Advanced x86:

BIOS and System Management Mode Internals
Unified Extensible Firmware Interface (UEFI)

Xeno Kovah && Corey Kallenberg
LegbaCore, LLC

8

LEGBACORE

WE DO DIGITAL VOODOO

All materials are licensed under a Creative

Commons “Share Alike” license.
http://creativecommons.org/licenses/by-sa/3.0/

You are free:

@ to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

®

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

© ®

Attribution condition: You must indicate that derivative work
"Is derived from John Butterworth & Xeno Kovah'’s ‘Advanced Intel x86: BIOS and SMM’ class posted at http://opensecuritytraining.info/IntroBIOS.html” 2

Introduction

In the talks we've been giving for the last year, we've
repeatedly referred to the new UEFI (Unified Extensible

Firmware Interface) as a double-edged sword.

— there are things about it that help attackers, and things that help
defenders.

This is a more thorough examination of that assertion

BIOS is dead, long live UEFI!

Not quite

We'll never be rid of certain elements of legacy BIOS on x86

The initial code will always be hand-coded assembly (or at least C
with lots of inline asm), because C doesn't have semantics for
setting architecture-dependent registers.

On all modern systems Intel makes extensive use of PCl internal to
their own CPUs, therefore early in system configuration there will
always be plenty of port IO access to PCl configuration space,

where you're going to be at a loss for what is happening to what,
until you do extensive looking up of things in manuals

— Add to that plenty of port IO to devices where you have no idea what's
being talked to, since there's no documentation

The bad old days live on, and you still have to learn them...

But there's a whole lot more new interesting and juicy bits added in
to the system to be explored

BIOS/UEFI Commonalities

« BIOS and UEFI share 2 common traits:
1. CPU entry vector on the SPI flash chip is the same
2. They sufficiently configure the system so that it can support the
loading & execution of an Operating System
— They go about it in different ways
— call it different names: POST/BIOS vs. Platform Initialization
— This should include properly locking down the platform for security

— Where software meets bare metal the machine instructions are the same
(i.e.: PCI configuration, MTRRs, etc...)

« UEFI, however, is a publically documented, massive framework
« Has an open-source reference implementation called the EDK2

« The UDK (UEFI Development Kit) is analogous to a “release tag” of
the “cutting edge” EDK2 (EFI Development Kit)

About UEFI

UEFI = Unified Extensible Firmware Interface

As the name implies, it provides a software interface between
an Operating System and the platform firmware

The “U” in UEFI is when many other industry representatives
became involved to extend the original EFI

— Companies like AMD, American Megatrends, Apple, Dell, HP, IBM,
Insyde, Intel, Lenovo, Microsoft, and Phoenix Technologies

Originally based on Intel’'s EF| Specification (1.10)

Does provide support for some legacy components via the

Compatibility Support Module (CSM)
— Helps vendors bridge the transition from legacy BIOS to UEFI

It's much larger than a legacy BIOS

— (And the attackers rejoiced!)&

Something you may want to read

* If you don't want to just dive into the
thousands of pages of UEFI specifications, a
good overview is also given in
Beyond BIOS: Developing with the Unified
Extensible Firmware Interface 2nd Edition

by Zimmer et al.
Beyond BIOS
* Otherwise go enjoy the specs here: i P
http://www.uefi.org/specifications

UEFI Differences: Boot Phases

Pre

Verifier OS-;\::ent
Q)

. Transient OS

j Chipset Environment
Init Q

Transient OS

Boot Loader

(

OS-Present
App

Dispatcher

Final OS

Intrinsic Final OS

Services Boot Loader [l Environment ?
ecurity "5k
Security Pre EFI Driver Boot Transient Run Time After
(SEC) |Initialization Execution Dev System Load (RT) Life
(PEI) Environment Select (TSL) (AL)
(DXE) (BDS)
Power on — [. . Platform initialization . ,] == [....0OS boot....] Shutdown

« 7 Phases total
« Each phase is defined via specification

« We'll briefly talk about the first 2 phases and then talk about
Secure Boot and UEFI debugging

Legacy BIOS Equivalent
-

Security Pre EFI
(SEC) |Initialization
(PEI)

Power on — [. . Platfon

 However, everything we have covered up to this point is
mostly performed within these first 2 phases

« Chipset configuration, etc.
— Some SMM stuff happens in the 2" phase (PEI), some in the 3™ (DXE)

« For this reason, we’'ll only briefly cover these first 2 phases

Platform Initialization Spec Vol. 1, Version 1.3

SEC (Security) Phase

Pre
Verifier

Security
(SEC)

Power on -

« The SEC phase is the first phase in the Pl architecture
« Contains the first code that is executed by the CPU

« Environment is basically that of legacy:

— Small/minimal code typically hand-coded assembly so architecturally dependent
and not portable

— Executes directly from flash
— Will be uncompressed code

Platform Initialization Spec Vol. 1, Version 1.3, Sec. 13

SEC (Security) Phase:
Architecture vs. Implementation

Pre
Verifier

Security
(SEC)

Power on =

« This picture is architecturally correct. The SEC phase should involve some
amount of measurement and verification of the first code to run

* Realistically if you look at the SEC core module, you will find that it actually
is almost entirely CPU/Chipset/Board initialization handcoded asm

* “In theory, theory and practice are the same. In practice, they are not.”

