Advanced x86:

BIOS and System Management Mode Internals
SPI Flash

Xeno Kovah && Corey Kallenberg
LegbaCore, LLC

8

LEGBACORE

WE DO DIGITAL VOODOO

All materials are licensed under a Creative

Commons “Share Alike” license.
http://creativecommons.org/licenses/by-sa/3.0/

You are free:

@ to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

®

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

© ®

Attribution condition: You must indicate that derivative work
"Is derived from John Butterworth & Xeno Kovah'’s ‘Advanced Intel x86: BIOS and SMM’ class posted at http://opensecuritytraining.info/IntroBIOS.html” 2

BIOS Flash Overview

« Everything we have talked about so far, although harmful
to a system, isn’t persistent unless you can write to the

BIOS

« But one of the goals an attacker has in establishing a
presence in the system is persistence

* To achieve persistence, the attacker will have to figure
out a way to write to the BIOS flash so that upon every
reboot, his presence is still there

Results of Copernicus checks

We’ve used Copernicus to scan all of MITRE, and
some other organizations.

Originally (in 2013) the data said about 35% of
systems were vulnerable.

Then we found more problems and it went up to 55%
Then people patched and it went down to 35%

Then we found more problems and it went up to 60%
Then we found more problems and it went up to 85%

And if the organizations had never patched, and we
looked at our first data with our last knowledge?

99.95% vulnerable

BIOS Flash Location

« BIOS can reside in one of 3

locations:
DMI
To (SMCH) 1. Firmware Hub (FWH)
(%tparl{??jzc%;%oﬁggs i Power Management — Older technology and mostly
[Clock Generator out of scope for this class
SATA (6 ports) ® System Management
—_— et 5 2. SPI Flash
Intel® High Definition . .
Audio Codec(s) SMBus 2.0/°C | — Most |Ike|V location
'PCI Express* x1 [| SPI Flash
_ == _'|— PCI Bus 3] PC I
_ Ci — intended for debugging or
ol---]l0 .
°Fo L Teeir L U recovering from a corrupted
(Optional) Super 1/0 BlOS (not Supported
TPM _ anymore on newer hardware)
(Optional) Firmware Hub

Boot BIOS Flash Location

Signal

Usage

When
Sampled

Comment

GNTO#

Boot BIOS
Destination
Selection 1

Rising Edge of
PWROK

This field determines the destination of accesses to
the BIOS memory range. Signals have weak internal
pull-ups. Also controllable via Boot BIOS Destination
bit (Chipset Config Registers:Offset 3410h:bit 11).
This strap is used in conjunction with Boot BIOS
Destipation Selection 0 strap.
Boot BIOS
Destination

SPI

PCI

LPC

Reserved

NOTE: Booting to PCI is intended for debug/testing
only. Boot BIOS Destination Select to LPC/PCI
by functional strap or via Boot BIOS
Destination Bit will not affect SPI accesses
initiated by Management Engine or
Integrated GbE LAN.

SPI_CS1# /

(Digital Office
Only)

Boot BIOS
Destination
Selection 0

Rising Edge of
CLPWROK

This field determines the destination of accesses to
the BIOS memory range. Signals have weak internal
pull-ups. Also controllable via Boot BIOS Destination
bit (Chipset Config Registers:Offset 3410h:bit 10).
This strap is used in_conjunction with Boot BIOS

Bit11
(GNTO#)
0

Boot BIOS
Destination

SPI
PCI
LPC

1
1
0 Reserved

NOTE: Booting to PCI is intended for debug/testing
only. Boot BIOS Destination Select to LPC/PCI
by functional strap or via Boot BIOS
Destination Bit will not affect SPI accesses
initiated by Management Engine or
Integrated GbE LAN.

