Advanced x86:

BIOS and System Management Mode Internals
More Fun with SMM

Xeno Kovah && Corey Kallenberg
LegbaCore, LLC

8

LEGBACORE

WE DO DIGITAL VOODOO

All materials are licensed under a Creative

Commons “Share Alike” license.
http://creativecommons.org/licenses/by-sa/3.0/

You are free:

@ to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

®

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

© ®

Attribution condition: You must indicate that derivative work
"Is derived from John Butterworth & Xeno Kovah'’s ‘Advanced Intel x86: BIOS and SMM’ class posted at http://opensecuritytraining.info/IntroBIOS.html” 2

Other ways to break into SMM

Ways to break into SMM so far

Break into the SPI flash chip, because it sets up the contents
of SMRAM

Get lucky and find out that the vendor didn't set D_LCK
Be on a system that’s too old to support SMRR (auto-win)

Be on a system where the vendor didn’t set the SMRR
Other?

Q35 chipset remapping bug

 There is a remapping feature present in
chipsets that allows them to remap and
reclaim space “lost” to the PCl Memory
Mapped IO region of the memory map

* |t turned out you could also use that bug to
remap the protected SMRAM into non-
protected space!

* Then it was a simple matter to read and write
it

Memory Remapping on Q35 chipset

http://invisiblethingslab.com/resources/bh09dc/Attacking%20Intel%20TXT%20-%20slides.pdf

REMAPBASE X, &
— e

This DRAM now accessible from
CPU at physical addresses:
<REMAPBASE, REMAPLIMIT>
Otherwise would be wasted!

Processor’s View

http://invisiblethingslab.com/resources/bh09dc/Attacking%20Intel%20TXT%20-%20slides.pdf

Intel patched the bug in August 2008

(This was done by patching the BIOS code to properly lock the memory configuration registers)

Xeno note:

This implies that other BIOSes could be vulnerable, if they’re not setting the configuration correctly.
We never got around to re-investigating this, and therefore it’s not a Copernicus built in check.

It could be that similar issues are lurking in deployed BIOSes.

What if...

 What if the SMI handler code was poorly
written, and it basically reached out and
grabbed resources outside of its protected
SMRAM area?

 What if it executed code completely outside
of its protected area?!

ITL Attack

m/ call [ACPINV+x]

A This memory is not protected

< by the chipset! OS (and
attacker) can modify it at will!

Shellcode

e Untrusted ACPI function pointer called by SMM led to easily
exploitable vulnerability

https://www.blackhat.com/presentations/bh-usa-09/WOJTCZUK/BHUSA09-Wojtczuk-AtkintelBios-SLIDES.pdf

Code segment OF000 is translated to physical RAM addresses FO000h -
100000h. This region contains system BIOS code such as POST and
BIOS interrupts. This segment is not protected by SMM memory
protections like SMI code. Any process with sufficient privileges

to access physical memory can replace contents of this region with
own code.

So, for instance, linear address 0F000:08070 in the above SMI
handler is translated to physical address F8070h. During the boot
this address gets loaded with BIOS code that reads registers in
power management I/O space using ports 800h+offset:

00008387: BAO0O08 mov dx,00800
0000838A: 02D4 add dl.ah
0000838C: 80D600 adc dh,000
0000838F: C3 retn

00008390: 52 push dx

00008391: ESF3FF call 000008387
00008394: EC in al.dx

00008395: 5A pop dx

00008396: C3 retn

- These instructions are loaded to 0F000:08070 address

. (F8070h in physical memory) by the BIOS from ROM chip
00008397: ESFBFF call 000008390

0000839A: CB retf

These BIOS instructions can be replaced with a jump to malicious
code, so that this code will get executed by SMI handler with

QMM nrivvilanac

“ASUS Eee PC and other series: BIOS SMM privilege escalation vulnerabilities” by
core collapse
Numerous instances of untrusted code execution by SMM in OEM firmware

Probably lots more of these in proprietary SMM modules
http://archives.neohapsis.com/archives/bugtrag/2009-08/0059.html

THE
INCURSION
WALL IS
HERE.

