Advanced x86:

BIOS and System Management Mode Internals
UEFI SecureBoot

Xeno Kovah && Corey Kallenberg
LegbaCore, LLC

8

LEGBACORE

WE DO DIGITAL VOODOO

All materials are licensed under a Creative

Commons “Share Alike” license.
http://creativecommons.org/licenses/by-sa/3.0/

You are free:

@ to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

®

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

© ®

Attribution condition: You must indicate that derivative work
"Is derived from John Butterworth & Xeno Kovah'’s ‘Advanced Intel x86: BIOS and SMM’ class posted at http://opensecuritytraining.info/IntroBIOS.html” 2

Intro to UEFI| Secure Boot

Intro to UEFI| Secure Boot

Verifies whether an executable is permitted to load and
execute during the UEFI BIOS boot process

When an executable like a boot loader or Option ROM is
discovered, the UEFI checks if:
— The executable is signed with an authorized key, or

— The key, signature, or hash of the executable is stored in the
authorized signature database

UEFI components that are flash based (SEC, PEI, DXECore)
are not verified for signature
— The BIOS flash image has its signature checked during the
update process (firmware signing)
Yuriy Bulygin, Andrew Furtak, and Oleksandr Bazhaniuk have
the best slides that describe the Secure Boot process

— http://c7zero.info/stuff/Windows8SecureBoot Bulygin-Furtak-
Bazhniuk BHUSA2013.pdf (Black Hat USA 2013)

Firmware Signing

UEFI DXE Core / Dispatcher

System Firmware (SEC/PEI)

Hardware

* Flash-based UEFI components are verified only during the
update process when the whole BIOS image has its signature
verified

http://c7zero.info/stuff/Windows8SecureBoot_Bulygin-Furtak-Bazhniuk_ BHUSA2013.pdf

UEFI Secure Boot

DXE UEFI
Driver Boot Loader

Bootx64.efi

Bootmgfw.efi

UEFI DXE Core / Dispatcher
System Firmware (SEC/PEI)

Hardware

 DXE verifies non-embedded XROMs, DXE drivers, UEFI
applications and boot loader(s)

* This is the UEFI Secure Boot process
http://c7zero.info/stuff/Windows8SecureBoot_Bulygin-Furtak-Bazhniuk_ BHUSA2013.pdf

Windows 8 Secure Boot

OS Driver OS Driver

OS Kernel / Early Launch Anti-Malware (ELAM)

UEFI OS Loaders (winload.efi, winresume.efi)

DXE UEFI
Driver Boot Loader

DXE Bootx64.efi
Driver Bootmgfw.efi

UEFI DXE Core / Dispatcher

System Firmware (SEC/PEI)

Hardware

* Microsoft Windows 8 adds to the UEFI secure boot process
« Establishes a chain of verification

« UEFI Boot Loader -> OS Loader -> OS Kernel -> OS Drivers
http://c7zero.info/stuff/Windows8SecureBoot_Bulygin-Furtak-Bazhniuk_ BHUSA2013.pdf

UEFI Variables (Keys and Key Stores)

« UEFI implements 4 “variables” which store keys, signatures,
and/or hashes:

* Platform Key (PK)

— Controls access to itself and the KEK variables

— Only a physically present user or an application which has been signed
with the PK is supposed to be able to modify this variable

— Required to implement Secure Boot, otherwise the system is in Setup
Mode where keys can be trivially modified by any application

« Key Exchange Key (KEK)

— Used to update the signature database

— Used to sign .efi binaries so they may execute
« Signature Database (DB)

— Awhitelist of keys, signatures and/or hashes of binaries
* Forbidden Database (DBX)

— A blacklist of keys, signatures, and/or hashes of binaries

UEFI Version 2.3.1, Errata C

UEFI Variables (Keys and Key Stores)

As stated earlier, these variables are stored on the Flash file
system

Thus, if the SPI flash isn’t locked down properly, these keys/
hashes can be overwritten by an attacker

The problem is, the UEFI variables must rely solely on SMM
to protect them!

