
Advanced	
 x86:	

BIOS	
 and	
 System	
 Management	
 Mode	
 Internals	

UEFI	
 SecureBoot	

Xeno	
 Kovah	
 &&	
 Corey	
 Kallenberg	

LegbaCore,	
 LLC	

All materials are licensed under a Creative
Commons “Share Alike” license.

http://creativecommons.org/licenses/by-sa/3.0/

2
ABribuEon	
 condiEon:	
 You	
 must	
 indicate	
 that	
 derivaEve	
 work	

"Is	
 derived	
 from	
 John	
 BuBerworth	
 &	
 Xeno	
 Kovah’s	
 ’Advanced	
 Intel	
 x86:	
 BIOS	
 and	
 SMM’	
 class	
 posted	
 at	
 hBp://opensecuritytraining.info/IntroBIOS.html”	

Intro to UEFI Secure Boot

3	

Intro to UEFI Secure Boot

•  Verifies whether an executable is permitted to load and
execute during the UEFI BIOS boot process

•  When an executable like a boot loader or Option ROM is
discovered, the UEFI checks if:
–  The executable is signed with an authorized key, or
–  The key, signature, or hash of the executable is stored in the

authorized signature database
•  UEFI components that are flash based (SEC, PEI, DXECore)

are not verified for signature
–  The BIOS flash image has its signature checked during the

update process (firmware signing)
•  Yuriy Bulygin, Andrew Furtak, and Oleksandr Bazhaniuk have

the best slides that describe the Secure Boot process
–  http://c7zero.info/stuff/Windows8SecureBoot_Bulygin-Furtak-

Bazhniuk_BHUSA2013.pdf (Black Hat USA 2013)
4	

Firmware Signing

•  Flash-based UEFI components are verified only during the
update process when the whole BIOS image has its signature
verified

http://c7zero.info/stuff/Windows8SecureBoot_Bulygin-Furtak-Bazhniuk_BHUSA2013.pdf	
 5	

UEFI Secure Boot

•  DXE verifies non-embedded XROMs, DXE drivers, UEFI
applications and boot loader(s)

•  This is the UEFI Secure Boot process
http://c7zero.info/stuff/Windows8SecureBoot_Bulygin-Furtak-Bazhniuk_BHUSA2013.pdf	
 6	

Windows 8 Secure Boot

•  Microsoft Windows 8 adds to the UEFI secure boot process
•  Establishes a chain of verification
•  UEFI Boot Loader -> OS Loader -> OS Kernel -> OS Drivers

http://c7zero.info/stuff/Windows8SecureBoot_Bulygin-Furtak-Bazhniuk_BHUSA2013.pdf	
 7	

UEFI Variables (Keys and Key Stores)
•  UEFI implements 4 “variables” which store keys, signatures,

and/or hashes:
•  Platform Key (PK)

–  Controls access to itself and the KEK variables
–  Only a physically present user or an application which has been signed

with the PK is supposed to be able to modify this variable
–  Required to implement Secure Boot, otherwise the system is in Setup

Mode where keys can be trivially modified by any application

•  Key Exchange Key (KEK)
–  Used to update the signature database
–  Used to sign .efi binaries so they may execute

•  Signature Database (DB)
–  A whitelist of keys, signatures and/or hashes of binaries

•  Forbidden Database (DBX)
–  A blacklist of keys, signatures, and/or hashes of binaries

UEFI	
 Version	
 2.3.1,	
 Errata	
 C	
 8	

UEFI Variables (Keys and Key Stores)

•  As stated earlier, these variables are stored on the Flash file
system

•  Thus, if the SPI flash isn’t locked down properly, these keys/
hashes can be overwritten by an attacker

•  The problem is, the UEFI variables must rely solely on SMM
to protect them!

•  The secondary line of defense, the Protected Range registers
cannot be used

•  The UEFI variables must be kept writeable because at some
point the system is going to need to write to them

•  We saw this yesterday in the Charizard video where my
colleague Sam suppressed SMI and wrote directly to the flash
BIOS to add the hash of a malicious boot loader to the DB
whitelist

9	

(Easy) Secure Boot Bypass

•  If signed firmware updates are not implemented properly, or if the SPI
flash is not locked down properly, then Secure Boot can be trivially
bypassed:

•  http://c7zero.info/stuff/Windows8SecureBoot_Bulygin-Furtak-
Bazhniuk_BHUSA2013.pdf	

•  Some takeaways from this presentation:
–  Unprotected flash means UEFI variables can be overwritten
–  Add a hash to the DB for a malicious boot loader, then attack the boot

loader to load a modified kernel
–  Secure Boot can be disabled by corrupting the PK
–  And more! Check it out.

