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Prelude 
•  So we have talked about what causes the system to enter 

SMM 

•  And we’ve (sort of) even “seen” it happen 
–  As best as possible 

•  But we haven’t talked about SMM’s address space yet … 
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SMRAM 
•  SMRAM is the address space where the 

processor switches to upon entering SMM 
•  This address space contains the SMI handler 

code and data  
•  The processor’s pre-SMI register context is 

saved at a pre-defined location in SMRAM (fixed 
offset from SMBASE) 

•  SMBASE is the base address of SMRAM and is 
located in a reserved portion of main RAM 
–  Thus access control mechanisms must be based in the memory 

controller (MCH or CPU) 
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Address Space Layout 

•  First off, lets define the terms SMBASE and SMRAM 
•  SMRAM refers to the entire range (or ranges) where the SMI 

handler code and data is located 
•  SMBASE is a private CPU-internal register that holds the address 

denoting the base address of SMRAM for a processor (or core) 
–  Each core will have its own SMBASE 

•  The state save area(s) and entry point(s) are fixed offsets from 
SMBASE 

•  SMBASE is also found as a field stored in the state save area within 
SMRAM 
–  The stored value is always at the same offset from SMBASE (FEF8h) 
–  A 32-bit value containing the physical address of SMRAM (SMBASE) 
–  Even in x64 architecture 

•  Therefore SMRAM is relocatable by changing the saved value of 
SMBASE, stored in the SMRAM save state area upon SMI 

•  We’ll talk about where in physical memory SMBASE/SMRAM is 
likely to be located in a bit 
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•  Default SMBASE on startup is 30000h, but can be relocated 
•  SMI Handler Executable code entry point is always at SMBASE + 

8000h 
–  CPU always begins executing at SMBASE + 8000h 

•  Multi-core systems will typically have their SMBASE offset by N 
bytes from each other. For example: 
–  Core 0 defines SMBASE as A_0000h, will enter SMI handler at A_8000h 
–  Core 1 defines SMBASE as A_1000h, will enter SMI handler at A_9000h 

.	
  

.	
  
.	
  
.	
  

SMBASE 

SMBASE + 8000h 
SMI Handler (code)  Entry Point 

SMBASE + SMRAM Size 

Start of State Save Area 
SMBASE + 8000h + 7E00h (32 bit) 

SMBASE + 8000h + 7C00h (64 bit) 

SMBASE + 8000h + 7FFFh 
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•  State save address starts at SMBASE + 8000h + 7FFFh 
–  SMBASE + FFFFh 

•  For 32-bit CPU’s, the state-save area is 200h bytes 
•  State save area extends down to SMBASE + 8000h + 

7E00h  
–  SMBASE + FE00h 

.	
  

.	
  
.	
  
.	
  

SMBASE 

SMBASE + 8000h 
SMI Handler (code)  Entry Point 

SMBASE + SMRAM Size 

Start of State Save Area 
SMBASE + 8000h + 7E00h (32 bit) 

SMBASE + 8000h + 7C00h (64 bit) 

SMBASE + 8000h + 7FFFh 
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32-Bit From	
  Intel	
  Vol.	
  3.	
  Ch.	
  "System	
  Management	
  Mode"	
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•  State save address starts at SMBASE + 8000h + 7FFFh 
–  SMBASE + FFFFh 

•  For 64-bit CPU’s, the state-save area is 400h bytes 
•  The state-save extends down to SMBASE + 8000h + 

7C00h  
–  SMBASE + FC00h 

.	
  

.	
  
.	
  
.	
  

SMBASE 

SMBASE + 8000h 
SMI Handler (code) Entry Point 

SMBASE + SMRAM Size 

Start of State Save Area 
SMBASE + 8000h + 7E00h (32 bit) 

SMBASE + 8000h + 7C00h (64 bit) 

SMBASE + 8000h + 7FFFh 

9	
  



64-Bit From	
  Intel	
  Vol.	
  3.	
  Ch.	
  "System	
  Management	
  Mode"	
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•  SMBASE field for both 64-bit and 32-bit architectures is always 
located at the same offset from SMBASE (FEF8h) 

64-Bit 
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•  The remaining area is free for use as SMI handler code 
and data 

•  Total size of SMRAM region is defined by the BIOS when 
it configures SMM 

.	
  

.	
  
.	
  
.	
  