The secondary line of defense, the Protected Range registers
cannot be used

The UEFI variables must be kept writeable because at some
point the system is going to need to write to them

We saw this yesterday in the Charizard video where my
colleague Sam suppressed SMI and wrote directly to the flash
BIOS to add the hash of a malicious boot loader to the DB
whitelist

(Easy) Secure Boot Bypass

If signed firmware updates are not implemented properly, or if the SPI
flash is not locked down properly, then Secure Boot can be trivially
bypassed:

http://c7zero.info/stuff/Windows8SecureBoot Bulygin-Furtak-
Bazhniuk BHUSA2013.pdf

Some takeaways from this presentation:
— Unprotected flash means UEFI variables can be overwritten

— Add a hash to the DB for a malicious boot loader, then attack the boot
loader to load a modified kernel

— Secure Boot can be disabled by corrupting the PK
— And more! Check it out.

10

Secure Boot Bypass

From here on we’ll assume that firmware signing has been
enabled properly and the flash is locked down

With that said, the firmware is still vulnerable

Now we’ll take a look at some vulnerabilities co-discovered
by my colleague Corey Kallenberg and Yuriy Bulygin (Intel)

— Presented first jointly with other Intel discoveries at CanSecWest 2013
as "All Your Boot are Belong to Us", and then later with the new
material of Charizard at Syscan 2014 (and others) as "Setup for
Failure: Defeating UEFI Secure Boot"

11

Secure Boot Signature Verification

Policy

IN
IN
IN
IN

)

EFI_STATUS
EFIAPI

DxeImageVerificationHandler (

UINT32

CONST EFI_DEVICE PATH PROTOCOL
VOID

UINTN

ZuthenticationStatus,

*File,
*Fi1leBuffer,

FileSize

* Depending on the source location of the file, the
signature check may be skipped

 When an image is discovered that needs to be
authorized, the function
‘DxelmageVerificationHandler’ is called”

* Located in the file DxelmageVerificationLib.c

*Code from EDK2 open source reference implementation available at: https://svn.code.sf.net/p/edk2/code/trunk/edk2

Policy: ALWAYS EXECUTE

7
7/ n

/ Check the image t

ype and get policy setting.

switch (GetImageType (File)) {

case IMAGE FROM FV:
Policy = ATWAYS_ EXECUTE;

break;

case IMAGE FROM OPTION_ROM:
Policy = PcdGet32 (PcdOptionRomImageVerificationPolicy) ;

break;

case IMAGE FROM REMOVABLE MEDIA:
Policy = PcdGet32 (PcdRemovableMediaImageVerificationPolicy) ;

break;

case IMAGE FROM FIXED MEDIA:
Policy = PcdGet32 (PcdFixedMediaImageVerificationPolicy) ;

break;

default:
Policy = DENY EXECUTE ON_SECURITY VIOLATION;

break;

}

« If an executable is located on a Firmware Volume (SPI Flash) then it is always
executed without authorization

« Makes sense assuming firmware signing is used and the BIOS flash was authorized
prior to the update

« GetlmageType gets its return value from DXE services that locate the source of the
executable, not from a value stored in the executable

Code from EDK2 open source reference implementation available at: https://svn.code.sf.net/p/edk2/code/trunk/edk2 13

Flexible Signature Checking Policy

// Check the image type and get policy setting.

switch (GetImageType (File)) {

case IMAGE FROM FV:
Policy = ATWAYS_ EXECUTE;

break;

case IMAGE FROM OPTION_ROM:
Policy = PcdGet32 (PcdOptionRomImageVerificationPolicy) ;

break;

case IMAGE FROM REMOVABLE MEDIA:
Policy = PcdGet32 (PcdRemovableMediaImageVerificationPolicy) ;
break;

case IMAGE FROM FIXED MEDIA:
Policy = PcdGet32 (PcdFixedMediaImageVerificationPolicy) ;

break;

default:
Policy = DENY EXECUTE ON_SECURITY VIOLATION;

break;