Platform Initialization Spec Vol. 1, Version 1.3, Sec. 13

SEC Responsibilities 1 of 2

« The SEC phase handles all platform reset events
— All system resets start here (power on, wakeup from sleep, etc)

ACPI Global Power States, ACPI 5.0 Spec

S1
Sleeping

System boot will
e follow a different
o path based on

vaene -andx=
_andx=
—(sc En-) what power state
GO (S_O) - IYee S3 . .
stp_prmcss) Working i Sleeping Its In on sta rtup!
and
SLP_EN

SLP_TYPx=S4
and
SLP_EN

or
PWRBTN_OR S4BIOS_REQ

to
SMI_CMD

OEM S4 BIOS
Handler

« This includes a wake-event from sleep mode, etc.

« WEe'll not be discussing ACPI at this time, but you can find more information
in the ACPI spec:

— http://www.acpi.info/ DOWNLOADS/ACPIspec50.pdf

Platform Initialization Spec Vol. 1, Version 1.3, Sec. 13

SEC Responsibilities 2 of 2

* Implements a temporary memory store by configuring the
CPU Cache as RAM (CAR)

— Also called “no evictions mode”

« Memory has not yet been configured, so all read/writes must
be confined to CPU cache

« Astack is implemented in CAR to pave the way fora C
execution environment (as in ANSI C)

« The processor active at boot time (Boot Strap Processor) is
the one whose cache is used

« If you are interested in CAR, more info can be found here:
— http://www.coreboot.org/images/6/6¢/LBCar.pdf

Platform Initialization Spec Vol. 1, Version 1.3, Sec. 13

SEC Phase

Flush Cacherir;zl!'lén;?tlr:léolqn(])a'\:l initialization o Upon entry the enVironment iS the
same as on a legacy platform
Swich to protected moge — Hardware settings, not BIOS settings

Transition to a non-paged flat-model protected mode ° P ro CeSSO r I S | n Rea I M Od e

ifalge WIS o B « Segment registers are the same
Set cache states for various memory ranges to a known state.
| — CS:IP = FO00:FFFO
Hrscode alh Upile — CS.BASE = FFFF_0000h

Execute Microcode Patch Update for all of the present CPUSs.
(Common process, but an optional behavior in closed-box

controlled configuration systems) ° Entry VeCtor iS Sti” a JMP
— In the UDK2010 I have seen the

T —— WBINVD instruction performed prior
Prior to the (_jiscover_y <_)f memory on the platform, a data area will to the |n |t|a| J M P, but |n Iater I’eVISIOnS
be established within the CPU cache so that a stack-based .
programming language can be used early in the initialization. Of the U D K2O 1 2 |t has been replaced

with NOPs
— Which made me wonder if it was

A
Various early BSP/AP interactions

A series of standard steps which contain some fixed delay events such as:

Send INIT IP! fo al APS possible to cache-poison the reset
Send Start-up IPI (SIPI) to all Aps
Collect BIST data from the APs vector?
: — No, because caching is disabled
Hand-offto PEI entry point automatically on reset!

Intel whitepaper: Reducing Platform Boot Times, Rothman, Figure 1

SEC Phase

Reset Vector

Flush cache and jump into main initialization
routine in the ROM.

A

Switch to protected mode

Transition to a non-paged flat-model protected mode

A4
Initialize MTRRs for BSP

Set cache states for various memory ranges to a known state.

A
Microcode Patch Update

Execute Microcode Patch Update for all of the present CPUSs.
(Common process, but an optional behavior in closed-box
controlled configuration systems)

A 4
Initialize No-Eviction Mode (NEM)

Prior to the discovery of memory on the platform, a data area will
be established within the CPU cache so that a stack-based
programming language can be used early in the initialization.

A

Various early BSP/AP interactions

A series of standard steps which contain some fixed delay events such as:
Send INIT IPI to all APs
Send Start-up IPI (SIPI) to all Aps
Collect BIST data from the APs

A

Hand-off to PEI entry point

Immediate entry into protected
mode after initial jump

UDK2012 vB12: Loads a GDT
from FFFF_FF98h

UDK2012 vB12 does not load an
IDT (not even a nominal one of all
zeroes)

— Just an observation, nothing wrong

with this

Immediately following the entry
iInto protected mode, the Boot
Firmware Volume (BFV) is
located

— GUID:
8C8CE578-8A3D-4F1C-3599-35896
185C32DD

Also locates the SecCore FFS

Intel whitepaper: Reducing Platform Boot Times, Rothman, Figure 1

SEC Phase

Flush Cacherill'ljgrilén;?tir:léoRrgE;\iﬂn initialization o I n the U D K20 1 2 VB 1 2 MTRRS a re
initialized just before CAR is
Switch to protected mode i n iti a I ized

Transition to a non-paged flat-model protected mode o M T R R D efa u It M e m O ry Type iS
Ifalze MRS o B5P configured as Uncacheable

Set cache states for various memory ranges to a known state. .
‘ « UDK2010 also write-protects the
HasdsBIa e Boot Firmware Volume (BFV)

Execute Microcode Patch Updaﬁe for all of t_he_present CPUs.
O B red contguration systems) — An MTRR PhysBase to
Qoo FFFO_0005h

A 4

Initialize No-Eviction Mode (NEM) - An M T R R P hyS M aS k to

Prior to the discovery of memory on the platform, a data area will F F FO O 800 h
be established within the CPU cache so that a stack-based —_

programming language can be used early in the initialization.