The boot destination is
decided by the
configuration of the
following pins on the ICH/
PCH*

Pins are sampled at power-
up to determine location of
BIOS

Intended for static
configuration

PCI boot is intended only
for debugging or recovering
from corrupt BIOS (so not
necessarily static)

But since these are
hardware pins, it's worth
checking if PCl is set as the
boot location, because you
might have a physical
hardware implant!

* References to ICH/PCH mean applicable to both legacy and modern chipsets

GCS—General Control and Status Register

Offset Address: 3410-3413h Attribute: R/W, R/WLO
Default Value: 00000yy0h (yy = xx0000x0b)Size: 32-bit
Bit Description

11:10

Boot BIOS Straps (BBS) — R/W. This field determines the destination of accesses
to the BIOS memory range. The default values for these bits represent the strap
values of GNTO# (bit 11) at the rising edge of PWROK and SPI_CS1#/GPIOS8
(Desktop Only) /CLGPIOG6 (Digital Office Only) (bit 10) at the rising edge of
CLPWROK.

Bits 11:10 Description

01b SPI (typo in datasheet)
10b PCI

11b LPC

When PCI is selected, the top 16MB of memory below 4GB (FFO0_0000h to
FFFF_FFFFh) is accepted by the primary side of the PCI P2P bridge and forwarded to
the PCI bus. This allows systems with corrupted or unprogrammed flash to boot from
a PCI device. The PCI-to-PCI bridge Memory Space Enable bit does not need to be set
(nor any other bits) in order for these cycles to go to PCI. Note that BIOS decode
range bits and the other BIOS protection bits have no effect when PCI is selected.
This functionality is intended for debug/testing only.

When SPI or LPC is selected, the range that is decoded is further qualified by other
configuration bits described in the respective sections.

The value in this field can be overwritten by software as long as the BIOS Interface
Lock-Down (bit 0) is not set.

NOTE: Booting to PCI is intended for debug/testing only. Boot BIOS Destination
Select to LPC/PCI by functional strap or via Boot BIOS Destination Bit will not
affect SPI accesses initiated by Management Engine or Integrated GbE LAN.

Verify GCS location on your datasheet if not using the class E6400.

Example: Find BIOS Boot Destination

To programmatically find
where your BIOS is
configured to boot from,
you can also view bits
11:10 in the General
Control and Status
Register (GCS)
Located at memory-
mapped offsets
3410-3413h in the
Chipset Configuration
Registers

Chipset Configuration
Registers are mapped
starting at the address
held by RCBA...you

know, RCRB? :)

Reminder: RCBA/RCRB

You know the

drill! L RCBA—Root Complex Base Address Register
(LPC I/F—D31:F0)
Offset Address: FO0-F3h Attribute: R/W
Default Value: 00000000h Size: 32 bit
Bit Description

31:14 Base Address (BA) — R/W. Base Address for the root complex register block decode
: range. This address is aligned on a 16-KB boundary.

13:1 | Reserved

0 Enable (EN) — R/W. When set, enables the range specified in BA to be claimed as the
Root Complex Register Block.

« The Root Complex Register Block (RCRB) decode range is
located in the Root Complex Base Address (RCBA) register
located in the LPC (D31:FO, offset FO-F3h)

« The root complex is PCI-Express related. It connects the
processor and memory to the PCI Express devices.

— If you want to know more about the inner workings of PC| Express,
there are a number of good sources, such as (Darmawan):

— http://resources.infosecinstitute.com/system-address-map-
initialization-x86x64-architecture-part-2-pci-express-based-systems/

Example: Find BIOS Boot Location

Locate RCRB:

Access Specific Window Help

LIPEFEREED B Bit 0 is just an enable

Bl ra bit (the nibble this bit is
5 byt d| dword| 2 . . .
el (Gl &7 8 o]] il 2] 4 | @) in is still part of the
[Bus 00, Device 1F, Function 00 - Intel Corporation ISA Bridge v add reSS, but Change It
0 03020100 07060504 0BOAOD90S8 OFOEODOC
00 29178086 02100107 06010003 00800000 tO O)
10 00000000 00000000 00000000 00000000
20 00000000 00000000 00000000 02331028) H e re th e RC R B b e g i n S
30 00000000 000000ED 00000000 00000000
40 00001001 00000080 00001081 00000010 at FED1 8000h
50 00000000 00000000 00000000 00000000 —
60 8ABBBAS83 000000D1 808B838A 000000F8 . .
70 00000000 00000000 00000000 00000000 ¢ Th e G CS reg ISte r IS
80 3C040000 007C0901 00000000 003C0C81 . .
aQ 00000000 00000000 00000000 00000000 Iocated at I n th e Ch I pset
AD 00000E20 00800239 004A1C2B 40000300 . . .
BO 00F00000 00000000 00010008 00000000 CO nfl g U ratl O n reg ISte rS .
C0 00000000 00000000 00000000 00000000
DO 00000000 00000000 0000F080 00000008 o At RC RB + 34 1 O h —
EQ (03C40200 00000004 00000000
B ‘ 00000000 00030F86 00000000 F E D 1 B4 1 O h

Example: Find BIOS Boot Location

RW - Read & Write
ecific Window Help

X

Acces
J;«jgg | &4 T I o EE S
3pace Inoes SMOUSH [MSR ACPI

[Memo ry
EI Fi| £ ﬂ byt war ggbd|]1 |Q

| Address = FED1B410 | v

0 02020100 07060504 0BOAD90S 0FOEODOC |
00 00000000 03300001 B34F001F (
10 00000000 00000000 00000000 00000000
20 00000002 00000000 00000000 00000000 1
30 00000000 00000000 00000000 00000000
Bits 11:10

0 1 SPI

1 0 PCI

1 1 LPC

0 0 Reserved

GCS at FED1_B410h
yields the following
value on our lab
system:

00C0O_0440h

Bits 11:10 are 01b
which indicates that this
BIOS boots from SPI

But how can we trust
what this says? We're
not actually sampling
the Controller’s pins in
this reqister

10

GCS—General Control and Status Register

Offset Address:
Default Value:

3410-3413h Attribute:
00000yy0h (yy = xx0000x0b)Size:

R/W, R/WLO
32-bit

Bit

Description

P

11:10

Boot BIOS Straps (BBS‘ — R/W. Tpis field determines the destination of accesses
to the BIOS memory range® ult values for these bits represent the strap
values of GNTO# (bit 11) at the rising edge of PWROK and SPI_CS1#/GPIO58
(Desktop Only) /CLGPIO6 (Digital Office Only) (bit 10) at the rising edge of
CLPWROK.

Bits 11:10 Description
0Oxb SPI
10b PCI
11b LPC

When PCI is selected, the top 16MB of memory below 4GB (FFO0_0000h to
FFFF_FFFFh) is accepted by the primary side of the PCI P2P bridge and forwarded to
the PCI bus. This allows systems with corrupted or unprogrammed flash to boot from
a PCI device. The PCI-to-PCI bridge Memory Space Enable bit does not need to be set
(nor any other bits) in order for these cycles to go to PCI. Note that BIOS decode
range bits and the other BIOS protection bits have no effect when PCI is selected.
This functionality is intended for debug/testing only.

When SPI or LPC is selected, the range that is decoded is further qualified by other
configuration bits described in the respective sections.

The value in this field can be overwritten by software as long as the BIOS Interface
Lock-Down (bit 0) is not set.

NOTE: Booting to PCI is intended for debug/testing only. Boot BIOS Destination
Select to LPC/PCI by functional strap or via Boot BIOS Destination Bit will not
affect SPI accesses initiated by Management Engine or Integrated GbE LAN.

Example: Change BIOS Access Destination

Notice these bits are R/W?