}
 These policy values are hard-coded in the EDK2
— OEMs can modify them as they see fit
 OEM'’s can specify custom policies, different from the reference specifications

« But they're likely not going to check everything from the FV at load time
because that would be slow, and they have speed requirements they have to
fulfill for their e.g. Windows 8 or Intel Ultrabook certifications

Code from EDK2 open source reference implementation available at: https://svn.code.sf.net/p/edk2/code/trunk/edk2

14

Flexible Signature Checking Policy

Platform Firmware
(UEH)

With Secure Boot
Enabled Secure Boot Verification

/ ‘ \ No fair! ,
/’

~— -

. . Removable

< P
— v>
Theoretical example: An OEM allows unsigned Option ROMs to
run to allow aftermarket PCI cards, like graphics cards, to work
seamlessly

e I m still allowed to
l execute even though
\

. I’'m not SIgned

.

15

Secure Boot Policy

rdx, [rsp+38h+argSetupVariableSize]
rcx, aSecureboot

sub_18000C874

r9, [rsp+38h+argSetupVariableSize] ; DataSize
rdx, gSetupGuid ; VendorGuid
cs:qword_180048FF8, rax

rax, gSetupVariableData

rcx, VariableName

[rsp+38h+Data], rax ; Data

rax, cs:gRuntimeServices

r8d, r&d 3 Attributes
[rsp+38h+argSetupVariableSize],
[rax+EFI_RUNTIME_SERVICES.GetVariable]
ecx, ecx

rdi, rax

short loc_18000E@ODS5

@ ra =

cmp cs:gSetupValid, cl
jnz short loc_18000EQF6

loc_1800RE@DS5:

mov
mov
mov
mov
mov

cs:gImageFromFVPolicy, cl

cs:gImageFromXromPolicy, 3 DENY_ON_SECURITY_VIOLATION
cs:gImageFromRemovablePolicy,

cs:gImageFromFixedPolicy,

cs:gSetupValid, cl

Each OEM will have their
own secure boot policy

On the left is the
disassembly of the secure
boot policy initialization on
a Dell Latitude E6430 BIOS
revision A12

You'll see that setup policy
can come from either the
flash NVRAM or be
hardcoded in the BIOS

Defined by the “Setup”
variable

16

Secure Boot Policy

[rax+EFI_RUNTIME_SERVICES.GetVariable]
ecx, ecx

rdi, rax

short loc_18000EOD5

cmp cs:gSetupValid, cl
jnz short loc_18000EOF6

loc_18000EeDS5:

mov cs:gImageFromFVPolicy, cl

mov cs:gImageFromXromPolicy, 3 DENY_ON_SECURITY_VIOLATION
mov cs:gImageFromRemovablePolicy,

mov cs:gImageFromFixedPolicy,

mov cs:gSetupValid, cl

« gSetupValid determines whether to use the hardcoded secure
boot policy, or if the policy embedded in the Setup variable
should be used instead

* If it doesn’t exist or it’s invalid, then the hardcoded values will be
used

Default Hardcoded Policy

call [rax+EFI_RUNTIME_SERVICES.GetVariable]

xor ecx, ecx

test rdi, rax
jnz short loc_18000EQD5

Wl ra =

cmp cs:gSetupValid, cl
jnz short loc_18000EOF6

loc_18000EQDS5:

mov cs:gImageFromFVPolicy, cl

mov cs:gImageFromXromPolicy, 3 DENY_ON_SECURITY_VIOLATION
mov cs:gImageFromRemovablePolicy,

mov cs:gImageFromFixedPolicy,

mov cs:gSetupValid, cl

« Default hard-coded policy regarding unsigned executables
originating from:
— Option ROMs: Deny
— Removable Drives: Deny
— Hard Drives: Deny
— Firmware Volume: Allow

