Advanced x86:

BIOS and System Management Mode Internals
SMRAM (System Management RAM)

Xeno Kovah && Corey Kallenberg
LegbaCore, LLC

8

LEGBACORE

WE DO DIGITAL VOODOO

All materials are licensed under a Creative

Commons “Share Alike” license.
http://creativecommons.org/licenses/by-sa/3.0/

You are free:

@ to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

®

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

© ®

Attribution condition: You must indicate that derivative work
"Is derived from John Butterworth & Xeno Kovah'’s ‘Advanced Intel x86: BIOS and SMM’ class posted at http://opensecuritytraining.info/IntroBIOS.html” 2

Prelude

So we have talked about what causes the system to enter
SMM

And we’ve (sort of) even “seen” it happen
— As best as possible

But we haven't talked about SMM'’s address space yet ...

SMRAM

SMRAM is the address space where the
processor switches to upon entering SMM

This address space contains the SMI handler
code and data

The processor’s pre-SMI register context is
saved at a pre-defined location in SMRAM (fixed
offset from SMBASE)

SMBASE is the base address of SMRAM and is

located in a reserved portion of main RAM

— Thus access control mechanisms must be based in the memory
controller (MCH or CPU)

Address Space Layout

First off, lets define the terms SMBASE and SMRAM

SMRAM refers to the entire range (or ranges) where the SMI
handler code and data is located

SMBASE is a private CPU-internal register that holds the address
denoting the base address of SMRAM for a processor (or core)
— Each core will have its own SMBASE

The state save area(s) and entry point(s) are fixed offsets from
SMBASE

SMBASE is also found as a field stored in the state save area within
SMRAM

— The stored value is always at the same offset from SMBASE (FEF8h)

— A 32-bit value containing the physical address of SMRAM (SMBASE)

— Even in x64 architecture

Therefore SMRAM is relocatable by changing the saved value of
SMBASE, stored in the SMRAM save state area upon SMI

WEe'll talk about where in physical memory SMBASE/SMRAM is
likely to be located in a bit

SMBASE + SMRAM Size |

SMBASE + 8000h + 7FFFh
Start of State Save Area
SMBASE + 8000h + 7E00h (32 bit) ------------------- \P--------------J: -----------------------
SMBASE + 8000h + 7COOAN (64 bit) r——"F—"———"—"—"—"f—"—"—"—"—""—"—"—"—""F"—"—————————————
SMI Handler (code) Entry Point
% SMBASE + 8000h T
é SMBASE

« Default SMBASE on startup is 30000h, but can be relocated

« SMI Handler Executable code entry point is always at SMBASE +
8000h
— CPU always begins executing at SMBASE + 8000h

« Multi-core systems will typically have their SMBASE offset by N
bytes from each other. For example:
— Core 0 defines SMBASE as A_0000h, will enter SMI handler at A_8000h
— Core 1 defines SMBASE as A_1000h, will enter SMI handler at A_9000h

SMBASE + SMRAM Size |

SMBASE + 8000h + 7FFFh

Start of State Save Area
SMBASE + 8000h + 7E00h (32 bit) -----------------------------31'- ----------------------------

SMBASE + 8000h + 7C00h (64 bit) f—————————————————————————————————————

SMI Handler (code) Entry Point
SMBASE + 8000h

SMBASE

« State save address starts at SMBASE + 8000h + 7FFFh
— SMBASE + FFFFh

* For 32-bit CPU’s, the state-save area is 200h bytes

o State save area extends down to SMBASE + 8000h +
7EO0Oh

— SMBASE + FEOOh

32-Bit

From Intel Vol. 3. Ch. "System Management Mode"

Table 34-1. SMRAM State Save Map

Offset Register Writable?
(Added to SMBASE + 8000H)
7FFCH CRO No
7FF8H (R3 No
7FF4H EFLAGS Yes
7FFOH EIP Yes
7FECH €Dl Yes
7FEBH =] Yes
7FE4H €8P Yes
7FEOH ESP Yes
7FDCH EBX Yes
7FD8H EDX Yes
7FD4H ECX Yes
7FDOH EAX Yes
7FCCH DR6 No
7FC8H DR7 No
7FC4H TR! No
7FCOH Reserved No
7FBCH Gs! No
7FB8H Fst No
7FB4H Ds! No
7FBOH ss! No
7FACH cst No
7FASH est No
7FA4H 1/0 State Fleld, see Sectlon 34.7 No
7FAOH 1/0 Memory Address Fleld, see Sectlon 34.7 No
7F9FH-7F03H Reserved No
7FO2H Auto HALT Restart Fleld (Word) Yes
7FO0H 1/0 Instruction Restart Fleld (Word) Yes
7EFCH SMM Revislon Identlfler Fleld (Doubleword) No
7EFSH SMBASE Fleld (Doubleword) Yes
7EF7H - 7E00H Reserved No