You can change the
destination for BIOS
accesses

Likely this is to help the
system recover from a
corrupted BIOS

But it could be certainly
misused as well

Note just to be clear: The

bits in GCS alter accesses

to the BIOS *only* after the

BIOS has begun booting

— Chipset Configuration

registers must be mapped to
memory, etc.

The functional straps are

physical pins which cannot

be altered and decide the

BIOS Boot Location

11

Example: Change BIOS Access Destination

Access Specific Window Help
o el = sl 09 29 T I _J
ace [index smbusl| (MSE)
|
. Memory H Memory
SH W byte | word| dword -
e A= ﬂ - o + byte | word| dword
NP (55 8bit| 16bit] 32bi goit | 16bit| 3261 1
Address = FED1B410 | i
000 33233122 07060504 ?)22’;‘2§g 0 00 01 02 03 04 05 06 07 08 09 OA 0B OC 0D OE OF
- 00000000

—— T 00 EA 87 FF 00O 00O 08 00O B8 10 00 8E D8 8E CO 8E EO

10 00000000 00000000 0000000 L

10 90 EA F0O FF 30 00 00 OO0 OO OO OO OO OO OO OO OO

20 00000002 00000000 0000000 - - - - - - - o o . - . - o - o

20 00 00 OO OO OO OO OO OO OO OO OO OO OO OO OO0 OO

30 00000000 00000000 0000000 L

30 00 00 OO0 OO OO OO OO OO OO OO OO OO OO OO OO OO

40 00000000 00000000 0000000 L . L . - . - -

40 00 00 OO0 OO OO OO OO OO OO OO OO OO OO OO OO OO

50 00000000 00000000 0000000 L

S50 00 00 OO0 OO OO OO OO OO OO OO OO OO OO OO OO OO

60 00 00 OO0 OO OO OO OO OO OO OO OO OO OO OO OO OO

70 E9 3D FE 00 00 OO OO OO OO OO OO OO OO OO 00 OO

* Bring up a memory window and go to an address which
shows the memory-mapped BIOS (like FFFF_FF80h which
will show us the entry vector)

* You should see the BIOS in memory

12

Example: Change BIOS Access Destination

Access Specific Window Help

CPEPEEF] RELE

Memory r Memory

Ll ([binfl] 0] g M byte | word | dword S w
s 1 41 6 0 5) i 2)) Gl) 05 22 1| @
Address = FEDTB410 | Address = FFFFFF80
0 03020100 07060504 0BOAOSY (|
00 00C00C40 00000000 033000 FE FF FF FF

10 00000000 ???????? ??????I FE FE EF FF FF
20 9999999? ??????99 ?99???| EEEEREEECEREEIEE
30 00000000 00000000 000000(== == == (== [== [Z= (== [== (== == [E= [== ==
40 00000000 00000000 000000(

FF FF FF FF FF FF FF FF FF FF FF FF FF
50 00000000 00000000 000000(

FF FF FF FF FF FF FF FF FF FF FF FF Fj
A0 nnnnnnnn nonoonnnnn alalalalalall

FF FF FF FF FF FF FF FF FF FF FF E57FF
FF FF FF FF FF FF FF FF FF E FF FF

e

* Modify the GCS register to 00C00C40h, bits 11:10 are 11b now which
point the device to the LPC

* On our lab system the LPC has no firmware BIOS so this translates to
reads of all 1's (OxFF)

* Your personal system may differ and you may actually see valid binary
here.

