
Advanced	
 x86:	

BIOS	
 and	
 System	
 Management	
 Mode	
 Internals	

SMRAM	
 (System	
 Management	
 RAM)	

Xeno	
 Kovah	
 &&	
 Corey	
 Kallenberg	

LegbaCore,	
 LLC	

All materials are licensed under a Creative
Commons “Share Alike” license.

http://creativecommons.org/licenses/by-sa/3.0/

2
ABribuEon	
 condiEon:	
 You	
 must	
 indicate	
 that	
 derivaEve	
 work	

"Is	
 derived	
 from	
 John	
 BuBerworth	
 &	
 Xeno	
 Kovah’s	
 ’Advanced	
 Intel	
 x86:	
 BIOS	
 and	
 SMM’	
 class	
 posted	
 at	
 hBp://opensecuritytraining.info/IntroBIOS.html”	

Prelude
•  So we have talked about what causes the system to enter

SMM

•  And we’ve (sort of) even “seen” it happen
–  As best as possible

•  But we haven’t talked about SMM’s address space yet …

3	

SMRAM
•  SMRAM is the address space where the

processor switches to upon entering SMM
•  This address space contains the SMI handler

code and data
•  The processor’s pre-SMI register context is

saved at a pre-defined location in SMRAM (fixed
offset from SMBASE)

•  SMBASE is the base address of SMRAM and is
located in a reserved portion of main RAM
–  Thus access control mechanisms must be based in the memory

controller (MCH or CPU)

4	

Address Space Layout

•  First off, lets define the terms SMBASE and SMRAM
•  SMRAM refers to the entire range (or ranges) where the SMI

handler code and data is located
•  SMBASE is a private CPU-internal register that holds the address

denoting the base address of SMRAM for a processor (or core)
–  Each core will have its own SMBASE

•  The state save area(s) and entry point(s) are fixed offsets from
SMBASE

•  SMBASE is also found as a field stored in the state save area within
SMRAM
–  The stored value is always at the same offset from SMBASE (FEF8h)
–  A 32-bit value containing the physical address of SMRAM (SMBASE)
–  Even in x64 architecture

•  Therefore SMRAM is relocatable by changing the saved value of
SMBASE, stored in the SMRAM save state area upon SMI

•  We’ll talk about where in physical memory SMBASE/SMRAM is
likely to be located in a bit

5	

•  Default SMBASE on startup is 30000h, but can be relocated
•  SMI Handler Executable code entry point is always at SMBASE +

8000h
–  CPU always begins executing at SMBASE + 8000h

•  Multi-core systems will typically have their SMBASE offset by N
bytes from each other. For example:
–  Core 0 defines SMBASE as A_0000h, will enter SMI handler at A_8000h
–  Core 1 defines SMBASE as A_1000h, will enter SMI handler at A_9000h

.	

.	

.	

.	

SMBASE

SMBASE + 8000h
SMI Handler (code) Entry Point

SMBASE + SMRAM Size

Start of State Save Area
SMBASE + 8000h + 7E00h (32 bit)

SMBASE + 8000h + 7C00h (64 bit)

SMBASE + 8000h + 7FFFh

6	

•  State save address starts at SMBASE + 8000h + 7FFFh
–  SMBASE + FFFFh

•  For 32-bit CPU’s, the state-save area is 200h bytes
•  State save area extends down to SMBASE + 8000h +

7E00h
–  SMBASE + FE00h

.	

.	

.	

.	

SMBASE

SMBASE + 8000h
SMI Handler (code) Entry Point

SMBASE + SMRAM Size

Start of State Save Area
SMBASE + 8000h + 7E00h (32 bit)

SMBASE + 8000h + 7C00h (64 bit)

SMBASE + 8000h + 7FFFh

7	

32-Bit From	
 Intel	
 Vol.	
 3.	
 Ch.	
 "System	
 Management	
 Mode"	

8	

•  State save address starts at SMBASE + 8000h + 7FFFh
–  SMBASE + FFFFh

•  For 64-bit CPU’s, the state-save area is 400h bytes
•  The state-save extends down to SMBASE + 8000h +

7C00h
–  SMBASE + FC00h

.	

.	

.	

.	

SMBASE

SMBASE + 8000h
SMI Handler (code) Entry Point

SMBASE + SMRAM Size

Start of State Save Area
SMBASE + 8000h + 7E00h (32 bit)

SMBASE + 8000h + 7C00h (64 bit)

SMBASE + 8000h + 7FFFh

9	

64-Bit From	
 Intel	
 Vol.	
 3.	
 Ch.	
 "System	
 Management	
 Mode"	

10	

•  SMBASE field for both 64-bit and 32-bit architectures is always
located at the same offset from SMBASE (FEF8h)

64-Bit

11	

•  The remaining area is free for use as SMI handler code
and data

•  Total size of SMRAM region is defined by the BIOS when
it configures SMM

.	