SMBASE 

SMBASE + 8000h 
SMI Handler Entry Point 

SMBASE + SMRAM Size 

Start of State Save Area 
SMBASE + 8000h + 7E00h (32 bit) 

SMBASE + 8000h + 7C00h (64 bit) 

SMBASE + 8000h + 7FFFh 
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Core 1 SMI Entry Point 

•  Each core will have its own SMBASE address offset from the 
other core(s) SMBASE addresses 
–  Like 1000h bytes per the above 32-bit example 

•  Another core could define its SMBASE in a completely 
separate memory address 
–  In this diagram I show them sharing the same SMRAM memory 

range 
–  In practice, some cores will simply execute a dead loop 

Core 0 SMBASE 

Core 0 SMBASE + 8000h 
Core 0 SMI Entry Point 

Core 0 State Save Area 
Core 0 SMBASE + FFFFh 

Core 1 SMBASE 

Core 1 SMBASE + FFFFh 

Core 1 SMBASE + 8000h 

Core 1 State Save Area 

D000_0000h 
D000_1000h 
D000_0000h 

D000_9000h 

D000_FFFFh 

D000_FE00h 

D001_0FFFh 

D001_0E00h 
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SMRAM Location 

•  SMRAM can be located anywhere in the 4GB memory 
address space 

•  SMBASE can be overwritten by the SMI handler 
•  Typically SMRAM is relocated at least once: 

–  On system startup, the first time the system enters SMM, SMBASE is at 
0x30000 

–  SMI handler starts executing at 0x38000 
–  There is no reason it needs to stay at that address 

•  Intel defines a few locations for SMRAM 
–  But it really is a flexible system and can be put anywhere 
–  I think these guidelines are provided to make configuration easier for the 

BIOS developers and to avoid areas where SMRAM may overlap with 
other regions 

–  This is all part of building that memory map 
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Standard SMRAM Locations 

•  On ICH/MCH chipsets there are 3 standard locations for 
SMRAM 

•  On PCH chipsets the High Address (HSEG) is no longer 
supported (so 2 locations) 

•  Technically the base address of SMRAM can be relocated by 
the SMI handler 
–  But there are reasons these guidelines should be followed and for 

all practical purposes SMRAM will be in TSEG 
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Compatible SMRAM (Legacy Video Area) 

•  Fixed address space 
•  Legacy VGA space (A_0000 -  

B_FFFFh) 

•  When compatible SMM space is 
enabled, SMM-mode processor 
accesses to this range are 
routed to physical system 
memory at this address.  

•  Non-SMM-mode processor 
accesses to this range are 
considered to be to the video 
buffer area. 

Legacy	
  (DOS)	
  CompaEbility	
  Range	
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Enabling Compatible SMRAM 

•  This address space is enabled by asserting the G_SMRAME 
bit 
–  I believe G_SMRARE is a typo in the datasheet  

•  The register (SMRAMC) containing this bit will be located in a 
different place depending on the architecture 
–  On our E6400 it is located in the DRAM Controller (D0:F0) at offset 

9Dh 
–  On a Haswell system, for example, it is also located in the DRAM 

controller but at offset 88h 
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TSEG (Top of Main Memory Segment) 
•  Variable address space 

–  In terms of size and location 
•  Located at: 
     TOLUD – STOLEN – TSEG_SZ 
to  TOLUD – STOLEN 
•  STOLEN refers to Graphics 

Memory Stolen, which is optional 
and can be zero 

•  New architecture enables more 
customized location/size of TSEG 

STOLEN	
  

When extended SMRAM space is 
enabled, processor accesses to the 
TSEG range when the processor is 
not in SMM are treated as invalid 

Non-processor originated accesses 
are not allowed to TSEG range.  
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*	
  Xeno	
  thinks	
  this	
  is	
  provided	
  by	
  SMRR	
  now	
  

TODO:	
  fixme?	
  



Enabling TSEG 

•  TSEG is enabled differently depending on the architecture 
•  On MCH chipsets, it was defined in the ESMRAMC register 
•  Either 1, 2, or 8MB in size for TSEG (defined in bits 2:1) 
•  On our E6400 it’s in D0:F0, offset 9Eh 
•  Newer systems offer more flexibility in TSEG size and 

location 
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Enabling TSEG on new platforms 

•  On newer systems the size of TSEG is more flexible in its 
programming 

•  The offset of this register and its method of programming is 
dependent on the memory controller (which exists either in 
the MCH or the processor) 
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HSEG (High SMM Memory Space) 

•  Fixed address space 
•  FEDA_0000 to FEDB_FFFFh 
•  When enabled (if supported), 

A_0000h to B_FFFFh are remapped 
to high memory 

•  Not supported in PCH chipsets 
•  Note: TSEG is located under 

TOLUD which is located at the 
bottom of this diagram 
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Enabling HSEG 

•  HSEG is enabled when bit 7 of the ESMRAMC bit is set 
•  Not supported on PCH systems and later 
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SMRAM Combinations (MCH-based) 