SMBASE + SMRAM Size |

SMBASE + 8000h + 7FFFh

Start of State Save Area
SMBASE + 8000h + 7E00h (32 bit) J{

SMBASE + 8000h + 7C00h (64 bit)

SMI Handler (code) Entry Point
SMBASE + 8000h

SMBASE

« State save address starts at SMBASE + 8000h + 7FFFh
— SMBASE + FFFFh

* For 64-bit CPU’s, the state-save area is 400h bytes

 The state-save extends down to SMBASE + 8000h +
7C00h

— SMBASE + FCOOh

64-Bit

From Intel Vol. 3. Ch. "System Management Mode"

Table 34-3. SMRAM State Save Map for Intel 64 Architecture

Offset Reqister Writable?
(Added to SMBASE + 8000H)
7FFEH CRO No
7FFOH CR3 No
7FEBH RFLAGS Yes
7FEOH IA32_EFER Yes
7FDBH RIP Yes
7FDOH DR6 No
7FC8H DR7 No
7FC4H TRSeL! No
7FCOH LDTR SEL! No
7FBCH Gs SeLt No
7FBSH FSSEL! No
7FBAH DS SEL! No
7FBOH SS SeL! No
7FACH cssel! No
7FASH €S SEL! No
7FA4H I0_MISC No
7FOCH I0_MEM_ADDR No
7F94H RDI Yes
7F8CH RSI Yes
7F84H RBP Yes
7F7CH RSP Yes
7F74H RBX Yes
7F6CH RDX Yes
7F64H RCX Yes
7F5CH RAX Yes
7F54H R8 Yes
7FACH RQ Yes
7F44H R10 Yes
7F3CH R11 Yes
7F34H R12 Yes

10

o 7F34H R12 Yes
64— B |t 7F2CH R13 Yes
7F24H R14 Yes
7F1CH R15 Yes
7F1BH-7F04H Reserved No
7F02H Auto HALT Restart Fleld (Word) Yes
7F00H I/0 Instruction Restart Fleld (Word) Yes
JEFCH SMM Revislon Identifler Fleld (Doubleword) No
7EF8H SMBASE Fleld (Doubleword Yes
Offset Register Writable?
(Added to SMBASE + 8000H)
7EF7H - 7EE4H Reserved No
7EEQH Settlng of "enable EPT" VM-execution control No
7€DBH Value of EPTP VM-execution control fleld No
7€D7H - 7EACH Reserved No
7EQCH LDT Base (lower 32 bits) No
7E98H Reserved No
7E94H IDT Base (lower 32 bits) No
7ES0H Reserved No
7E8CH GDT Base (lower 32 bits) No
7E8BH - 7€44H Reserved No
7€40H CR4 No
7E3FH - 7DFOH Reserved No
7DESH IO_RIP Yes
7DE7H - 7DDCH Reserved No
7DD8H IDT Base (Upper 32 bits) No
7DD4H LDT Base (Upper 32 blts) No
7DDOH GDT Base (Upper 32 blts) No
7DCFH - 7C00H Reserved No

« SMBASE field for both 64-bit and 32-bit architectures is always
located at the same offset from SMBASE (FEF8h)

SMBASE + SMRAM Size |

SMBASE + 8000h + 7FFFh
Start of State Save Area

SMBASE + 8000h + 7E00h (32 bit) f------------------- \l’l -----------------------
SMBASE + 8000h + 7C00h (64 bit) f————————————-————————¥

SMI Handler Entry Point
SMBASE + 8000h

SMBASE

* The remaining area is free for use as SMI handler code
and data

» Total size of SMRAM region is defined by the BIOS when
it configures SMM

Core 1 SMBASE + FFFFh [~~~ "~"""-----------------------mmmmm oo mmm o D001_OFFFh
Core 1 State Save Area

--- D001_OEOOh

Core 0 SMBASE + FFFFh |-----------==-------- oo D000 _FFFFh
Core 0 State Save Area

"""""""""""""""""""""""""""""""""""""" D000 _FEOOh
Core 1 SMI Entry Point

Core 1 SMBASE + 8000h [--------====——-------mmmmmm oo D000 _9000h
Core 0 SMI Entry Point

Core 0 SMBASE + 8000h [---------==-=-- - oo D000_0000h

Core 1 SMBASE D000_1000h

Core 0 SMBASE D000_0000h

« Each core will have its own SMBASE address offset from the
other core(s) SMBASE addresses

— Like 1000h bytes per the above 32-bit example

« Another core could define its SMBASE in a completely
separate memory address
— In this diagram | show them sharing the same SMRAM memory
range
— In practice, some cores will simply execute a dead loop