.	

.	

.	

SMBASE

SMBASE + 8000h
SMI Handler Entry Point

SMBASE + SMRAM Size

Start of State Save Area
SMBASE + 8000h + 7E00h (32 bit)

SMBASE + 8000h + 7C00h (64 bit)

SMBASE + 8000h + 7FFFh

12	

Core 1 SMI Entry Point

•  Each core will have its own SMBASE address offset from the
other core(s) SMBASE addresses
–  Like 1000h bytes per the above 32-bit example

•  Another core could define its SMBASE in a completely
separate memory address
–  In this diagram I show them sharing the same SMRAM memory

range
–  In practice, some cores will simply execute a dead loop

Core 0 SMBASE

Core 0 SMBASE + 8000h
Core 0 SMI Entry Point

Core 0 State Save Area
Core 0 SMBASE + FFFFh

Core 1 SMBASE

Core 1 SMBASE + FFFFh

Core 1 SMBASE + 8000h

Core 1 State Save Area

D000_0000h
D000_1000h
D000_0000h

D000_9000h

D000_FFFFh

D000_FE00h

D001_0FFFh

D001_0E00h

13	

SMRAM Location

•  SMRAM can be located anywhere in the 4GB memory
address space

•  SMBASE can be overwritten by the SMI handler
•  Typically SMRAM is relocated at least once:

–  On system startup, the first time the system enters SMM, SMBASE is at
0x30000

–  SMI handler starts executing at 0x38000
–  There is no reason it needs to stay at that address

•  Intel defines a few locations for SMRAM
–  But it really is a flexible system and can be put anywhere
–  I think these guidelines are provided to make configuration easier for the

BIOS developers and to avoid areas where SMRAM may overlap with
other regions

–  This is all part of building that memory map

14	

Standard SMRAM Locations

•  On ICH/MCH chipsets there are 3 standard locations for
SMRAM

•  On PCH chipsets the High Address (HSEG) is no longer
supported (so 2 locations)

•  Technically the base address of SMRAM can be relocated by
the SMI handler
–  But there are reasons these guidelines should be followed and for

all practical purposes SMRAM will be in TSEG
15	

Compatible SMRAM (Legacy Video Area)

•  Fixed address space
•  Legacy VGA space (A_0000 -

B_FFFFh)

•  When compatible SMM space is
enabled, SMM-mode processor
accesses to this range are
routed to physical system
memory at this address.

•  Non-SMM-mode processor
accesses to this range are
considered to be to the video
buffer area.

Legacy	
 (DOS)	
 CompaEbility	
 Range	

16	

Enabling Compatible SMRAM

•  This address space is enabled by asserting the G_SMRAME
bit
–  I believe G_SMRARE is a typo in the datasheet

•  The register (SMRAMC) containing this bit will be located in a
different place depending on the architecture
–  On our E6400 it is located in the DRAM Controller (D0:F0) at offset

9Dh
–  On a Haswell system, for example, it is also located in the DRAM

controller but at offset 88h
17	

TSEG (Top of Main Memory Segment)
•  Variable address space

–  In terms of size and location
•  Located at:
 TOLUD – STOLEN – TSEG_SZ
to TOLUD – STOLEN
•  STOLEN refers to Graphics

Memory Stolen, which is optional
and can be zero

•  New architecture enables more
customized location/size of TSEG

STOLEN	

When extended SMRAM space is
enabled, processor accesses to the
TSEG range when the processor is
not in SMM are treated as invalid

Non-processor originated accesses
are not allowed to TSEG range.

18	

*	
 Xeno	
 thinks	
 this	
 is	
 provided	
 by	
 SMRR	
 now	

TODO:	
 fixme?	

Enabling TSEG

•  TSEG is enabled differently depending on the architecture
•  On MCH chipsets, it was defined in the ESMRAMC register
•  Either 1, 2, or 8MB in size for TSEG (defined in bits 2:1)
•  On our E6400 it’s in D0:F0, offset 9Eh
•  Newer systems offer more flexibility in TSEG size and

location

19	

Enabling TSEG on new platforms

•  On newer systems the size of TSEG is more flexible in its
programming

•  The offset of this register and its method of programming is
dependent on the memory controller (which exists either in
the MCH or the processor)

20	

HSEG (High SMM Memory Space)

•  Fixed address space
•  FEDA_0000 to FEDB_FFFFh
•  When enabled (if supported),

A_0000h to B_FFFFh are remapped
to high memory

•  Not supported in PCH chipsets
•  Note: TSEG is located under

TOLUD which is located at the
bottom of this diagram

21	

Enabling HSEG

•  HSEG is enabled when bit 7 of the ESMRAMC bit is set
•  Not supported on PCH systems and later

