

Diff	
 is	
 ~4.8	
 ms.	
 ABacker	
 can	
 win	

someEmes,	
 as	
 shown	
 by	
 measurement	

Emes	
 that	
 overlap.	

45	

21000	

21200	

21400	

21600	

21800	

22000	

22200	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	
 21	
 22	
 23	
 24	
 25	
 26	
 27	
 28	
 29	
 30	
 31	
 32	
 33	
 34	
 35	
 36	
 37	
 38	
 39	
 40	

TP
M
	
 T
ic
ks
	

Measurement	
 Instance	

18	
 E6400s	
 with	
 customized	
 BIOS	
 Chronomancy	
 firmware	

1.25M	
 self-­‐check	
 itera>ons	
 (diff	
 =	
 ~32ms)	
 	

Without	
 aBacker	

1	
 >ck	
 =	
 64	
 μs	

Diff	
 is	
 ~32	
 ms.	
 ABacker	
 does	
 not	
 win	

in	
 this	
 scenario.	

With	
 bare-­‐minimal	
 aBacker	

46	

29500	

30000	

30500	

31000	

31500	

32000	

32500	

33000	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	
 21	
 22	
 23	
 24	
 25	
 26	
 27	
 28	
 29	
 30	
 31	
 32	
 33	
 34	
 35	
 36	
 37	
 38	
 39	
 40	

TP
M
	
 T
ic
ks
	

Measurement	
 Instance	

18	
 E6400s	
 with	
 customized	
 BIOS	
 Chronomancy	
 firmware	

2.5M	
 self-­‐check	
 itera>ons	
 (diff	
 =	
 ~	
 128ms)	

Without	
 aBacker	

1	
 >ck	
 =	
 64	
 μs	

Diff	
 is	
 ~128	
 ms.	
 ABacker	
 does	
 not	

win	
 in	
 this	
 scenario.	

With	
 bare-­‐minimal	
 aBacker	

47	

TBA Summary
•  TBA was discussed briefly just to introduce you to one

technique that can mitigate the weakness of a mutable
CRTM

•  Is it perfect? Nope – and I’ll explain why in a sec
•  TBA code is open sourced for others to investigate if you

feel inspired to experiment with it and improve it:
–  http://code.google.com/p/timing-attestation/

•  Timeline of other related work here:
–  hBp://bit.ly/11xEmlV	

•  Of course the simplest fix would be to:

Implement the CRTM on a small, truly immutable, ROM
•  Provided the remainder of the chain of trust is measured properly

48	

The	
 past	
 decade	

(available	
 at	
 hBp://bit.ly/11xEmlV)	

49	

TBA Problems: There are a few
•  Does not prevent a TOCTOU attack
•  The timer on the TPM must be reset to zero each time

the system is reset
–  Provide a consistent “window of time” in which a good

measurement was initiated
–  Otherwise the attacker could simply perform the measurement at

a later time after having made the proper preparations

•  There is no trusted way to determine whether a
measurement has been “skipped” due to platform reset
before (or after) TBA execution (BIOS reset, etc.)
–  Still doesn’t solve the evil maid problem
–  Measurement will run while Evil Maid’s evil boot loader is

installed, but after the evil maid resets the system and removes
herself the next measurement will report a clean system

50	

Measured Boot Early in Boot Process
•  One question about the measured boot process is regarding

the question of ‘when’ it is to begin
•  Since the spec wants each boot component to be measured

before execution control is handed off to it, it seems logical
that the measured boot process should begin as early as
possible in the boot process

•  Of course this is vendor-dependent as to when they start this
process

•  I’ve observed that on the Dell E6400 that this process begins
very “late” after “a lot” of code has already executed (chipset
configuration, SMM instantiation, etc.)

•  I believe it should be done following the entry vector after the
system has switched to protected mode

•  And not because “it’s better if it’s run early” since the flash is
still mutable regardless…

•  My reason: because an analyst will be able to easily find the
CRTM code and verify that it “looks right” without having to
RE so much of the BIOS just to find it

51	

Measured Boot Early in Boot Process
•  Technically, this is feasible because the TPM extends

hashing functions to the BIOS and it is a memory-
mapped device

•  So this is technically feasible:
–  Ensure TPM is mapped to memory (location is typically hard-

coded in chipset)
–  Initialize the TPM itself and extend measurements to PCR0
–  As in accessing the memory-mapped BIOS, we’re not actually

reading memory, we’re accessing a different device
•  Why isn’t this done? Probably because the BIOS flash

and TPM are both very slow when compared to memory
•  And booting quickly is the most important thing in the

world!
•  Vendors should at least provide the option for those who

care and need it…it only has to measure a small amount
of binary. (Ok I’m off my soap box now)

52	

Better CRTMs coming down the pipe:
Intel Boot Guard

•  Can’t say much on this at the moment (most docs under NDA, and
haven’t evaluated it yet anyway)

•  Intel says "Hardware-based boot integrity protection that prevents
unauthorized software and malware takeover of boot blocks critical
to a system’s function, thus providing added level of platform
security based on hardware."