•  Up to two memory locations can be used for SMRAM on a system 
•  There is still only one SMBASE per core 
•  Global Enable means that SMM compatible space is turned on 
•  Disabling the C-range disables all other ranges 
•  So if you’re using TSEG, there is guaranteed to be either the C-

range or the H-range also present 
–  I removed H-range discussion from this class for time reasons. It’s pretty straightforward, 

and you can see the manuals if you’re interested. But you probably mostly all have PCH-
based systems so… 
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SMRAM Combinations (PCH-based) 

•  Up to two memory locations can be used for SMRAM on 
a system 
–  Which is good since on PCH there is only the Compatible and 

TSEG ranges; HSEG is no longer supported 

•  As you can see, this means that the Compatible range is 
always enabled if TSEG is enabled  

•  So the only question is whether or not you use TSEG 
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Demo: Locating SMRAM 
•  First let’s see what 

address ranges are 
enabled on our system for 
SMRAM 

•  Open RW-Everything and 
select PCI devices, device 
0, function 0 (the DRAM 
Controller) 

•  Look at offset 9Dh 
(SMRAMC register) 

•  See if bit 3 (G_SMRAME) 
bit is set 

•  Compatible SMRAM at 
A_0000 to B_FFFFh is set 
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Demo: Locating SMRAM 
•  Let’s now check to see if 

TSEG (or HSEG) is 
enabled 

•  We know we cannot be 
using both along side the 
compatible C range 

•  Look at the register at 
offset 9Eh (ESMRAMC) 

•  Notice that TSEG Enable 
bit 0 is asserted 
–  By default then, HSEG is 

not enabled, but we can 
also see that bit 7 is not 
asserted 

TSEG	
  Yes	
  HSEG	
  No	
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Example: Find TSEG Base/Limit 

•  So we know that Compatible SMRAM is enabled, and that is always 
at a fixed address A_0000 to B_FFFFh  

•  But TSEG is dependent on other addresses  
•  The TSEG location can be calculated (if you are analyzing a system 

that does not have an explicit TSEG register): 
•  From the manual, TSEG Range for this machine is calculated as: 

STOLEN	
  

TSEG_SZ	
  

(TOLUD – STOLEN – TSEG_SZ) to  (TOLUD – STOLEN) 
27	
  



Example: Find TSEG: TOLUD 

•  (TOLUD – STOLEN – TSEG_SZ) to  (TOLUD – STOLEN) 
•  (E0000000 - ? - ?) to (E0000000 - ?) 

TOLUD = E000_0000h 
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•  Next is to find the amount of memory (if any) that has been stolen 
from graphics 

•  Bits 11:8 determine the amount of graphics memory stolen 
•  In this case it is 0 
•  (TOLUD – STOLEN – TSEG_SZ) to  (TOLUD – STOLEN) 
•  (E0000000 - 0 - ?) to (E0000000 - 0) 

Lab: Find TSEG: STOLEN 

STOLEN = 0h 
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Lab: Find TSEG: TSEG_SZ 

•  And lastly we need to determine the size of TSEG 
•  This will differ based on architecture but for our system it’s 8 bits 
•  (TOLUD – STOLEN – TSEG_SZ) to  (TOLUD – STOLEN) 
•  (E000_0000 - 0 - 10_0000) to (E0000000 - 0) 
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Calculate TSEG Base/Limit 

•  We plug our known values into: 
•  (TOLUD – STOLEN – TSEG_SZ) to  (TOLUD – STOLEN) 
•  (E000_0000h – 0 – 1 MB) to (E000_0000 – 0) 
•  Provides us the range: 
•  DFF0_0000h to E000_0000h 

–  Technically it’s DFF0_0000 to DFFF_FFFFh  
•  This *should* be the SMBASE address (which is relocatable of course 

but in all likelihood will be here) 
•  You can also read the SMRR PHYSBASE MSR if it’s supported or on a 

newer system read the TSEG Base/Limit from the TSEG register 
–  SMRRs covered in a little bit 

E000_0000h	
  

0	
  STOLEN	
  

TSEG_SZ	
   1	
  MB	
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Calculate TSEG Base/Limit 

•  The TSEG base address marks the beginning of the protected 
SMRAM range 

•  Therefore the TSEG base *should* equate to SMBASE  
–  Or the lowest SMBASE value in a multi-core system, assuming shared 

SMRAM range 

•  We’ll see in a bit that this isn’t necessarily the case 

E000_0000h	
  

0	
  STOLEN	
  

TSEG_SZ	
   1	
  MB	
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TSEG	
  STOLEN	
  varies	
  

•  For	
  the	
  MCH	
  4,	
  the	
  TSEG	
  range	
  is	
  defined	
  as	
  
(TOLUD	
  –	
  STOLEN	
  –	
  TSEG_SZ)	
  to	
  	
  (TOLUD	
  –	
  
STOLEN)	
  

•  But	
  different	
  systems	
  will	
  have	
  different	
  
values,	
  and	
  you	
  have	
  to	
  look	
  it	
  up	
  in	
  the	
  
datasheets.	
  E.g.	
  on	
  a	
  4th	
  gen	
  Haswell:	
  