22	

SMRAM Combinations (MCH-based)

•  Up to two memory locations can be used for SMRAM on a system
•  There is still only one SMBASE per core
•  Global Enable means that SMM compatible space is turned on
•  Disabling the C-range disables all other ranges
•  So if you’re using TSEG, there is guaranteed to be either the C-

range or the H-range also present
–  I removed H-range discussion from this class for time reasons. It’s pretty straightforward,

and you can see the manuals if you’re interested. But you probably mostly all have PCH-
based systems so…

23	

SMRAM Combinations (PCH-based)

•  Up to two memory locations can be used for SMRAM on
a system
–  Which is good since on PCH there is only the Compatible and

TSEG ranges; HSEG is no longer supported

•  As you can see, this means that the Compatible range is
always enabled if TSEG is enabled

•  So the only question is whether or not you use TSEG
24	

Demo: Locating SMRAM
•  First let’s see what

address ranges are
enabled on our system for
SMRAM

•  Open RW-Everything and
select PCI devices, device
0, function 0 (the DRAM
Controller)

•  Look at offset 9Dh
(SMRAMC register)

•  See if bit 3 (G_SMRAME)
bit is set

•  Compatible SMRAM at
A_0000 to B_FFFFh is set

25	

Demo: Locating SMRAM
•  Let’s now check to see if

TSEG (or HSEG) is
enabled

•  We know we cannot be
using both along side the
compatible C range

•  Look at the register at
offset 9Eh (ESMRAMC)

•  Notice that TSEG Enable
bit 0 is asserted
–  By default then, HSEG is

not enabled, but we can
also see that bit 7 is not
asserted

TSEG	
 Yes	
 HSEG	
 No	

26	

Example: Find TSEG Base/Limit

•  So we know that Compatible SMRAM is enabled, and that is always
at a fixed address A_0000 to B_FFFFh

•  But TSEG is dependent on other addresses
•  The TSEG location can be calculated (if you are analyzing a system

that does not have an explicit TSEG register):
•  From the manual, TSEG Range for this machine is calculated as:

STOLEN	

TSEG_SZ	

(TOLUD – STOLEN – TSEG_SZ) to (TOLUD – STOLEN)
27	

Example: Find TSEG: TOLUD

•  (TOLUD – STOLEN – TSEG_SZ) to (TOLUD – STOLEN)
•  (E0000000 - ? - ?) to (E0000000 - ?)

TOLUD = E000_0000h

28	

•  Next is to find the amount of memory (if any) that has been stolen
from graphics

•  Bits 11:8 determine the amount of graphics memory stolen
•  In this case it is 0
•  (TOLUD – STOLEN – TSEG_SZ) to (TOLUD – STOLEN)
•  (E0000000 - 0 - ?) to (E0000000 - 0)

Lab: Find TSEG: STOLEN

STOLEN = 0h

29	

Lab: Find TSEG: TSEG_SZ

•  And lastly we need to determine the size of TSEG
•  This will differ based on architecture but for our system it’s 8 bits
•  (TOLUD – STOLEN – TSEG_SZ) to (TOLUD – STOLEN)
•  (E000_0000 - 0 - 10_0000) to (E0000000 - 0)

30	

Calculate TSEG Base/Limit

•  We plug our known values into:
•  (TOLUD – STOLEN – TSEG_SZ) to (TOLUD – STOLEN)
•  (E000_0000h – 0 – 1 MB) to (E000_0000 – 0)
•  Provides us the range:
•  DFF0_0000h to E000_0000h

–  Technically it’s DFF0_0000 to DFFF_FFFFh
•  This *should* be the SMBASE address (which is relocatable of course

but in all likelihood will be here)
•  You can also read the SMRR PHYSBASE MSR if it’s supported or on a

newer system read the TSEG Base/Limit from the TSEG register
–  SMRRs covered in a little bit

E000_0000h	

0	
 STOLEN	

TSEG_SZ	
 1	
 MB	

31	

Calculate TSEG Base/Limit

•  The TSEG base address marks the beginning of the protected
SMRAM range

•  Therefore the TSEG base *should* equate to SMBASE
–  Or the lowest SMBASE value in a multi-core system, assuming shared

SMRAM range

•  We’ll see in a bit that this isn’t necessarily the case

E000_0000h	

0	
 STOLEN	

TSEG_SZ	
 1	
 MB	

32	

TSEG	
 STOLEN	
 varies	

•  For	
 the	
 MCH	
 4,	
 the	
 TSEG	
 range	
 is	
 defined	
 as	

(TOLUD	
 –	
 STOLEN	
 –	
 TSEG_SZ)	
 to	
 	
 (TOLUD	
 –	

STOLEN)	