•  Implements the CRTM notionally on the processor itself
•  Firmware boot block is measured/verified before the processor

starts executing the SPI flash entry vector
•  Provides the following two basic functions

–  Measured Boot
–  Verified Boot

hBp://www.intel.com/content/dam/www/public/us/en/documents/product-­‐briefs/4th-­‐gen-­‐
core-­‐family-­‐mobile-­‐brief.pdf	
 53	

Better CRTMs coming down the pipe:
Intel Boot Guard

•  It's effectively bringing to the client a superset of the way
Intel Trusted Execution Technology (TXT) on Intel Xeon
servers has apparently always worked: Running a TXT
Authenticated Code Module (ACM) right from CPU reset

From	
 "Intel	
 Trusted	
 ExecuEon	
 Technology	
 for	
 Server	
 Plaforms"	
 54	

Better CRTMs coming down the pipe:
HP Sure Start

•  New	
 integrity	
 &	
 availability	
 technology	

•  Implemented	
 in	
 Embedded	
 Controller	
 (EC)	

–  They	
 say	
 the	
 EC	
 starts	
 from	
 a	
 true	
 ROM,	
 which	
 would	

essenEally	
 be	
 the	
 S-­‐CRTM	
 for	
 subsequent	
 measurement	
 of	

BIOS	

•  Integrity:	
 Checks	
 a	
 por-on	
 of	
 the	
 flash	
 chip	
 (likely	
 only	

the	
 boot	
 block),	
 and	
 if	
 it	
 does	
 not	
 have	
 the	
 expected	

configuraEon,	
 restores	
 that	
 porEon	
 from	
 EC	

•  Availability:	
 If	
 the	
 integrity	
 check	
 fails,	
 as	
 it	
 might	
 if	
 the	

chip	
 was	
 wiped	
 to	
 aBempt	
 to	
 brick	
 the	
 BIOS,	
 then	
 this	

provides	
 a	
 non-­‐aBach-­‐probes-­‐to-­‐the-­‐SPI-­‐chip	
 recovery	

•  We	
 generally	
 see	
 this	
 as	
 a	
 Good	
 Thing™	
 ,	
 and	
 we'd	
 like	

to	
 see	
 more	
 and	
 more	
 robust	
 tech	
 like	
 this	
 from	
 other	

vendors	

55	

HP	
 Sure	
 Start	

•  Supported	
 models	
 as	
 of	
 April	
 2014,	
 according	

to	
 an	
 email	
 to	
 us	
 from	
 HP	

– Elitebook	
 820	
 G1	

– Elitebook	
 840	
 G1	

– EliteBook	
 850	
 G1	

– Zbook	
 15	

– Zbook	
 17	

– EliteBook	
 Folio	
 1040	
 G1	

– EliteBook	
 Revolve	
 810	
 G2	

56	

TPM and Bootkits
•  We have learned that signed firmware updates ensure

that only an authorized BIOS can be installed to flash
•  However firmware signing won’t protect the system from

a malicious boot loader, for example, which can be
located on the hard disk

•  We know that the measured boot process can detect
changes to critical boot components like the BIOS and
MBR

•  But unless that detection is paired with something which
provides protection (like Bitlocker or Secure Boot), a
malicious MBR, for example, can still execute

•  Detection alone could be enough if your TPM is active
and you are actively observing your PCRs
–  Few seem to be

57	

TPM: Additional thoughts
•  You should activate your TPM in your BIOS
•  Flawed or not, it’s better than nothing L
•  Typically the BIOS will recognize automatically that the

TPM is activated and you will get all the vendors
measured boot functionality “for free”

•  Additionally you have to actually observe your PCRs for
changes
–  Believe it or not, some people enable the TPM, check

a box, and say “I’m secure now”
•  Your OEM *might* have a tool you can use to that effect;

otherwise use OpenTPM

58	

Another High-Level Problem:
Untrusted Tools

•  So we’ve covered how the TPM CRTM may not really
provide trustworthy information

•  But every tool we use to gather system information
shares this problem

•  We’re relying on tools which have no means of attesting
that the data we intended to read was in fact the data
that was reported to us

•  We saw this in the Flea attack video where the PCRs
were forged
–  We thought we were reading good BIOS, but in fact it was pure

concentrated evil!

•  An attacker could either attack the tool itself or MitM the
data as it’s being read by the application (via VMX for
example)

59	