13

Example: LOCK BIOS Access Destination

GCS—General Control and Status Register

Offset Address: 3410-3413h Attribute: R/W, R/WLO
Default Value: 00000yy0h (yy = xx0000x0b)Size: 32-bit
Bit Description
Boot BIOS Straps (BBS‘— R/W. Tpis field determines the destination of accesses
to the BIOS memory range. ult values for these bits represent the strap
values of GNTO# (bit 11) at the rising edge of PWROK and SPI_CS1#/GPI0O58
(Desktop Only) /CLGPIO6 (Digital Office Only) (bit 10) at the rising edge of
CLPWROK.
Bits 11:10 Description
0xb SPI
10b PCI
11b LPC
When PCI is selected, the top 16MB of memory below 4GB (FFO0_0000h to
11:10 | FFFF_FFFFh) is accepted by the primary side of the PCI P2P bridge and forwarded to

the PCI bus. This allows systems with corrupted or unprogrammed flash to boot from
a PCI device. The PCI-to-PCI bridge Memory Space Enable bit does not need to be set
(nor any other bits) in order for these cycles to go to PCI. Note that BIOS decode
range bits and the other BIOS protection bits have no effect when PCI is selected.
This functionality is intended for debug/testing only.

When SPI or LPC is selected, the range that is decoded is further qualified by other
configuration bits described in the respective sections.

The value in this field can be overwritten by software as long as the BIOS Interface
Lock-Down (bit 0) is not set.

NOTE: Booting to PCI is intended for debug/testing only. Boot BIOS Destination
Select to LPC/PCI by f_u_nctional strap or via Boot BIOS Destination Bit will not

[

BIOS Interface Lock-Down (BILD) — R/WLO.
0 = Disabled.

affect SPI ac ngine or Integrated GbE LAN.

~—

1 = Prevents BUC.TS (offset 3414, bit 0) and GCS.BBS (offset 3410h, bits 11:10)
wemg changed. This bit can only be written from 0 to 1 once.

—— —

Intel provides a way to
lock down the
destination of BIOS

dCCESSEeS

When bit O in the
General Control and
Status Register (GCS)
Is set, bits 11:10
become Read-Only

The BIOS should lock
this down!

14

Example: Change BIOS Access Destination

Access Specific Window Help

Hﬂﬁﬁ%ﬁﬁﬁ].iﬂ | S

”‘HE QEQ! lﬁi!

byte

8bit

word
16bit

dword
32bit

(7]

=k F

Address = FFFFFFS0

. =
Memory] Memory
*HWE byte | word| dword R
A 6] O] s el g o
Address = FED1B410 |
0 03020100 07060504 0BOADO(0 00

00 00C00C40 00000000 033000

10 00000000 00000000 000000

20 00000002 00000000 000000(

30 00000000 00000000 000000(

40 00000000 00000000 000000(

50 00000000 00000000 000000(

A0 nnnnnnnn nonoonnnnn alalalalalall

FF FF FF FF
FF FF FF FF
FF FF FF FF
FF FF FF FF
FF FF FF FF

-
==
FF
FF
==

-
B
FF
=
==

=z
FF
==
==
==

FF FF FF FF
FF FF FF FF
FF FF FF FF
FF FF FF FF
FF FF FF FF
FF FF FF FF
FF FF FF FF
FF FF E

-
FF FF

FF F
e FF
FFFF

« Set bits 11:10 in the GCS register back to their original

values (01b for SPI)*

 Assert bit 1in GCS, now GCS is 00C00441h
* Now find that bits 11:10 are fixed in place

*Or leave them pointing to nothing, this is not permanent and nothing a reboot won’t reset

FF FF
FFFF

15

A Word About This

Access Specific Window Help

o e = sl 29 2 R e S S

i Memory . Memory

./ j byte dword + ¥ &N
. .] - “ . 8hit _,]/.::: it

32bit

word

16bit dword

32bit

word
16bit

(7]

=k F

byte
8bit

addiocsmRERLEL0 | Address = FFFFFF80
0 03020100 07060504 0BOAOD9(
00 00000000 033000
10 00000000 00000000 000000
20 00000002 00000000 000000(
30 00000000 00000000 000000(
40 00000000 00000000 000000(
50 00000000 00000000 0000001
a0 nnonnnnn nnonnnon nnnonnt

« This only affects direct (memory) accesses to BIOS flash

* Programs (like Copernicus or Flashrom) that read directly
from the BIOS flash using the SPI programming registers (for
example) will still successfully read the BIOS binary from the
chip