10	

Secure Boot Bypass

•  From here on we’ll assume that firmware signing has been
enabled properly and the flash is locked down

•  With that said, the firmware is still vulnerable
•  Now we’ll take a look at some vulnerabilities co-discovered

by my colleague Corey Kallenberg and Yuriy Bulygin (Intel)
–  Presented first jointly with other Intel discoveries at CanSecWest 2013

as "All Your Boot are Belong to Us", and then later with the new
material of Charizard at Syscan 2014 (and others) as "Setup for
Failure: Defeating UEFI Secure Boot"

11	

Secure Boot Signature Verification Policy

•  Depending on the source location of the file, the
signature check may be skipped

•  When an image is discovered that needs to be
authorized, the function
‘DxeImageVerificationHandler’ is called*

•  Located in the file DxeImageVerificationLib.c

*Code	
 from	
 EDK2	
 open	
 source	
 reference	
 implementaEon	
 available	
 at:	
 hBps://svn.code.sf.net/p/edk2/code/trunk/edk2	
 12	

Policy: ALWAYS_EXECUTE

•  If an executable is located on a Firmware Volume (SPI Flash) then it is always
executed without authorization

•  Makes sense assuming firmware signing is used and the BIOS flash was authorized
prior to the update

•  GetImageType gets its return value from DXE services that locate the source of the
executable, not from a value stored in the executable

Code	
 from	
 EDK2	
 open	
 source	
 reference	
 implementaEon	
 available	
 at:	
 hBps://svn.code.sf.net/p/edk2/code/trunk/edk2	
 13	

Flexible Signature Checking Policy

•  These policy values are hard-coded in the EDK2
–  OEMs can modify them as they see fit

•  OEM’s can specify custom policies, different from the reference specifications
•  But they're likely not going to check everything from the FV at load time

because that would be slow, and they have speed requirements they have to
fulfill for their e.g. Windows 8 or Intel Ultrabook certifications

Code	
 from	
 EDK2	
 open	
 source	
 reference	
 implementaEon	
 available	
 at:	
 hBps://svn.code.sf.net/p/edk2/code/trunk/edk2	
 14	

Flexible Signature Checking Policy

•  Theoretical example: An OEM allows unsigned Option ROMs to
run to allow aftermarket PCI cards, like graphics cards, to work
seamlessly

15	

Secure Boot Policy

•  Each OEM will have their
own secure boot policy

•  On the left is the
disassembly of the secure
boot policy initialization on
a Dell Latitude E6430 BIOS
revision A12

•  You’ll see that setup policy
can come from either the
flash NVRAM or be
hardcoded in the BIOS

•  Defined by the “Setup”
variable

16	

Secure Boot Policy

•  gSetupValid determines whether to use the hardcoded secure
boot policy, or if the policy embedded in the Setup variable
should be used instead

•  If it doesn’t exist or it’s invalid, then the hardcoded values will be
used

17	

Default Hardcoded Policy

•  Default hard-coded policy regarding unsigned executables
originating from:
–  Option ROMs: Deny
–  Removable Drives: Deny
–  Hard Drives: Deny
–  Firmware Volume: Allow

18	

Setup Variables Offsets

•  The gSetupVariable data is loaded into memory at address
0x18014E0C0

•  Secure Boot policy data starts at offset:
–  gImageFromFvPolicy – gSetupVariableData = 0xB49 (to 0xB4C)

•  gSetupValid is at offset:
–  gSetupValid - gSetupVariableData = 0xC56

19	

Setup Variable

•  Setup variable is marked as:
–  NV: Non-Volatile (Stored on flash chip)
–  RT: accessible to Runtime Services
–  BS: accessible to Boot services

•  Accessibility to Runtime Services means it should be
modifiable from the operating system

•  0xC5E bytes long, chock full of stuff

20	

EFI Variable Attributes

•  Each UEFI variable has attributes that determine how the
firmware stores and maintains the data:

•  ‘Non_Volatile’
–  The variable is stored on flash

•  ‘Bootservice_Access’
–  Can be accessed/modified during boot. Must be set in order for

Runtime_Access to also be set

*	
 UEFI	
 2.3.1	
 Errata	
 C	
 Final	
 21	

EFI Variable Attributes

•  ‘Runtime_Access’
–  The variable can be accessed/modified by the Operating System

or an application

•  ‘Hardware_Error_Record’
–  Variable is stored in a portion of NVRAM (flash) reserved for error

records

*	
 UEFI	
 2.3.1	
 Errata	
 C	
 Final	
 22	

EFI Variable Attributes

•  ‘Authenticated_Write_Access’
–  The variable can be modified only by an application that has been

signed with an authorized private key (or by present user)
–  KEK and DB are examples of Authorized variables