SMRAM Location

SMRAM can be located anywhere in the 4GB memory
address space

SMBASE can be overwritten by the SMI handler

Typically SMRAM is relocated at least once:

— On system startup, the first time the system enters SMM, SMBASE is at
0x30000

— SMI handler starts executing at 0x38000

— There is no reason it needs to stay at that address

Intel defines a few locations for SMRAM
— But it really is a flexible system and can be put anywhere

— | think these guidelines are provided to make configuration easier for the
BIOS developers and to avoid areas where SMRAM may overlap with
other regions

— This is all part of building that memory map

Standard SMRAM Locations

SMM Space Definition Summary

Shéraireadce Transaction Address Space DRAM Space (DRAM)
Compatible (Adr C) 000A_0000h to 000B_FFFFh O00A_000O0h to 000B_FFFFh
High (Adr H) FEDA_0000Oh to FEDB_FFFFh O00A_000O0h to 000B_FFFFh
TSEG (Adr T) (TOLUD minus STQLEN minus (TOLUD minus STQLEN minus
TSEG) to (TOLUD minus STOLEN) | TSEG) to (TOLUD minus STOLEN)

 On ICH/MCH chipsets there are 3 standard locations for
SMRAM

« On PCH chipsets the High Address (HSEG) is no longer
supported (so 2 locations)

« Technically the base address of SMRAM can be relocated by
the SMI handler

— But there are reasons these guidelines should be followed and for
all practical purposes SMRAM will be in TSEG

15

Compatible SMRAM (Legacy Video Area)

000F_FFFFh
000F_0000h
000E_FFFFh
000E_0000h
000D_FFFFh

000C_0000h
000B_FFFFh

000A_0000h
0009_FFFFh

0000_0000h

System BIOS (Upper)
64 KB

Extended System BIOS (Lower)
64 KB (16KBx4)

Expansion Area
128 KB (16KBx8)

Legacy Video Area
(SMM Memory)
128 KB

DOS Area

1MB

960 KB

896 KB

768 KB

640 KB

Legacy (DOS) Compatibility Range

Fixed address space

Legacy VGA space (A_0000 -
B _FFFFh)

When compatible SMM space is
enabled, SMM-mode processor
accesses to this range are
routed to physical system
memory at this address.

Non-SMM-mode processor
accesses to this range are
considered to be to the video
buffer area.

16

Enabling Compatible SMRAM

Global SMRAM Enable (G_SMRARE): If set to a 1, then
Compatible SMRAM functions are enabled, providing 128 KB
of DRAM accessible at the A0O000Oh address while in SMM
(ADSB with SMM decode). To enable Extended SMRAM
function this bit has be set to 1. Refer to the section on SMM
for more details.

This register is locked in Intel TXT mode (RO in Intel TXT
mode). It also locks when D_LCK bit is set.

3 R/W/L ob

This address space is enabled by asserting the G SMRAME
bit

— | believe G_SMRARE is a typo in the datasheet
The register (SMRAMC) containing this bit will be located in a
different place depending on the architecture

— On our E6400 it is located in the DRAM Controller (D0O:F0) at offset
9Dh

— On a Haswell system, for example, it is also located in the DRAM
controller but at offset 88h

17

TSEG (Top of Main Memory Segment)

4 GB

FFFF_FFFFh
Flash

« \Variable address space
APIC — In terms of size and location

 Located at:
BARe & IrPa) ranges | PCI Memory Range TOLUD — STOLEN — TSEG_SZ
TOLUD to TOLUD — STOLEN

STOLEN Internal Graphics (optional) ° STOLEN refers to Graph|CS
Memory Stolen, which is optional
TSEG (optional) and can be zero

Rt » New architecture enables more
customized location/size of TSEG

* Xeno thinks this is provided by SMRR now
When extended SMRAM space is
TODO: fixme?| enabled, processor accesses to the
TSEG range when the processor is
not in SMM are treated as invalid

Main Memory

0100_0000h
ISA Hole (optional) 00F0 0000h

16 MB
15 MB

Non-processor originated accesses
Main Memory

- 0010_0000h are not allowed to TSEG range.
DOS Compatibility Memory | 0000_0000h

Enabling TSEG

ESMRAMC - Extended System Management RAM Control

B/D/F/Type: 0/0/0/PCI

Address Offset: 9Eh

Default Value: 38h

Access: R/W/L; R/WC; RO

Size: 8 bits
TSEG Enable (T_EN): Enabling of SMRAM memory for
Extended SMRAM space only. When G_SMRAME =1 and
TSEG_EN = 1, the TSEG is enabled to appear in the

0 R/W/L ob

appropriate physical address space.