16

Firmware Hub (FWH)

AIA AB A3 RST# VPP VCC RICH A10 NA
Mux Mux
FGPI2 FGPI3 RST# VPP VCC CLK FGPI4
|| M 1 ||| [_] A |
a 3 2 1 32 31 30
AT |repn [s 29 [ICvy) | 1cv,)
A6 |FGPID [] g 28 [cNDa | gNDa
AS wen [5 27 [vcca | vceca
IntelFirmware Hub
Ad B[] 4 (IntelFWH) 26 7] GND GND
32-Lead PLCC
0.450" x 0.550
A3 D3 25
- 9 Top View] vee b
A2 D2] 10 24 7] iNrTw OEW
Al D1 [11 23 [] FwH4 WEN
AD Do [] 12 22 [rrFu RY/BY#
FwHo [] 13 21 [rrFu pa7
14 15 % 17 18 18 20
O O O O 0O O 1O
FWH1 FWH2 GND FWH3 RFU RFU RFU
AIA DQ1 DQ2 GND DQ3 DQ4 DQS DQ6 AIA
Mux Mux

Intel 82802AB/82802AC Firmware Hub (FWH)

Provides register-based R/W
protection for each code/data
storage block

Has hardware write-protect pins
for the top boot block and the
remaining code/data storage
blocks

Contains a Random Number
Generator (RNG)

More than one FWH device can
be supported

Operates at 33 MHz
(synchronous to the PCI bus)

Has a lot of pins compared to
SPI

17

Firmware Hub (FWH)

Memory Mnemonic Register Name Default Type

Address
FFBF0002h T_BLOCK_LK Top Block Lock Register (4-8-Mbit FWH) 01h RW
FFBE0002h T_MINUSO1_LK Top Block [-1) Lock Register (4-8-Mbit FWH) 01h RW
FFBD0002h T_MINUS02_LK Top Block [-2] Lock Register (4-8-Mbit FWH) 01h RW
FFBC0002h T_MINUSO03_LK Top Block [-3] Lock Register (4-8-Mbit FWH) 01h RW
FFBB0002h T_MINUSO04_LK Top Block [-4] Lock Register (4-8-Mbit FWH) 01h R/W
FFBA0002h T_MINUSO05_LK Top Block [-5) Lock Register (4-8-Mbit FWH) 01h RW
FFBS0002h T_MINUSO06_LK Top Block [-6) Lock Register (4-8-Mbit FWH) 01h RW
FFB80002h T_MINUSO07_LK Top Block [-7] Lock Register (4-8-Mbit FWH) 01h RW
FFB70002h T_MINUSO08_LK Top Block [-8] Lock Register (8-Mbit FWH) 01h RW
FFB60002h T_MINUS09_LK Top Block [-9] Lock Register (8-Mbit FWH) 01h RW
FFB50002h T_MINUS10_LK Top Block [-10] Lock Register (8-Mbit FWH) 01h RW
FFB40002h T_MINUS11_LK Top Block [-11] Lock Register (8-Mbit FWH) 01h RW
FFB30002h T_MINUS12_LK Top Block [-12] Lock Register (8-Mbit FWH) 01h RW
FFB20002h T_MINUS13_LK Top Block [-13] Lock Register (8-Mbit FWH) 01h RW
FFB10002h T_MINUS14_LK Top Block [-14] Lock Register (8-Mbit FWH) 01h RW
FFB00002h T_MINUS15_LK Top Block [-15] Lock Register (8-Mbit FWH) 01h R/W
FFBC0100h FGPI_REG FWH General-Purpose Input Register N/A RO
FFBCO15Fh RNG Hardware Status Register 40h* R/W
FFBC0160h RNG Data Status Register 0 RO
FFBC0161h RNG Data Register N/A RO

Intel 82802AB/82802AC Firmware Hub (FWH)