Setup Variables Offsets

.data:000000018014E0CO gSetupVariableData db
at: E db
db
db

gImageFromFVPolicy db

000000018014ECOA gImageFrodemeolicy db
gImageFromRemovablePolicy db

gImageFromFixedPolicy db

.data:000000018¢(14ED16 gSetupValid

 The gSetupVariable data is loaded into memory at address
0x18014E0CO

« Secure Boot policy data starts at offset:

— glmageFromFvPolicy — gSetupVariableData = 0xB49 (to 0xB4C)
« gSetupValid is at offset:

— gSetupValid - gSetupVariableData = 0xC56

19

Setup Variable

Variable NV+RT+BS 'EC87D643-EBA4-4BB5-A1ES5-3F3E36B20DA9:Setup’' DataSize = C5E
00000000: Ol OO OO0 20 00 OO OO ©0-00 01 37 37 OO 00 ©5 64
©0000010: OO 00 0O 02 00 00 Ol ©0-00 OO 00 00 0 00 01 Ol
00000020: OO 00 ©1 OO OO OO OO ©0-00 00 00 01 01 01 01 Ol
00000030: 02 OO OO OO OO 02 OO ©O-01 0 00 01 01 01 01 01

00000040: O1 00 ©1 01 01 00 00 ©1-00 00 01 01 01 01 @01 Ol
00000050: 01 01 04 04 04 00 04 ©4-04 04 00 OO GO PO OO GO
00000060 :
©0000070:

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

*¥ ¥ ¥ X X ¥ * *

« Setup variable is marked as:
— NV: Non-Volatile (Stored on flash chip)
— RT: accessible to Runtime Services
— BS: accessible to Boot services

» Accessibility to Runtime Services means it should be
modifiable from the operating system

« OxCS5E bytes long, chock full of stuff

20

EFI| Variable Attributes

//***

// Variable Attributes
P

ffdefine EFI VARTABLE NON VOLATILE 0x00000001
#define EFI VARIABLE BOOTSERVICE ACCESS 0x00000002
#define EFI VARIABLE . RUNTIME ACCESS 0x00000004
#define EFI VARIABLE . HARDWARE . ERROR RECORD 0x00000008

//This attribute is identified by the mnemonic 'HR' elsewhere in
this specification.

#define EFI VARIABLE AUTHENTICATED WRITE ACCESS 0x00000010
#define EFI VARIABLE TIME BASED . AUTHENTICATED WRITE ACCESS \
0x00000020

#fdefine EFI VARTABLE APPEND WRITE 0x00000040

« Each UEFI variable has attributes that determine how the
firmware stores and maintains the data:

* ‘Non_\Volatile’

— The variable is stored on flash

» ‘Bootservice Access’

— Can be accessed/modified during boot. Must be set in order for
Runtime_Access to also be set

* UEFI 2.3.1 Errata C Final

21

EFI| Variable Attributes

//***

// Variable Attributes
P

ffdefine EFI VARTABLE NON VOLATILE 0x00000001
#define EFI VARIABLE BOOTSERVICE ACCESS 0x00000002
#define EFI VARIABLE RUNTIME ALCESS 0x00000004
#define EFI VARIABLE HARDWARE ERROR RECORD 0x00000008

//This attribute is identified by the mnemonic 'HR' elsewhere in
this specification.

#define EFI ~_VARTABLE AUTHENTICATED WRITE ACCESS 0x00000010
#define EFI VARIABLE TIME BASED . AUTHENTICATED WRITE ACCESS \
0x00000020

#define EFI_VARIABLE APPEND WRITE 0x00000040

* ‘Runtime_Access’

— The variable can be accessed/modified by the Operating System
or an application

« ‘Hardware Error Record’

— Variable is stored in a portion of NVRAM (flash) reserved for error
records

* UEFI 2.3.1 Errata C Final

22

EFI| Variable Attributes

//***

// Variable Attributes
A

#define EFI VARIABLE NON VOLATILE 0x00000001
#define EFI VARIABLE BOOTSERVICE ACCESS 0x00000002
#define EFI VARIABLE RUNTIME ACCESS 0x00000004
#define EFI VARIABLE HARDWARE ERROR RECORD 0x00000008

//This attribute is identified by the mnemonic 'HR' elsewhere in
this specification.