)000R1EO0 81 31 4E 35 00 85 49 16 7E .1IN5..I.UQwe.UF~
)000RIF0 B7 73 33 94 8C D5 OF 3E 8D -sS"E0.>&}¢ [820.
)000A200 00 i ...l i.E% (LL
)000A210 00 (00

)000A220 70 | U0 00 00 00 i 00

)000A230 00 00 00 00 00 00 00 00 30 U0 00

)000A240 04 05 00 00 00 00 00 00 00

0002250 00 00 00 00 00 00 00 00 00

)000A260 00 00 00 00 00 00 00 00 00

)0008270 04 05 00 00 00 00 00 0O0f semz:MISm: 00

)000A280 00 00 00 00 00 00 00 UU OU UL 00

)000A290 ! 00 00 00 00 ! 00

)000A220 00 00 00 00 00 00 00 00

* We did a little RE work to determine which SMM
code we could invoke from the OS by writing to port
OxB2

* |n this case, function OxXDBO5EDCC within SMM can
be reached by writing 0x61 to port 0xB2

* Almost every UEFI system we surveyed used this
format to record reachable SMM code

FFFFFFFF
Untrusted Address

Space

Untrusted Code and Data

SMRAM

}Trusted Code and Data

EIP=Untrusted Address

Untrusted Address
Space

Code Called by SMRAM

00000000

ﬂ

>Untrusted Code and Data

e We found a lot of these vulnerabilities

 They were so easy to find, we could write a ~300 line
IDAPython script that found so many | stopped counting
and (some) vendors stopped emailing me back

int smi_handler 9d37fe78()
{

__int64 vo; // rax@l

LODWORD(v®@
— e,
return vo;

}

int smi_handler 9d37fe78()
{

__int64 vo; // rax@l

LODWORD(v®@
— e,
return vo;

}

int smi_handler 9d37fc18()
{
__int64 v@; // rax@l
__int6d v1; // rcx@l
char v3; // [sp+46h] [bp+18h]@1

LODWORD(v@) = (*(int (__fastcall **)(char *))(+ 24164)) (&v3);
vo;

if (V0 >= 0)

{

LOBYTE(v1) = v3;
LODWORD(v@) = (*(int (__fastcall **)(__int64))(+ 64164))(vl);
= VO,

}

return vo:

int smi_handler 9d37fc18()
{
__int64 v@; // rax@l
__int6d v1; // rcx@l
char v3; // [sp+46h] [bp+18h]@1

LODWORD(v@) = (*(int (__fastcall **)(char *))i + 24164))(&v3);
vo;

if (Vo >= 0)

{

LOBYTE(v1) = v3;
LODWORD(v@) = (*(int (__fastcall **)(__int64))(+ 64164))(vl);
= VO,

}

return vo:

char _ fastcall smi_handler bbb8c66@(_int64 al, _ int64 a2)
{

char v2; // bl@l

signed _int64 v3; // rcx@l

unsigned _int8 v4; // dl@le

__int64 v5; // r8@20

char result; // al@2l

__int16 v7; // [sp+36h] [bp-28h]@20

__int16 v8; // [sp+32h] [bp-26h]@20

V2 = ;
|= ex30u;
v3 = 3149860880164;
qword_BBBBDCF8 = 3149860880164;
if (| == -5200 || == -5549)
{
LOBYTE(a2) = :
(&qword_BBB8DCF@, a2);

.
o
I
=
(%)
-]
@)
-
)
(Vp)]

ACPIl remapping attack

 “Memory sinkhole attack” by Domas at
BlackHat 2015

* Fixed in Sandy Bridge (2" generation Core |
series) & Atom 2013 processors

— Vulnerable on older

TODO: Intel SMRAM overlap bugs

: from SMM

: smbase: Ox1ff80000
mov eax, [Ox1ff80000]
. reads 0Ox00000000

The MCH never receives the
memory request: the primary
enforcer of SMM security is
removed from the picture.