•  (TOLUD	
  –	
  DSM	
  SIZE	
  –	
  GSM	
  SIZE	
  –	
  TSEG	
  SIZE)	
  
to	
  (TOLUD	
  –	
  DSM	
  SIZE	
  –	
  GSM	
  SIZE)	
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Homework	
  heads	
  up	
  

•  Determine	
  if	
  your	
  system’s	
  TSEG/TOLUD	
  are	
  
locked,	
  or	
  if	
  they	
  could	
  be	
  moved	
  by	
  an	
  
aBacker	
  

•  On	
  some	
  systems	
  they	
  will	
  be	
  locked	
  by	
  
D_LCK,	
  and	
  on	
  some	
  TSEGMB	
  will	
  have	
  its	
  
own	
  lock	
  bit.	
  You	
  need	
  to	
  determine	
  which	
  is	
  
the	
  case	
  for	
  your	
  hardware.	
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Memory Map Protection 

•  The location of TSEG is dependent on the values of TOLUD 
and Stolen Memory 

•  Modifying this value is something that an attacker could try, to 
shift the TSEG region 

•  However these registers can be locked down by D_LCK bit in 
the SMRAM register (a key-bit) 
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SMRAM Lock-Down 

•  D_LCK is pretty much a necessity and is rarely left unset (5% or 
so of measured BIOS have D_LCK not set) 

•  When set prevents changes to a lot of registers 
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Where	
  can	
  you	
  find	
  the	
  all-­‐important	
  
D_LCK	
  bit?	
  

•  MCH3	
  &	
  4	
  =	
  “SMRAM”	
  register	
  0/0/0/9D	
  
•  2nd	
  Gen	
  (Sandy	
  Bridge)	
  CPU	
  and	
  newer	
  =	
  
“SMRAMC”	
  register	
  0/0/0/88	
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D_OPEN 

•  To help the BIOS configure SMRAM, the chipset provides a 
means for leaving SMRAM open even when the processor is 
not in SMM 

•  D_LCK prevents this bit from being asserted 
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vulnBIOS specific: Viewing SMRAM 

•  If SMRAM is properly locked down this isn’t possible 
•  Assert the D_OPEN bit in the SMRAMC register (D0:F0, offset 9Dh) 
•  Since it’s unlocked, let’s take a look at SMRAM 
•  According to our TSEG calculations it should be located at 

DFF0_0000h 
•  This should be SMBASE…but is it? Let’s see… 
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vulnBIOS specific: Viewing SMRAM 

•  Well, there is some binary at DFF0_0000h 
•  EB 38 is a JMP instruction which would take us to 

DFF0_003Ah 
•  But shouldn’t our code enter at SMBASE + 8000h 

(DFF0_8000h) instead?  Maybe this is just random bits. 
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vulnBIOS specific: Viewing SMRAM 

•  Let’s look at address 
DFF0_8000h 

•  Definitely not executable 
code 

•  Call it a hunch but let’s 
look at address 
DFF0_7EF8h 

•  Recall that the SMBASE 
field in the state save 
register is located at 
offset SMBASE + 8000h 
+ 7EF8h 

•  Let’s see what that shows 
us 
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vulnBIOS specific: Viewing SMRAM 

•  This is the SMBASE 
value and its value is 
DFEF_8000h 

•  So SMBASE + 8000h is 
DFF0_0000h which is 
our TSEG base 

•  Technically, the SMRAM 
range is outside of the 
TSEG protected area 
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Unprotected SMRAM Range 

•  We can see that it's outside the range if we go to an address 
just under DFF0_0000h and write some bytes 

•  Then we can toggle the D_OPEN bit off and on and see that 
the bytes we just wrote are still present whether SMRAM is 
open or closed 

DFEF_8000h (SMBASE) 
DFF0_0000h (SMBASE + 8000h) 

Protected Memory 

Unprotected Memory 
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So how bad is this? 

•  It’s definitely not good! But… 
•  In *this* case the SMI handler neither references nor calls anything in this 

unprotected range  
•  So it’s “okay” in this case, but could be catastrophic in another 
•  The moral of the story: Ensure that all SMI handler accessed code/data is 

within the protected memory range 
–  ITL found multiple bugs in Intel's SMM code where it was accessing data outside 

the protected ranges, which could consequently be attacker controlled (which led 
to simple "change a function pointer to jump to my code" type attacks, and could 
lead to buffer overflow attacks) 

DFEF_8000h (SMBASE) 
DFF0_0000h (SMBASE + 8000h) 

Protected Memory 

Unprotected Memory 
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TODO	
  

•  Needs	
  a	
  discussion	
  of	
  TSEG	
  as	
  DMA	
  protecEon	
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