•  But	
 different	
 systems	
 will	
 have	
 different	

values,	
 and	
 you	
 have	
 to	
 look	
 it	
 up	
 in	
 the	

datasheets.	
 E.g.	
 on	
 a	
 4th	
 gen	
 Haswell:	

•  (TOLUD	
 –	
 DSM	
 SIZE	
 –	
 GSM	
 SIZE	
 –	
 TSEG	
 SIZE)	

to	
 (TOLUD	
 –	
 DSM	
 SIZE	
 –	
 GSM	
 SIZE)	

33	

Homework	
 heads	
 up	

•  Determine	
 if	
 your	
 system’s	
 TSEG/TOLUD	
 are	

locked,	
 or	
 if	
 they	
 could	
 be	
 moved	
 by	
 an	

aBacker	

•  On	
 some	
 systems	
 they	
 will	
 be	
 locked	
 by	

D_LCK,	
 and	
 on	
 some	
 TSEGMB	
 will	
 have	
 its	

own	
 lock	
 bit.	
 You	
 need	
 to	
 determine	
 which	
 is	

the	
 case	
 for	
 your	
 hardware.	

34	

Memory Map Protection

•  The location of TSEG is dependent on the values of TOLUD
and Stolen Memory

•  Modifying this value is something that an attacker could try, to
shift the TSEG region

•  However these registers can be locked down by D_LCK bit in
the SMRAM register (a key-bit)

35	

SMRAM Lock-Down

•  D_LCK is pretty much a necessity and is rarely left unset (5% or
so of measured BIOS have D_LCK not set)

•  When set prevents changes to a lot of registers

36	

Where	
 can	
 you	
 find	
 the	
 all-­‐important	

D_LCK	
 bit?	

•  MCH3	
 &	
 4	
 =	
 “SMRAM”	
 register	
 0/0/0/9D	

•  2nd	
 Gen	
 (Sandy	
 Bridge)	
 CPU	
 and	
 newer	
 =	

“SMRAMC”	
 register	
 0/0/0/88	

37	

D_OPEN

•  To help the BIOS configure SMRAM, the chipset provides a
means for leaving SMRAM open even when the processor is
not in SMM

•  D_LCK prevents this bit from being asserted
38	

vulnBIOS specific: Viewing SMRAM

•  If SMRAM is properly locked down this isn’t possible
•  Assert the D_OPEN bit in the SMRAMC register (D0:F0, offset 9Dh)
•  Since it’s unlocked, let’s take a look at SMRAM
•  According to our TSEG calculations it should be located at

DFF0_0000h
•  This should be SMBASE…but is it? Let’s see…

39	

vulnBIOS specific: Viewing SMRAM

•  Well, there is some binary at DFF0_0000h
•  EB 38 is a JMP instruction which would take us to

DFF0_003Ah
•  But shouldn’t our code enter at SMBASE + 8000h

(DFF0_8000h) instead? Maybe this is just random bits.
40	

vulnBIOS specific: Viewing SMRAM

•  Let’s look at address
DFF0_8000h

•  Definitely not executable
code

•  Call it a hunch but let’s
look at address
DFF0_7EF8h

•  Recall that the SMBASE
field in the state save
register is located at
offset SMBASE + 8000h
+ 7EF8h

•  Let’s see what that shows
us

41	

vulnBIOS specific: Viewing SMRAM

•  This is the SMBASE
value and its value is
DFEF_8000h

•  So SMBASE + 8000h is
DFF0_0000h which is
our TSEG base

•  Technically, the SMRAM
range is outside of the
TSEG protected area

42	

Unprotected SMRAM Range

•  We can see that it's outside the range if we go to an address
just under DFF0_0000h and write some bytes

•  Then we can toggle the D_OPEN bit off and on and see that
the bytes we just wrote are still present whether SMRAM is
open or closed

DFEF_8000h (SMBASE)
DFF0_0000h (SMBASE + 8000h)

Protected Memory

Unprotected Memory

43	

So how bad is this?

•  It’s definitely not good! But…
•  In *this* case the SMI handler neither references nor calls anything in this

unprotected range
•  So it’s “okay” in this case, but could be catastrophic in another
•  The moral of the story: Ensure that all SMI handler accessed code/data is

within the protected memory range
–  ITL found multiple bugs in Intel's SMM code where it was accessing data outside

the protected ranges, which could consequently be attacker controlled (which led
to simple "change a function pointer to jump to my code" type attacks, and could
lead to buffer overflow attacks)

DFEF_8000h (SMBASE)
DFF0_0000h (SMBASE + 8000h)

Protected Memory

Unprotected Memory

44	

TODO	

•  Needs	
 a	
 discussion	
 of	
 TSEG	
 as	
 DMA	
 protecEon	

45	