Processor

2

Memory

Ox1ff80000
SMRAM

Ox1ff80000

Ox1ff81000

210

emap Attack

x The Challenge:
@ Must be 4K aligned
| Begin @ exactly SMI entry

@ 4096 bytes available
z |hese are writeable
@ (And only a few bits each]
@ And this is an

iInvalid instruction

P|C Payload

“Unpatchable”?

* Domas claimed that it’s unpatchable

* |t can be patched by making the SMI handler
entry point check if the APIC is mapped
overlapping SMRAM, and then setting it back to
the typical default address (either temporarily or

permanently.)

* Yes, that breaks the “feature” of being able to
relocate the APIC, but it’s highly unlikely anyone’s
using it anyway, and if they were, technically they
should be reading the current location anyway

Other things to do from SMM

Defeat Intel TXT

* Intel added new CPU instructions (“Safer
Mode Extensions” in the manual, “Trusted
Execution Technology” (TXT) for marketing)
that try to make the system more secure

* The basic idea of TXT is to tear down your
existing computing environment and build it
back up from a secure starting point, so that
you can trust whatever runs next

http://invisiblethingslab.com/resources/bh09dc/Attacking%20Intel%20TXT%20-%20slides.pdf

AVMM we want to load The VMM loaded and its
(Currently unprotected) hash stored in PCR18

TPM will unseal
secrets to the just-
loaded VMM only if it
secret key is The Trusted VMM

Mot es:
& Diagram i notin scake!
@ SENTER abso resets and extends PCRIT with hash of SINIT/BIOSACHASTM Y LCP

Defeat Intel TXT

* Unfortunately TXT does not measure SMRAM,
and thus an attacker who has already broken
into SMRAM can remain un-measured

TXT attack sketch (using tboot+Xen as example)
http://invisiblethingslab.com/resources/bh09dc/Attacking%20Intel%20TXT%20-%20slides.pdf

5t
GRUB (1" stage) Attacker patches the

] bootloader (e.g. GRUB). The
patched code injects a
GRUB (2" stage) shellcode to SMM

Evil shellcode will infect the
Xen hypervisor later...

After xen.gz gets sucesfully
loaded, the evil code from
SMRAM can easily infect it...

Motes:
& Dgram i notin scale!
@ SENTER abso resets and extends PCRIT with hash of SINIT/BIOSACHASTHMY LCP

http://invisiblethingslab.com/resources/bh09dc/Attacking%20Intel%20TXT%20-%20slides.pdf

Solution to the TXT attack is called:STM

Can we take a look at this STM?

STM is currently not available.

It is simple to write.There was just no
market demand yet.

—
=
W
=
O
-
=.
—
e
W
-
&
=

The dialogs between [TL and Intel presented here have been modified for brevity and for better dramatic effect

SMM Transfer Monitor (STM)

Communication
protocol

hypervisor (VMM) | <€ -==>» = STM | Ring-2.25;)

SMI

So IF you had an STM

 Then you could place it in a portion of SMRAM
called MSEG (“measured segment”), and

when you do a TXT launch, you would get a
measurement of whether your special SMM-
jailing-hypervisor (STM) is intact or not.

e And then that STM would need to be the main

entry point to SMM so that it could run before
any potentially malicious code

HSEG (CSEG alias)

MSEG (subset of TSEG)

TSEG

CSEG A000.. BFFF

<+— 4GB

<+— T.0.M.

Figure 17.7 STM SMRAM

32

* Building an STM is one of LegbaCore’s core
business goals — because we’re all architecturally
vulnerable until that happens

— But you have to tell your OEM that you want to
not be vulnerable, otherwise they won’t deploy it

I

DbESN’T EXIST ON MOST SYSTEMS!
GAPING HOLE!

. DGV
Display {8~

Adapter .

Devices

Figure 12.4 Physical Page Protections

From Intel Press “Dynamics of a Trusted Platform” - Grawrock -

Late-breaking news!

 As of TODO, Intel finally released their
reference STM and STM spec documentation!