A
Various early BSP/AP interactions

A series of standard steps which contain some fixed delay events such as:
Send INIT IPI to all APs
Send Start-up IPI (SIPI) to all Aps
Collect BIST data from the APs

A

Hand-off to PEI entry point

Intel whitepaper: Reducing Platform Boot Times, Rothman, Figure 1

SEC Phase

Reset Vector

Flush cache and jump into main initialization
routine in the ROM.

A

Switch to protected mode

Transition to a non-paged flat-model protected mode

A4
Initialize MTRRs for BSP

Set cache states for various memory ranges to a known state.

A
Microcode Patch Update

Execute Microcode Patch Update for all of the present CPUSs.
(Common process, but an optional behavior in closed-box
controlled configuration systems)

A 4
Initialize No-Eviction Mode (NEM)

Prior to the discovery of memory on the platform, a data area will
be established within the CPU cache so that a stack-based
programming language can be used early in the initialization.

A

Various early BSP/AP interactions

A series of standard steps which contain some fixed delay events such as:
Send INIT IPI to all APs
Send Start-up IPI (SIPI) to all Aps
Collect BIST data from the APs

A

Hand-off to PEI entry point

At this point in the UDK2012/EDK2
we are in SecCoreEntry()

Cool paper on Microcode updates
(by Ben Hawkes):

http://inertiawar.com/microcode/

Uses data and timing analysis to
reveal some of the cryptographic
design of the microcode update
architecture

To an attacker, being able to modify
the Microcode updates could mean
they could “update” the CPU to an
older revision which could contain
exploitable traits/flaws, or simply
iInsert changes to remove security
checks and mechanisms

Note: CPU microcode updates are
not permanently written to the CPU,
microcode updates are (re)applied
each time the system boots

Intel whitepaper: Reducing Platform Boot Times, Rothman, Figure 1

SEC Phase

Reset Vector

Flush cache and jump into main initialization
routine in the ROM.

A

Switch to protected mode

Transition to a non-paged flat-model protected mode

A4
Initialize MTRRs for BSP

Set cache states for various memory ranges to a known state.

A
Microcode Patch Update

Execute Microcode Patch Update for all of the present CPUSs.
(Common process, but an optional behavior in closed-box
controlled configuration systems)

A 4
Initialize No-Eviction Mode (NEM)

Prior to the discovery of memory on the platform, a data area will
be established within the CPU cache so that a stack-based
programming language can be used early in the initialization.

A

This is where Cache-As-RAM is
initialized. No eviction mode means
the CPU cache will not flush/sync to
memory

IMO | think CAR is very interesting.
CoreBoot source has some well-
commented code that explains the
procedure very well (also used in
Chromium):

https://chromium.googlesource.com/
chromiumos/third party/coreboot/+/
master/src/soc/intel/baytrail/
romstage/cache as ram.inc

Various early BSP/AP interactions

A series of standard steps which contain some fixed delay events such as:
Send INIT IPI to all APs
Send Start-up IPI (SIPI) to all Aps
Collect BIST data from the APs

A

Hand-off to PEI entry point

UDK2012 vB12 allocates 8000h
bytes of CPU cache to be used as
RAM
Stack region is placed in cache

— MOV ESP, CAR_BASE_ADDR

Intel whitepaper: Reducing Platform Boot Times, Rothman, Figure 1

SEC Phase

Flush cache and jmp into main ntaizaton BIST here is Built-In Self Test that
each processor performs before
Switch to protected mode being “ready for duty”

S e e e e « | have not observed this but there
Itz TR orBsP is a good chunk of configuration

Set cache states for various memory ranges to a known state. COd e th at I S ki m m ed Ove r.
PR * | have not observed the other

Execute Microcode Patch Update for all of the present CPUSs.

o red conguraion systems) cores on the processor “wake-up”
until the DXE phase

A 4
Initialize No-Eviction Mode (NEM)

Prior to the discovery of memory on the platform, a data area will
be established within the CPU cache so that a stack-based
programming language can be used early in the initialization.

A
Various early BSP/AP interactions

A series of standard steps which contain some fixed delay events such as:
Send INIT IPI to all APs
Send Start-up IPI (SIPI) to all Aps
Collect BIST data from the APs

A

Hand-off to PEI entry point

Intel whitepaper: Reducing Platform Boot Times, Rothman, Figure 1

SEC Phase

Flush cache and jump into main initialization b Locates th e P E I CO re m Od u Ie

‘ « At this point it also configures
“ Switch to protected mode some Of the BARS (MCHBAR,
e PCIEXBAR, and some others)

Y

Infiaize MTRRS for BSP — But memory still has not yet been
Set cache states for various memory ranges to a known state. “d iscovered ”

Hcrocode Pach Upcate At handoff, BIOS_CNTL is set to

Execute Microcode Patch Update for all of the present CPUSs.