Memory-mapped interface

Programmable Erase,
Read, Write commands

Each block can be locked
down to prevent Reads
and/or Writes

Firmware hubs are rare (at
least in modern PC’s) and
we have never seen one

Sample FWH datasheet:

http.//download.intel.com/
design/chipsets/datashts/
29065804 .pdf

If you ever encounter a
system with a firmware
hub email me and tell me
the make/model please

18

Serial Peripheral Interface (SPI)

* Intel's ICH/PCH implements a SPI
interface for the BIOS flash device

« Used as a replacement for the Firmware

CSI11 s vece Hub (FWH) on LPC
sO[]2 70D *© SPlis required in order to support the
WP [13 6 1scK Management Engine (ME), Gigabit
GND []4 5[]l Ethernet (GbE), and others.
« Each SPI flash device can be up to 16
Typically 8 pins, can be 16 MB (224 bitS)

« SPI controller can support 1 or 2 devices for 32 MB maximum
addressable space

« Lower cost alternative (per Intel datasheet)

 Memory-mapped programming interface offset from RCRB

(consult your datasheet for its exactly offset)
*Based on datasheet information and that the Flash Address Register accepts addresses occupying b|ts 24:0

SPI Overview

SPI protocol can support data rates up to 100 MHz

— Intel’'s implementation is configurable to operate at either 20 MHz
or 33 MHz (or 50 MHz on the newer PCI Express systems), or
66MHZz

Intel abstracts most of the low-level SPI protocol from
you

SPI protocol is not a fixed standard

— Different chips will support different commands and so forth

Intel defines a set of minimum requirements for a chip to

support.

— Likely though each chip will support more than just that bare
minimum

So we'll be covering Intel’'s implementation and interface

to SPI, not really the SPI protocol itself (they intertwine

somewhat of course).

SPI Operating Modes

Since |I/O Controller Hub version 8, the SPI flash has
been able to support 2 distinct operating modes:
Non-Descriptor Mode (RiE-deceased—09)

— IT LIVES! (On embedded Intel Atom devices like MinnowBoard!)
— In ICHY this is the only supported operating mode

Descriptor Mode

— Since ICH8 (so ICHS8, ICH9, ICH10, and PCH)

For systems that have a Platform Controller Hub device

(PCH), non-descriptor mode has been phased out and is
no longer supported

Descriptor Mode

Enables chipset features like:

— Integrated Gigabit Ethernet, Host processor for Gigabit Ethernet
Software, Management Engine

Provides support for two SPI flash chips

Divides the SPI flash into regions
Provides hardware enforced security restricting region access

Chipset Soft Strap region provides the ability to use Flash
NVM as an alternative to hardware pull-up/pull-down resistors
for both ICH and PCH

— On reset, the controller hub reads the soft strap data out of the SPI
flash

Can be programmed (at a minimum) using the commands
specified in the Intel ICH/PCH datasheet

— But each chip can support additional commands, not very
standardized

Memory Mapping: Descriptor Mode

4GB

 All of the flash chip is
mapped to high memory

* In Descriptor Mode, only the
BIOS region of the flash is
readable in memory

» All other regions return OxFF
on reads
— We'll get to the other regions in

L[]
1

BIOS Region

Memory a bit
Flash Contents

Flash contents that are
viewable in Memory

Non-Descriptor Mode

Best described by its lack of features (as compared to
Descriptor mode)

The entire flash is used for BIOS (this does not mean the
BIOS will be larger)

Security features available in Descriptor mode are not
available in Non-Descriptor mode

— The BIOS/CPU can read/write to the flash without restriction

Therefore there is also no support for Gb Ethernet,
Management Engine, or chipset soft straps

Interesting quote in Intel’'s ICH datasheet (10, in this case):
“[in Non-Descriptor Mode], Direct read and writes are not
supported.”