 Still doesn’t mean it’s on anyone’s machines...
but it” a start!

e https://firmware.intel.com/content/smi-
transfer-monitor-stm

MitM Copernicus!

e And all the other flash tools

 We found a generic way for an SMM attacker
to MitM flash reader tools’ reading of the
BIOS, so that the SMM attacker can hide his

changes to the SPI flash chip
 Moved into the SPI Programming slide deck

What might an SMM backdoor look like?

Means to implement legacy PS2 keylogging without having to modify anything in the OS

www.clearhatconsulting.com

Interrupt Redirection

a message to the

local APIC to

mvoke the nonmal

keyboard handler

___ N

10 APIC IDT OS Handler
IRQ | Vector Int Handler push esp
0 - N 0x0 - push cbp
Msg 4 push cbb
- 1 0x93 3 0 P‘“h .~
2 . E—— " push ech
o) 0x9 | 0xAS06304 sub esp. <4
23 - 3 4 mov ebp.esp
e = e o ar o~ o T = = wm .
: 10 APIC / »
: SMM Handler Description)
- IRQ | Vector The normal operation
: 0 - I Log Transnut the = (top-half) 15 subverted
. 1 SMI = keycede and send ,:3- :I"O\\'mg the new SNIM
~

handler to log transnut
the keycodes and then
forward the mterrupt

_/

August 2008

37

Network Backdoor

« Surprisingly easy... We just need to write to a
few registers on the network card (also located in
the PCI configuration space)

+ Developed for Intel 8255X Chipset
— Tested on Intel Pro 100B and Intel Pro 100S cards
— Lots of other cards compatible with the 8255X chipset
— Open documentation for Intel 8255X chipset

+ See our “Deeper Door” talk / slides for details

www.clearhatconsulting.com August 2008

38

The Watcher

* From
https://www.blackhat.com/docs/us-14/
materials/us-14-Kallenberg-Extreme-Privilege-

Escalation-On-Windows8-UEFI-Systems.pdf

39

Marvel Comics
Fantastic Four #13, 1963 40

Sahi el

Yo
o
i

ESLUEN €70/ 3 Presenting

%

%goosm.v, BEFORE THE THING CAN MAKE ANOTHER =
VE, THE THREE APES ARE WHISKED AWAY FROM HiM e I rs
BY AN INVISIBLE FORCE, AND PLACED INTO UNBREAKABLE.

GLOBULES OF SHIMMERING

& SN AT Nt B ASTRANGE, RICH Vo RiGS ‘appearance
usfs:fsAs";sE CLHN'EUCT.’ # & y - A ‘;»; A Of
The Watcher!

FO
CRYIN' OUT
LOUD,! WHAT'S

MITRE

© 2014 The MITRE Corporation. All rights reserved.

41

The Watcher

The Watcher lives in SMM (where you can't look for him)

= It has no build-in capability except to scan memory for a magic
signature

= If it finds the signature, it treats the data immediately after the
signature as code to be executed

= In this way the Watcher performs arbitrary code execution on behalf
of some controller, and is completely OS independent

= A controller is responsible for placing into memory payloads for
The Watcher to find

" These payloads can make their way into memory through any
means

— Could be sent in a network packet which is never even processed by
the OS

— Could be embedded somewhere as non-rendering data in a document

— Could be generated on the fly by some malicious javascript that's
pushed out through an advertisement network

— Could be pulled down by a low-privilege normal-looking dropper
— Use your imagination MITRE

© 2014 The MITRE Corporation. All rights reserved.

42

The Watcher, watching

RAM

Design tradeoffs: 8 1000

We don't want to scan every 4 byte X

chunk of memory. So instead we scan 0x2000
every 0x1000-aligned page boundary. 0x3000

How do we guarantee a payload will be Ox2F7FEQQO

found on a page-aligned boundary?
a) Another agent puts it there

b) Controller prefixes the payload with
a full 0x1000 worth of signatures
and pointers to the code to be
executed (this guarantees a
signature will always be found at

Periodic continuous payload
signature search all RAM

the boundary or boundary+4) . Controller
~ System positions
Management payload

There are obviously many different RAM (SMRAM)
ways it could be built.