T onroed conturaton systems) -+ 0x28 Prefetching and caching are
initially allowed for SMM
T — BIOS Region SMM protection is

Prior to the discovery of memory on the platform, a data area will e n a b I ed
be established within the CPU cache so that a stack-based

rogramming language can be used early in the initialization.
— - — SMM/SMRAM are not yet
\ instantiated

Various early BSP/AP interactions

A series of standard steps which contain some fixed delay events such as:
Send INIT IPI to all APs
Send Start-up IPI (SIPI) to all Aps
Collect BIST data from the APs

A

Hand-off to PEI entry point

Intel whitepaper: Reducing Platform Boot Times, Rothman, Figure 1

SEC Hand-off to PEI Entry Point

19jvoid _ cdecl PeiMain{int SecCoreData, EFI_PEI PPI DESCRIPTOR *PpilList)

20K

21| PeiCore(SecCorebData, PpilList, 8);

22| ASSERT_PEI{"d:\\tmb12\\HMdePkg\\Library\\PeiCoreEntryPoint\\PeiCoreEntryPoint.c", 69, "{{BOOLEAN){B8==1))");
23| CpubDeadLoop();

2403

« Passing handoff information to the PEI phase (to PeiCore):
« SEC Core Data

— Points to a data structure containing information about the operating
environment:

— Location and size of the temporary RAM
— Location of the stack (in temp RAM)

— Location of the Boot Firmware Volume (BFV)

» Located in flash file system by its GUID
« GUID: 8C8CE578-8A3D-4F1C-3599-35896185C32DD3

 If not found, system halts

« PPI List (defined in the upcoming PEI section)
— Alist of PPI descriptors to be installed initially by the PEI Core

« Avoid pointer for vendor-specific data (if any)
« Execution never returns to SEC until the next system reset

Specified in Platform Initialization Spec Vol. 1, Version 1.3, Sec. 13 but the names are derived from the EDK2/UDK

PEI (Pre-EFI Initialization) Phase

| Chipset

Init

Pre EFI

Initialization
(PEI)

- [.. Platforr

 The PEI phase primary responsibilities:
— Initialize permanent memory
— Describe the memory to DXE in Hand-off-Blocks (HOBS)
— Describe the firmware volume locations in HOBs
— Pass control to DXE phase

— Discover boot mode and, if applicable, resume from Sleep state

» Code path will differ based on waking power state (S3, etc.)
» Power states: http://www.acpi.info/DOWNLOADS/ACPIspec50.pdf

22

Components of PEI

* Pre-EFlI Initialization Modules (PEIMs)
— A unit of code and/or data stored in a file
— Discover memory, Firmware Volumes, build the HOB, etc.

— Can be dependent on PPIs having already been installed
* Dependencies are inspected by the PEI Dispatcher

* PEIM-to-PEIM Interface (PPI)

— Permit communication between PEIMs
 So PEIMs can work with other PEIMs to achieve tasks

— Contained in a structure EFlI_PEI_PPI_DESCRIPTOR containing a
GUID and a pointer
— There are Architectural PPIs and Additional PPls

— Architectural PPIs: those which are known to the PEI Foundation (like
that which provides the communication interface to the

ReportStatusCode() PEI Service)

— Additional PPls: those which are not depended upon by the PEI
Foundation.

Platform Initialization Spec Vol. 1, Version 1.3, Section 2.4

Components of PEI

« PEI Dispatcher

— Evaluates the dependency expressions in PEIMs and, if they are met,
installs them (and executes them)

— PEIMs are dispatched a priori

* Dependency Expression(DEPEX)

— Basically GUIDs of PPIs that must have already been dispatched before
a PEIM is permitted to load/execute

* Firmware Volumes

Platform Initialization Spec Vol. 1, Version 1.3, Section 2.4

Components of PEI

« PEI Services

— Available for use to all PEIMs and PPls as well as the PEI foundation

itself

— Wide variety of services provided (InstallPpi(), LocateFv(), etc.)

Table 4. PEI Foundation Classes of Service

PPI Services:

Boot Mode Services:

HOB Services:

Firmware Volume Services:

PEI Memory Services:

Status Code Services:

Reset Services:

Manages PPIs to facilitate intermodule calls between PEIMs.
Interfaces are installed and tracked on a database maintained in
temporary RAM.

Manages the boot mode (S3, S5, normal boot, diagnostics, etc.) of the
system.

Creates data structures called Hand-Off Blocks (HOBs) that are used
to pass information to the next phase of the Pl Architecture.

Finds PEIMs and other firmware files in the firmware volumes.

Provides a collection of memory management services for use both
before and after permanent memory has been discovered.

Provides common progress and error code reporting services (for
example, port 080h or a serial port for simple text output for debug).

Provides a common means by which to initiate a warm or cold restart
of the system.

Extensive list of all PPls can be found in Platform Initialization Spec Vol. 1, Version 1.3, Section 3.1

25

As the tab

es turn... PEl Services Table

typedef struct _EFI_PEI_SERVICES {

EFI_TABLE HEADER Hdr;

EFI PEI INSTALL PPI InstallPpi;
EFI_PEI REINSTALL PPI ReInstallPpi;
EFI_PEI LOCATE PPI LocatePpi;
EFI_PEI NOTIFY PPI NotifyPpi;
EFI_PEI GET BOOT MODE GetBootMode;
EFI_PEI_ SET BOOT MODE SetBootMode;
EFI_PEI GET HOB LIST GetHobList;
EFI_PEI CREATE HOB CreateHob;

EFI PEI FFS FIND NEXT VOLUME FfsFindNextVolume;
EFI_PEI _FFS FIND NEXT FILE FfsFindNextFile;
EFI_PEI FFS FIND SECTION DATA FfsFindSectionData;
EFI_PEI INSTALL PEI MEMORY InstallPeiMemory;
EFI_PEI_ALLOCATE_ PAGES AllocatePages;
EFI_PEI ALLOCATE_ POOL AllocatePool;
EFI_PEI COPY MEM CopyMem;
EFI_PEI_SET MEM SetMem;