•  ‘Time_Based_Authenticated_Write_Access’
–  Variable is signed with a time-stamp

•  ‘Append_Write’
–  Variable may be appended with data

*	
 UEFI	
 2.3.1	
 Errata	
 C	
 Final	
 23	

EFI Variable Attributes Combinations

•  If a variable is marked as both Runtime and
Authenticated, the variable can be modified only by an
application that has been signed with an authorized key

•  If a variable is marked as Runtime but not as
Authenticated, the variable can be modified by any
application
–  The Setup variable is marked like this

24	

EFI Setup Variable Data

•  Using the offsets we calculated earlier we can locate the secure boot
policy settings in the Setup variable

•  The Secure Boot policy settings started at offset 0xB49 from the start of
the Setup variable data

•  Byte B49 contains the “IMAGE_FROM_FV” policy and is set to
ALWAYS_EXECUTE (0x00)

•  Bytes B4A-B4C contain the policies pertaining to Option ROMs,
Removable Storage, and Fixed Storage, respectively. All are set to
“DENY_EXECUTE_ON_SECURITY_VIOLATION
–  We can change these to ALWAYS_EXECUTE (00)

•  Byte B48 contains the Secure Boot on/off value (on)
25	

EFI Variable Access

•  Windows 8 provides an API to interact with EFI non-volatile
variables

•  http://msdn.microsoft.com/en-us/library/windows/desktop/
ms724934(v=vs.85).aspx

•  Because the Setup variable is marked as Runtime and not as
Authenticated, we can modify it

26	

Result: Modified Secure Boot Policy

•  An unsigned executable will always be executed regardless of
whether it is signed or unsigned, based on the
ALWAYS_EXECUTE policy associated with them now

27	

Attack 1 Summary

•  Malicious Windows 8 process can force unsigned
executables to be allowed by Secure Boot

•  Exploitable from privileged application in userland
•  Bootkits will now function unimpeded
•  Secure Boot will still report itself as enabled

although it is no longer “functioning”
–  That secure boot ‘on’ value was not modified

•  Co-discovered by Intel team

28	

ABack	
 1	
 Addendum	

•  Malicious	
 Windows	
 8	
 privileged	
 process	
 can	
 force	
 can	

“brick”	
 your	
 computer	
 if	
 it	
 just	
 writes	
 Setup	
 to	
 all	
 0s	

•  Reinstalling	
 the	
 operaEng	
 system	
 won’t	
 fix	
 this	

•  Intel	
 didn't	
 catch	
 this	
 and	
 then	
 we	
 had	
 to	
 hold	
 off	
 on	

menEoning	
 it	
 unEl	
 Hack	
 in	
 the	
 Box	
 AMS	
 2014	

	

Attack 2: Delete Setup Variable

•  Typically, setting a variables size to 0 will delete it
•  Deleting the setup variable reverts the system to a

legacy boot mode with secure boot disabled
•  This is also effectively a secure boot bypass, as it will

force the firmware to transfer control to an untrusted
MBR upon next reboot

30	

Attack 2 Summary

•  Malicious Windows 8 process can disable Secure Boot by
deleting “Setup” variable.

•  Exploitable from userland
•  Legacy MBR bootkits will now be executed by platform

firmware
•  Secure Boot will report itself as “disabled” in this case

–  More easily noticeable than the previous attack

31	

Attack 3: Modify StdDefaults Variable

•  Actually, when the firmware detects the “Setup” variable
has been deleted, it attempts to restore its contents from
the “StdDefaults” variable

•  This variable is also modifiable from the operating
system, thanks to its non-authenticated and runtime
attributes

•  So we can corrupt this too to ensure that UEFI always
restores our evil version

32	

Attack 3: Summary

•  Firmware would restore vulnerable Secure Boot policy
whenever firmware configuration reverted to defaults

•  This could make life very difficult

33	

Summary

•  CERT VU#758382
•  Vulnerability allows bypass of secure boot on many

systems.
•  Co-reported by Intel and MITRE

•  We first identified this vulnerability on a Dell Latitude
E6430.

•  Is this problem specific to the E6430?
•  Is this problem specific to Dell?
•  Is this vulnerability present in the UEFI reference

implementation?

34	

Summary

•  CERT VU#758382
•  Vulnerability allows bypass of secure boot on many

systems.
•  Co-reported by Intel and MITRE

•  We first identified this vulnerability on a Dell Latitude
E6430.

•  Is this problem specific to the E6430? No.
•  Is this problem specific to Dell? No.
•  Is this vulnerability present in the UEFI reference

implementation? No.

35	