MITRE

© 2014 The MITRE Corporation. All rights reserved.

- g 43
'NULLIFIER..#120 ...,

Size: Approx. 45" x3.8"x 1"
Weight: Approx. 4.5 Ibs.
Composition: Lithium-Boron-Osmium alloy

(speculative); Internal Composition: Unknown IN THE NAME OF THE

ETERNAL COSMOS..-
PUT IT DOWN /!
YOUR FEEBLE MIND
CANNOT BEGIN TO
COMPREHEND ITS
POWER /! YOU HOLD
THE MEANS TO
PDESTROY A GALAXY..-
TO LAY WASTE TO
A UNIVERSE !

AND, SHOULD
THE UNIVERSE
CRUAANBLE cos

e
GALACTUS
SURVIVE 22

All information hearsay: Device may have been created
before the time of this universe; supposedly destroys
only objects "completely understood® by potential user Marvel Comics
and destroys user as well. Never used in this Fantastic Four #48, 1966
dimension.

©1991 Marvel Entertainment Group, Inc. MISTER FANTASTIC,

ULTIMATE NULLIFIER and MARVEL: ™Marvel. @ Impel 1991
Exclusively distributed by Impel Marketing Inc. Marvel Universe Series 2 MITRE

© 2014 The MITRE Corporation. All rights reserved.

44

by P IS B RH RNT

POWER RATINGS

Watcher Stats

INTELLIGENGE
£l PROJECTION
TAL-POWERS

MEN,
FIGHTING ABILITY
SPEED

Tm-: MOST AWESOME RESPONSIBILITY OF ANY
BEING IN THE COSMOS BELONGS TO THE WATCHER.
- /A > SWORN TO ONLY WITNESS EVENTS—NEVER TO INFLU- Impel 1992
‘Il DARE NOT INTRUDE, | ENCE THEM-THE WATCHER COULD NOT EVEN TAKE p
AM FORBIDDEN TO ACT!" A HAND DURING THE UNIVERSE-SPANNING BATTLE M | Uni
—TALES OF SUSPENSE FOR CONTROL OF THE ALL-POWERFUL INFINITY arve niverse

#53, MAY 1964 GAUNTLET! AGELESS AND BEYOND HUMAN UNDER- Series 2

= A week to get dev env set up (I didn't have my SPI programmer) and to
find where to insert the code into SMM so it got called on every SMI

= 2 days to write Watcher + basic print payload

= Watcher itself: ~ 60 lines of mixed C and inline assembly
" Print payload: 35 bytes + string, 12 instructions

= Ultimate Nullifier payload: 37 bytes, 11 instructions

= Overall point: very simple, very small, very powerful
" How likely do you think it is that there aren't already Watchers watching?
= But we can't know until people start integrity checking their BIOSes

MITRE

© 2014 The MITRE Corporation. All rights reserved.

LightEater

Hello my friends.
Welcome to my home
in the Deep Dark

From
http://legbacore.com/Research_files/HowManyMillionBIOSWouldYoulLikeTolnfect_Full2.pdf

s it safe to use Tails on a compromised system?

Tails runs independently from the operating system installed on the computer. So, if the
computer has only been compromised by software, running from inside your regular
operating system (virus, trojan, etc.), then it is safe to use Tails. This is true as long as
Tails itself has been installed using a trusted system.

If the computer has been compromised by someone having physical access to it and who
installed untrusted pieces of hardware, then it might not be safe to use Tails.

 Time to rethink this...

LightEater on HP

* For a change of pace, let’s see how easy evil-
maid / border-guard / interdiction attacks are!

* NIC-agnostic exfiltration of data via Intel
Serial-Over-LAN

* Option to “encrypt” data with bitwise rot13 to
stop network defenders from creating a “Papa
Legba” snort signature :P

LightEater on ASUS

* Uses hook-and-hop from DXE IPL to SMM
* From SMM attacks Windows 10

* Gets woken up every time a process starts,
prints information about the process