EFI_PEI REPORT STATUS_ CODE ReportStatusCode;
EFI_PEI RESET_SYSTEM ResetSystem;
EFI_PEI CPU IO PPI Cpulo;

EFI PEI PCI CFG PPI PciCfg;

} EFI_PEI_SERVICES;

Phoenix Wiki has good descriptions of what they all do:
http://wiki.phoenix.com/wiki/index.php/EFI_PEI_SERVICES

PEI| Phase

C PE| Start)
Initialize the [PEIM n
dispatch of the [PEIM 3
PEIM 1
l 7| PEM Entry Point
PEI
Dispatcher
Invokes
PEIMs
y
Prepare state to
hand off to
DXE IPL PPI DXE IPL PEIM
ntry Point
l DXE TPL PPI

4

Load/Start DXE

PEI Foundation
dispatches
DXE IPL PPI

Platform Initialization Spec Vol. 1, Version 1.3, Section 2.4

This is a basic diagram of the
PEI operations performed by
the PEI Foundation

The PEI foundation builds the
PEI Services table

The core of it centers around
the PEI Dispatcher which
locates and executes PEIMs

— Initializing permanent memory,
etc.

One of these PEIMs will be the
DXE IPL (Initial Program Load)
PEIM which will perform the
transition to the DXE phase
when all PEIMs that can be
invoked have been invoked

27

PEI Dispatcher

The PEI Dispatcher is a state machine and central to the PEI phase

Evaluates each dependency expressions (DEPEXes) of PEIMs
which are evaluated

DEPEX is a list of list of GUIDs for PPIs & some logic associated
with the condition that is desired (e.g. PPl must be loaded before
this module’s DEPEX is satisfied)

If the DEPEX evaluates to True, the PEIM is invoked, otherwise the
Dispatcher moves on to evaluate the next PEIM

X PEIM A Y UEFI will prevent both PEIMs A and B
in this endless cycle from executing.
Y PEIM B X XandY are PPIs

One PPl is EFI_FIND FV_PPI so every PEIM on every Firmware
Volume can be invoked

Once all PEIMs that can execute have been, the last PEIM executed
is the DXE IPL PEIM which hands off to DXE phase

Exit conditions for handoff to DXE

« The HOB List must contain the following HOBs:

Required HOB Type
Phase Handoff Information Table (PHIT) HOB

One or more Resource Descriptor HOB(s)
describing physical system memory

Boot-strap processor (BSP) Stack HOB

BSP BSPStore (“Backing Store Pointer Store”)
HOB
Note: Itanium processor family only

One or more Resource Descriptor HOB(s)
describing firmware devices

One or more Firmware Volume HOB(s)

A Memory Allocation Module HOB

Usage
This HOB is required.

The DXE Foundation will use this physical system
memory for DXE.

The DXE Foundation needs to know the current stack
location so that it can move it if necessary, based upon
its desired memory address map. This HOB will be of
type EfiConventionalMemory

The DXE Foundation needs to know the current store
location so that it can move it if necessary, based upon
its desired memory address map.

The DXE Foundation will place this into the GCD.

The DXE Foundation needs this information to begin
loading other drivers in the platform.

This HOB tells the DXE Foundation where it is when
allocating memory into the initial system address map.

29

Driver Execution Environment (DXE)

Device,
Bus, or
Service
Driver

security

Driver
Execution
Environment
(DXE)

m initialization . .|

The DXE phase is designed to be executed at a high-enough level
where it is independent from architectural requirements

Similar to PEI from a high-level; it creates services used by DXE,
has a dispatcher that finds and loads DXE drivers, etc.

System Management Mode set up, Secure Boot enforcement and
BIOS update signature checks are typically implemented in this
phase. Therefore it is the most security-critical.

PEIl is to DXE as...

PEIMs are to DXE Drivers
PEI Dispatcher is to DXE Dispatcher

— DXE uses an almost identical system as PEIl to load and
invoke individual units of functionality, as required by the
DEPEXs

PPl is to Protocol

— DXE drivers register and lookup "protocols”

Sec Core Data are to HOBs
— PEI gets Sec Core Data from SEC, DXE gets HOBs from PEl

C

PE| Start)

Initialize the
dispatch of the
PE! Foundation

DXE Phase

[PEIM n

[PEIM 3

[PEIM 2

I

PEI

Dispatcher
Invokes
PEIMs

_

PEIM 1

7| PEM Entry Point |

4

Prepare state to
hand off to
DXE IPL PPI

'

PEI Foundation
dispatches
DXE IPL PPI

DXE IPL PEIM

ntry Point

/ ‘Loadelan DXE

Platform Initialization Spec Vol. 1, Version 1.3, Section 2.4

Use this for mental
visualization, but make the
following substitutions

s/PEI/DXE/g
s/PEIM/DXE Driver/g
s/DXE IPL/BDS IPL/g

As the tables turn... DXE Services Table

typedef struct {

EFI_TABLE HEADER
EFI_ADD MEMORY SPACE
EFI_ALLOCATE MEMORY SPACE
EFI_FREE MEMORY SPACE
EFI_REMOVE_MEMORY SPACE

EFI_GET MEMORY SPACE DESCRIPTOR
EFI_SET MEMORY SPACE ATTRIBUTES
EFI_GET_ MEMORY SPACE MAP
EFI_ADD IO SPACE
EFI_ALLOCATE IO SPACE
EFI_FREE IO SPACE
EFI_REMOVE IO SPACE
EFI_GET IO SPACE DESCRIPTOR
EFI_GET IO SPACE_MAP
EFI_DISPATCH