#define EFI VARIABLE AUTHENTICATED WRITE ACCESS 0x00000010
#define EFI VARIABLE TIME BASED AUTHENTICATED WRITE ACCESS \
0x00000020 B B B B B

#define EFI VARIABLE APPEND WRITE 0x00000040

« ‘Authenticated Write Access’

— The variable can be modified only by an application that has been
signed with an authorized private key (or by present user)

— KEK and DB are examples of Authorized variables

 ‘Time Based Authenticated Write Access’
— Variable is signed with a time-stamp
* ‘Append_Write’
— Variable may be appended with data
* UEFI 2.3.1 Errata C Final

23

EFI Variable Attributes Combinations

//***

// Variable Attributes
//***

#define EFI VARIABLE NON VOLATILE 0x00000001
#define EFI VARIABLE BOOTSERVICE ACCESS 0x00000002
#define EFI VARIABLE RUNTIME ACCESS 0x00000004
#define EFI VARIABLE HARDWARE ERROR RECORD 0x00000008

//This attribute is identified by the mnemonic 'HR' elsewhere in
this specification.

#define EFI VARIABLE AUTHENTICATED WRITE ACCESS 0x00000010
#define EFI VARIABLE TIME BASED AUTHENTICATED WRITE ACCESS \
0x00000020 B B B B B

#define EFI VARIABLE APPEND WRITE 0x00000040

 If a variable is marked as both Runtime and
Authenticated, the variable can be modified only by an
application that has been signed with an authorized key

 |If a variable is marked as Runtime but not as
Authenticated, the variable can be modified by any
application
— The Setup variable is marked like this

24

EFI Setup Varlable Data

Offset (h) 00 01 03 06 07 08 OA 0B 0C 0D OE

000002B0 01 01 01 01 01 01 01 01 01 01 00 01 00 00 01 00eeneenueennnn
00000ACO 00 00 00 00 00 00 00 01 00 00 01 01 01 01 00 00 ...uueneeuneennnn
000002D0 01 01 01 01 00 00 01 01 00 01 00 01 00 00 01 00eeueeuuennnn
000002E0 01 00 01 01 01 01 01 00 00 00 01 01 01 01 01 01eueenuennnn
00000AF0 01 01 01 01 00 00 00 00 02 01 00 00 00 07 OF 00 ...ueeueenneennns
00000BO0 00 00 02 00 00 00 01 01 01 00 00 07 00 08 00 01c.veuuenn..
00000B10 00 01 00 00 00 00 00 00 00 03 00 01 00 00 00 00eeueeuuennnn
00000B20 00 00 00 01 00 01 00 02 07 00 00 00 00 00 01 04cueenn..
00000B30 00 00 00 01 01 00 00 00 00 01 01 01 00 00 00 00eeueeuuennnn
00000B40 00 00 00 00 00 00 00 00 [FNCENCERCEEGE 01 00 B8
00000B50 CA 3A D5 DC B2 01 02 00 00 01 01 01 00 00 00 00 E:0U2...........

Using the offsets we calculated earlier we can locate the secure boot
policy settings in the Setup variable

The Secure Boot policy settings started at offset 0xB49 from the start of
the Setup variable data

Byte B49 contains the “IMAGE_FROM_FV” policy and is set to
ALWAYS EXECUTE (0x00)

Bytes B4A-B4C contain the policies pertaining to Option ROMs,
Removable Storage, and Fixed Storage, respectively. All are set to
‘DENY_EXECUTE_ON_SECURITY_VIOLATION

— We can change these to ALWAYS EXECUTE (00)

Byte B48 contains the Secure Boot on/off value (on) .