‘Non-Descriptor Mode == IDescriptor Mode’

No longer a viable option on the newer PCH systems, since
they require a valid flash descriptor

Memory Mapping: Non-Descriptor Mode

4GB
_______ 4GB - size of flash (MB)

------- 4GB - 16 MB

Entire Flash

L[]
1

Memory

Flash Contents

Flash Contents Readable in Memory

In Non-Descriptor Mode the
entire flash contents are visible
in memory (more than just
BIOS, if any more is present)

If flash is < 16 MB and the
FWH decoders are enabled in
LPC, you will see the BIOS
mapped repeatedly (think
ribbons) at high memory
— A4MB BIOS is mapped 4 times
in the high 16 MB of memory
sSpace
A flash device in descriptor
mode that has its descrlptor
signature “corrupted” will be
viewable in memory in its
entirety
— But the descriptor signature is

protected, so that would require
physical flash access to corrupt

Non-Descriptor Mode Memory Mapping

Memory

&

gl ddress

0 00 01 02 03 04 05 06

Ao

word
16bit

dword
32bit

byte
8bit

i ﬂ

i

(7]

07 08 09 0A 0B 0C 0D OE OF

= FFO00000

00 5B AS FO OF 01 00 04 04 06 02 10 02 20 01 00 00
10 13 Memory
20 FF
binfll g0 g byte | word| dword| 2
EI H | G G| E1 gbit | 16bit| 32bit] A

« Example of 4 MB
device in “non-
descriptor” mode
mapped to high
16MB of memory

11 . b))
o
Address = FF400000 Invalid” Flash
0 00 01 02 03 04 05 06 07 08 09 0OA 0B 0OC 0D OE OF DeSC“ptOr
00 5B A5 FO OF 01 00 04 04 06 02 10 02 20 01 00 OO0
10 13 |§ Memory
FF
= byte | word| dword| 2
gbit | 16bit| 32bit| 1
0 00 01 02 03 04 05 06 07 08 09 O0OA 0B 0C 0D OE OF
00 5B A5 FO OF 01 00 04 04 06 02 10 02 20 01 00 00
10 13 Memory
20 FF
) i byte | word| dword| 2
. . & ﬂ gbit | 16bit| 32bitl A |Q
0 b 01 02 03 04 05 06 07 08 09 0OA 0B 0C 0D OE OF Instead Of
00 5B A5 FO OF 01 00O 04 04 06 02 10 02 20 01 00O 00
10]3 00 30 00 OO0 OO0 OO OO OO OO OO0 OO FF FF FF FF OFFOASSAh

26

Why is some of the chip visible in memory in
one mode but not the other?

« Has to do with the type of flash access as well as permissions to
read that memory:

« There is an SPI “rule” that states:
— Every SPI Master has direct read access to it's own region only
— Direct Access refers to memory reads in mapped memory

— Thus the BIOS Master can read the BIOS region in memory (mapped
to high mem at 4 GB)

« In Descriptor mode, the SPI flash is divided into regions
— BIOS region, Flash Descriptor, etc. (we'll cover in more detail soon)

« Therefore, in Descriptor Mode, only the BIOS region can be
seen in high mapped-memory

* In Non-Descriptor mode, there is no concept of regions
— It's just “the BIOS”

« So therefore, the entire “BIOS” (entire flash) can be seen in
memory when the SPI flash is in Non-Descriptor mode

Flash Accesses: Direct vs. Register

» Direct Access
— This applies to memory accesses (mapped to high-memory)

— Masters are allowed to read only their own region
« CPU/BIOS can read the BIOS region

« Management Engine can read only the ME region

» GbE controller can read the GbE region (GbE software must use the
programming registers)

* Register Access
— Access a region by programming the base address registers

— Register accesses are not allowed to cross a 4 KB aligned
boundary

— Cannot execute a command that may extend across to a second
SPI flash (if present)

— Software must know the SPI flash linear address it is trying to
read