EFI_SCHEDULE

EFI_TRUST

EFI_PROCESS FIRMWARE VOLUME

} EFI_DXE SERVICES;

Hdr;

AddMemorySpace;
AllocateMemorySpace;
FreeMemorySpace;
RemoveMemorySpace;

GetMemorySpaceDescriptor;
SetMemorySpaceAttributes;

GetMemorySpaceMap;
AddIoSpace;
AllocateIoSpace;
FreeIoSpace;
RemoveIoSpace;
GetIoSpaceDescriptor;
GetIoSpaceMap;
Dispatch;

Schedule;

Trust;
ProcessFirmwareVolume;

Phoenix Wiki has good descriptions of what they all do:
http://wiki.phoenix.com/wiki/index.php/EFI_DXE_SERVICES

As the tables turn... Boot Services Table 1

typedef struct {

EFI_ TABLE HEADER Hdr;

EFI RAISE TPL RaiseTPL;

EFI RESTORE TPL RestoreTPL;

EFI_ALLOCATE PAGES AllocatePages;

EFI_FREE PAGES FreePages;

EFI_GET_MEMORY_ MAP GetMemoryMap;

EFI_ALLOCATE_ POOL AllocatePool;

EFI_FREE POOL FreePool;

EFI_CREATE_ EVENT CreateEvent;

EFI_SET TIMER SetTimer;

EFI WAIT FOR EVENT WaitForEvent;

EFI_SIGNAL EVENT SignalEvent;

EFI_CLOSE_ EVENT CloseEvent;

EFI_CHECK EVENT CheckEvent;

EFI_INSTALL PROTOCOL INTERFACE InstallProtocolInterface;
EFI REINSTALL PROTOCOL_ INTERFACE ReinstallProtocolInterface;
EFI _UNINSTALL PROTOCOL INTERFACE UninstallProtocolInterface;
EFI_HANDLE PROTOCOL HandleProtocol;

VOID* Reserved;

Phoenix Wiki has good descriptions of what they all do:
http://wiki.phoenix.com/wiki/index.php/EFI_BOOT_SERVICES

As the tables turn... Boot Services

EFI_REGISTER PROTOCOL NOTIFY
EFI_LOCATE HANDLE

EFI_LOCATE DEVICE PATH
EFI_INSTALL CONFIGURATION TABLE
EFI_IMAGE_ LOAD

EFI_IMAGE START

EFI_EXIT

EFI_IMAGE UNLOAD
EFI_EXIT BOOT SERVICES
EFI_GET NEXT MONOTONIC COUNT
EFI_STALL

EFI_SET WATCHDOG TIMER
EFI_CONNECT CONTROLLER
EFI_DISCONNECT CONTROLLER
EFI_OPEN PROTOCOL
EFI_CLOSE_PROTOCOL

Phoenix Wiki has good descriptions of what they all do:

Table 2

RegisterProtocolNotify;
LocateHandle;
LocateDevicePath;
InstallConfigurationTable;
LoadImage;

StartImage;

Exit;

UnloadImage;
ExitBootServices;
GetNextMonotonicCount;
Stall;
SetWatchdogTimer;
ConnectController;
DisconnectController;
OpenProtocol;

CloseProtocol;

http://wiki.phoenix.com/wiki/index.php/EFI_BOOT_SERVICES

As the tables turn... Boot Services
Table 3

EFI_OPEN_PROTOCOL_ INFORMATION OpenProtocolInformation;
EFI_PROTOCOLS_ PER HANDLE ProtocolsPerHandle;

EFI LOCATE HANDLE BUFFER LocateHandleBuffer;

EFI LOCATE PROTOCOL LocateProtocol;

EFI INSTALL MULTIPLE PROTOCOL INTERFACES InstallMultipleProtocolInterfaces;
EFI_UNINSTALL MULTIPLE PROTOCOL_ INTERFACES UninstallMultipleProtocolInterfaces;

EFI_CALCULATE_ CRC32 CalculateCrc32;
EFI_COPY MEM CopyMem;
EFI_SET MEM SetMem;
EFI_CREATE_ EVENT_ EX CreateEventEx;

} EFI_BOOT SERVICES;

Phoenix Wiki has good descriptions of what they all do:
http://wiki.phoenix.com/wiki/index.php/EFI_BOOT_SERVICES

As the tables turn... Runtime Services

typedef struct {
EFI TABLE HEADER
EFI_GET TIME
EFI_SET TIME
EFI_GET WAKEUP TIME
EFI_SET WAKEUP TIME
EFI_SET VIRTUAL ADDRESS MAP
EFI_CONVERT POINTER
EFI _GET VARIABLE
EFI_GET NEXT VARIABLE NAME
EFI_SET VARIABLE
EFI_GET NEXT HIGH MONO COUNT
EFI_RESET SYSTEM
EFI UPDATE CAPSULE
EFI_QUERY CAPSULE CAPABILITIES
EFI_QUERY VARIABLE INFO

} EFI_RUNTIME SERVICES;