EFI| Variable Access

DWORD WINAPI GetFirmwareEnvironmentVariable(
In LPCTSTR lpName,

In LPCTSTR lpGuid,

Out_ PVOID pBuffer, BOOL WINAPI SetFirmwareEnvironmentVariable(
In DWORD nSize _In_ LPCTSTR 1lpName,
) _In_ LPCTSTR 1lpGuid,

In PVOID pBuffer,
In DWORD nSize
)

 Windows 8 provides an API to interact with EFI non-volatile
variables

« http://msdn.microsoft.com/en-us/library/windows/desktop/
ms724934(v=vs.85).aspx

» Because the Setup variable is marked as Runtime and not as
Authenticated, we can modify it

26

Result: Modified Secure Boot Policy

Platform Firmware
(UEF)

With Secure Boot
Enabled Secure Boot Verification

I ’A A (”."M"mf
SPESRFON l

Removable
Media

‘

* An unsigned executable will always be executed regardless of
whether it is signed or unsigned, based on the
ALWAYS EXECUTE policy associated with them now

B

2

27

Attack 1 Summary

Malicious Windows 8 process can force unsigned
executables to be allowed by Secure Boot

Exploitable from privileged application in userland
Bootkits will now function unimpeded

Secure Boot will still report itself as enabled
although it is no longer “functioning”
— That secure boot ‘on’ value was not modified

Co-discovered by Intel team

Attack 1 Addendum

Malicious Windows 8 privileged process can force can
“brick” your computer if it just writes Setup to all Os

Reinstalling the operating system won’t fix this

Intel didn't catch this and then we had to hold off on
mentioning it until Hack in the Box AMS 2014

Attack 2: Delete Setup Variable

Invalid partition table_

« Typically, setting a variables size to O will delete it

* Deleting the setup variable reverts the system to a
legacy boot mode with secure boot disabled

« This is also effectively a secure boot bypass, as it will
force the firmware to transfer control to an untrusted
MBR upon next reboot

Attack 2 Summary

Malicious Windows 8 process can disable Secure Boot by
deleting “Setup” variable.

Exploitable from userland

Legacy MBR bootkits will now be executed by platform
firmware

Secure Boot will report itself as “disabled” in this case
— More easily noticeable than the previous attack

Attack 3: Modify StdDefaults Variable

Dump Variable Stores

Variable NV+RT+BS '4599D26F-1A11-49B8-B91F-858745CFF824:StdDefaults’' DataSize = D7F
0000 : 4E 56 41 52 6F ©C FF FF-FF 83 ©0 53 65 74 75 70 *NVARo
00000010: 00 O1 00 OO 20 00 OO ©O-00 00 ©1 37 37 00 00 ©5 T

00000020: 64 00 OO 00 ©3 OO0 00 ©1-00 00 01 1 02 @1 00 01
00000030: ©1 00 OO0 ©1 00 OO OO ©0-00 OO 00 00 01 01 00 01
00000040: ©1 02 O1 00 00 OO0 02 ©0-00 ©1 00 00 01 01 01 o1

00000050: 01 01 00 01 01

»

@1 00 ©0-01 0 00 01 01

»

1 @1 el

» »

* Actually, when the firmware detects the “Setup” variable
has been deleted, it attempts to restore its contents from
the “StdDefaults” variable

« This variable is also modifiable from the operating
system, thanks to its non-authenticated and runtime
attributes

* S0 we can corrupt this too to ensure that UEFI always
restores our evil version

32

Attack 3: Summary

* Firmware would restore vulnerable Secure Boot policy
whenever firmware configuration reverted to defaults

« This could make life very difficult

Summary

CERT VU#758382

Vulnerability allows bypass of secure boot on many
systems.

Co-reported by Intel and MITRE

We first identified this vulnerability on a Dell Latitude
E6430.

Is this problem specific to the E64307?
Is this problem specific to Dell?

Is this vulnerability present in the UEFI reference
implementation?

Summary

CERT VU#758382

Vulnerability allows bypass of secure boot on many
systems.

Co-reported by Intel and MITRE

We first identified this vulnerability on a Dell Latitude
E6430.

|s this problem specific to the E64307 No.
|s this problem specific to Dell? No.

Is this vulnerability present in the UEFI reference
implementation? No.