Table

Hdr;
GetTime;
SetTime;
GetWakeupTime;
SetWakeupTime;
SetVirtualAddressMap;
ConvertPointer;
GetVariable;
GetNextVariableName;
SetVariable; <

Used for our ring 3 BIOS exploit - BH
USA 2014, by Kallenberg et al. [31]
CERT VU # 552286

GetNextHighMonotonicCowit; SetVariable also used for CERT VU
ResetSystem; #758382. Co-discovered with Intel, and
UpdateCapsule; first described at CSW 2014

QueryCapsuleCapabilities;
QueryVariableInfo;

Phoenix Wiki has good descriptions of what they all do:
http://wiki.phoenix.com/wiki/index.php/EFI_RUNTIME_SERVICES

Relative magnitude of PEIMSs vs. DXE drivers

Machine release dates are not definitive, just based on first page of Google previews

e (3/2011) Lenovo X220: 65 PEIMs, 278 DXE drivers

* (1/2014) Lenovo X240: 80 PEIMs, 352 DXE drivers

* (3/2010) HP Elitebook 2540p: 42 PEIMs, 164 DXE drivers

* (1/2014) HP Elitebook 850 G1: 117 PEIMs, 392 DXE drivers
e (11/2010) Dell Latitude E6410: 32 PEIMs, 315 DXE drivers
* (2/2014) Dell Latitude E6440: 63 PEIMs, 456 DXE drivers
 DXE has got it going on!

* |ncrease in code & complexity over time? Sounds like we're
on the highway to hell, not a stairway to heaven...
AC/DC

HIGHWAY TO HELL

UEFI Non-Volatile Variables

 The (much more extensible and (eventually) secure) replacement
for "CMOS" / "NVRAM" as a BIOS configuration mechanism

* Stored on the SPI flash chip along with the rest of the BIOS code

 Growing pains: there've been at least two examples (Samsung &
Lenovo) of systems that were implemented incorrectly and once
the variable space was filled up (e.g. accidentally by an OS logging
mechanism), the system was bricked

Can be accessed in PEI (the CapsuleUpdate variable of VU#552286
fame certainly was), but overall, variables are more likely to be
accessed in DXE and later phases (up to and including runtime)

Samsung - http://mjg59.dreamwidth.org/22028.html
Lenovo - https://bugzilla.redhat.com/show_bug.cgi?id=919485

EFI| Variable Attributes

//***

// Variable Attributes
P

ffdefine EFI VARTABLE NON VOLATILE 0x00000001
#define EFI VARIABLE BOOTSERVICE ACCESS 0x00000002
#define EFI VARIABLE . RUNTIME ACCESS 0x00000004
#define EFI VARIABLE . HARDWARE . ERROR RECORD 0x00000008

//This attribute is identified by the mnemonic 'HR' elsewhere in
this specification.

#define EFI VARIABLE AUTHENTICATED WRITE ACCESS 0x00000010
#define EFI VARIABLE TIME BASED . AUTHENTICATED WRITE ACCESS \
0x00000020

#fdefine EFI VARTABLE APPEND WRITE 0x00000040

Each UEFI variable has attributes that determine how the
firmware stores and maintains the data:

‘Non_Volatile’
— The variable is stored on flash

‘Bootservice Access’

— Can be accessed/modified during boot. Must be set in order for
Runtime_Access to also be set

* UEFI 2.3.1 Errata C Final

EFI| Variable Attributes

‘Runtime_Access’

— The variable can be accessed/modified by the Operating
System or an application

‘Hardware_Error_Record’

— Variable is stored in a portion of NVRAM (flash) reserved

for error records
‘Authenticated Write Access’ @

— The variable can be modified only by an application that has been signed
with an authorized private key (or by present user)

— KEK and DB are examples of Authorized variables
‘Time_Based_Authenticated Write_Access’ S

— Variable is signed with a time-stamp 2 9 g
‘Append_Write’

— Variable may be appended with data

EFI Variable Attributes Combinations

//***

// Variable Attributes
//***

#define EFI VARTABLE NON VOLATILE 0x00000001
#define EFI VARIABLE BOOTSERVICE . ACCESS 0x00000002
#define EFI VARIABLE RUNTIME ACCESS 0x00000004
#define EFI VARIABLE HARDWARE . ERROR RECORD 0x00000008

//This attribute is identified by the mnemonic 'HR' elsewhere in
this specification.

#define EFI VARIABLE AUTHENTICATED WRITE ACCESS 0x00000010
#define EFI VARIABLE TIME BASED AUTHENTICATED WRITE ACCESS \
0x00000020 B B B B B

#define EFI VARIABLE APPEND WRITE 0x00000040

 If a variable is marked as both Runtime and
Authenticated, the variable can be modified only by an
application that has been signed with an authorized key

 If a variable is marked as Runtime but not as
Authenticated, the variable can be modified by any
application
— The Setup variable (of VU#758382 fame) is marked like this
— Goto “SetupForFailure” slides

Looking at NVARs w/ ChipSec

Copy Chipsec_Install to C:\Chipsec_Install

(If you don’t already have python 2.7 installed) run
the Python 2.7.9 installer

* NOTE: on the “Customize Python 2.7.9” page, make sure
you select the “Add python.exe to Path” which is just
barely visible at the bottom (you need to scroll down)

Run the pywin32 installer
From admin cmd prompt:

Bcdedit /set TESTSIGNING ON
shutdown /r /t O

Looking at NVARs w/ ChipSec

— From admin cend prompt

cd C:\ChipSec_Install\chipsec-master1-30-2015\chipsec-master
\source\tool

python chipsec_main.py
(will do the basic vulnerability checks)

python chipsec_util.py uefi nvram nvar C:\Copernicus_BIOS.bin

Or possibly

python chipsec_util.py uefi nvram vss C:\Copernicus_BIOS.bin
Will parse out UEFI nvars and place them in the folder
C:\Copernicus_BIOS.bin.nvram.dir

"Authenticate how?"
Keys and Key Stores

 UEFI implements 4 variables which store keys, signatures, and/or hashes:
* Platform Key (PK)

"The platform key establishes a trust relationship between the platform owner and
the platform firmware." - spec

Controls access to itself and the KEK variables

Only a physically present user or an application which has been signed with the PK
is supposed to be able to modify this variable

Required to implement Secure Boot, otherwise the system is in Setup Mode where
keys can be trivially modified by any application

 Key Exchange Key (KEK)

"Key exchange keys establish a trust relationship between the operating system
and the platform firmware." - spec

Used to update the signature database
Used to sign .efi binaries so they may execute

e Signature Database (DB)
— A whitelist of keys, signatures and/or hashes of binaries

 Forbidden Database (DBX)
— A blacklist of keys, signatures, and/or hashes of binaries

UEFI Version 2.3.1, Errata C

UEFI Variables (Keys and Key
Stores) 2

As stated earlier, these variables are stored on the Flash file
system

Thus, if the SPI flash isn’t locked down properly, these keys/
hashes can be overwritten by an attacker

The problem is, the UEFI variables must rely solely on SMM
to protect them!

The secondary line of defense, the Protected Range registers
cannot be used

The UEFI variables must be kept writeable because at some
point the system is going to need to write to them

See our "Setup for Failure" [29] talk to see an example of SMI
suppression to write to the DB to whitelist the "Charizard" PoC

bootkit (also check out the video ;) [33])

Verifier

DXE & SMM, BFF 4EVA!

SMM Intrinsic .:.:]

SMM IPL

ecurity

Security
(SEC)

Pre-EFI|
Initialization
(PEI)

Driver Execution
Environment
(DXE)

Boot Device
Selection
(BDS)

Transient
System Load
(TSL)

Runtime
(RT)

Afterlife
(AL)

Power on = . . Platform initialization . .]

DXE loads SMM IPL
SMM IPL loads SMM Core
SMM Core loads SMM drivers

e [... OS booOt . .]

* Shutdown

Boot Device Selection (BDS)

= Boot

—_Manage

Runtime

Interface

Boot
Dev
Select

(BDS)

|]

The BDS will typically be encapsulated into a single file loaded by the DXE
phase.

It consults the configuration information to decide whether you're going
to boot an OS or "something else"

It has access to the full UEFI Boot Services Table of services that DXE set up.
E.g. HD filesystem access to find an OS boot loader

— So that should tell you an attacker in DXE gets that capability too

ﬁ

| give unto thee: an interface!

* Unlike the transition from SEC -> PEl or PEI -> DXE,
there's no collecting of information to give to BDS

* Instead what's given is a pointer to the system table,
which in turn points to the boot services and DXE
services tables, for the BDS (and next) phase(s) to
use as need be.

Transient System Load (TSL)

UEFI

Interface OS-Absent
App
3 ()
Transient OS
Environment
()
Transient OS
Boot Loader
) Final OS
Runtime Boot Loader B
Interface
Transient
System Load
(TSL)

[....0S boot....]-

This is the point where we hand off from firmware-derived code, to
typically HD-stored code.

If the system is running with SeeureBoot turned on, the BDS will have
checked the signature before loading code in this phase, and denies
anything un-signed (e.g. super 1337 "Oooh look at me, | made the first

UEFI bootkit!!1" bootkits ;))

Pierre Chifflier, UEFI and PCI Bootkits, PacSec 2013 [34]

Target:
OS

Final OS
Environment

UEFI and PCI bootkits 17/42

Pierre Chifflier, UEFI and PCI Bootkits, PacSec 2013 [34]
’ Scenario

Rootkit Detection Framework for UEFI (RDFU),
Vuksan & Pericin, BH USA 2013 [35]

Device
Drivers

Final OS

Environment

What if we forced boot to go through a randomized OS
absent security application (that ideally uses the TPM/TXT
to ensure its trustworthiness?)

1 1 1 1 1 1

UEFI and PCI bootkits 17/42

Run Time (RT)

OS-Present
App
()

Final OS
Bd Environment

Runtime

Interface

Run Time
(RT)

1
——————————

« Typically when the OS boot loader is done, it will call
ExitBootServices() in the UEFI Boot Services table. This will
reclaim the majority of UEFI memory so the OS can use it

« However some memory is retained, to be used for the Runtime
Services Table talked about a while ago

After Life (AL)

IN

After
Life
(AL)

Shutdown

 We haven't checked extensively, but we don't think anyone is
doing anything with this right now
 We think it's just something put there so that architecturally they

would have the option to do "stuff" upon graceful shutdown (e.g.
clearing secrets?)

Conclusion

And the angel said unto him
“Stop hitting yourself. Stop hitting yourself.”
But lo he could not. For the angel was
hitting hlm Wlth hls own hands