This register is locked in Intel TXT mode (RO in Intel TXT
mode). It also locks when D_LCK bit is set.

TSEG is enabled differently depending on the architecture
On MCH chipsets, it was defined in the ESMRAMC register
Either 1, 2, or 8MB in size for TSEG (defined in bits 2:1)

On our E6400 it's in DO:FO, offset 9Eh

Newer systems offer more flexibility in TSEG size and

location

19

Enabling TSEG on new platforms

3.1.36 TSEGMB—TSEG Memory Base

This register contains the base address of TSEG DRAM memory. BIOS determines the
base of TSEG memory which must be at or below Graphics Base of GTT Stolen
Memory (PCI Device 0 Offset B4 bits 31:20). NOTE: BIOS must program TSEGMB to a
8MB naturally aligned boundary.

B/D/F/Type: 0/0/0/CFG Access: RW_KL;
RW_L
Size: 32 Default Value: 00000000h Address Offset: B8h
Bit Range Acronym Description Default Access
31:20 TSEGMB This register contains the base address of TSEG DRAM 000h RW_L

memory. BIOS determines the base of TSEG memory which
must be at or below Graphics Base of GTT Stolen Memory
(PCI Device 0 Offset B4 bits 31:20). BIOS must program
the value of TSEGMB to be the same as BGSM when TSEG

is disabled.
19:1 RSVD Reserved. 00000h RO
0 LOCK This bit will lock all writeable settings in this register, Oh RW_KL

including itself.

* On newer systems the size of TSEG is more flexible in its
programming

 The offset of this register and its method of programming is
dependent on the memory controller (which exists either in
the MCH or the processor)

20

HSEG (High SMM Memory Space)

4GB

4 GB minus 2 MB

4 GB minus 17 MB
4 GB minus 18 MB

4 GB minus 19 MB

4 GB minus 20 MB

4 GB minus 256 MB

Possible address
range

4 GB minus 512 MB

Internal Graphics
ranges
PCI Express Port

TOLUD

High BIOS

DMI Interface

(subtractive decode)

FSB Interrupts

DMI Interface

(subtractive decode)

Local (CPU) APIC

/0 APIC

DMI Interface

(subtractive decode)

PCI Express Configuration

Space

DMI Interface

(subtractive decode)

FFFF_FFFFh
FFEO_0000h

FEF0_0000h

FEEO_0000h

FEDO_0000h
FEC8_0000h
FECO_0000h

Optional HSEG
FEDA_0000h to
FEDB_FFFFh

F000_0000h

E000_0000h

Fixed address space
FEDA 0000 to FEDB_FFFFh

When enabled (if supported),
A _0000h to B_FFFFh are remapped
to high memory

Not supported in PCH chipsets

Note: TSEG is located under
TOLUD which is located at the
bottom of this diagram

21

Enabling HSEG

ESMRAMC - Extended System Management RAM Control

B/D/F/Type: 0/0/0/PCI

Address Offset: 9Eh

Default Value: 38h

Access: R/W/L; R/WC; RO

Size: 8 bits
Enable High SMRAM (H_SMRAME): Controls the SMM
memory space location (i.e., above 1 MB or below 1 MB)
When G_SMRAME is 1 and H_SMRAME this bit is set to 1,
the high SMRAM memory space is enabled. SMRAM

7 R/W/L ob accesses within the range OFEDAOOOOh to OFEDBFFFFh are

remapped to DRAM addresses within the range
000A0000h to O00OBFFFFh.

This register is locked in Intel® TXT mode (RO in Intel TXT
mode). It also locks when D_LCK bit is set.

« HSEG is enabled when bit 7 of the ESMRAMC bit is set

* Not supported on PCH systems and later

22

SMRAM Combinations (MCH-based)

SMM Space Table

Global Enable High Enable | TSEG Enable Adr C Range Adr H AdrT
G_SMRAME H_SMRAM_EN TSEG_EN Range Range
0 X X Disable Disable Disable

1 0 0 Enable Disable Disable

1 0 1 Enable Disable Enable

1 1 0 Disabled Enable Disable

1 1 1 Disabled Enable Enable

Up to two memory locations can be used for SMRAM on a system
There is still only one SMBASE per core

Global Enable means that SMM compatible space is turned on
Disabling the C-range disables all other ranges

So if you're using TSEG, there is guaranteed to be either the C-

range or the H-range also present

— | removed H-range discussion from this class for time reasons. It's pretty straightforward,
and you can see the manuals if you're interested. But you probably mostly all have PCH-
based systems so...

SMRAM Combinations (PCH-based)

SMM Space Table

Global Enable
G_SMRAME

TSEG Enable
TSEG_EN

Adr T

Adr C Range Range

Disable
Enable
Enable

Disable
Disable
Enable

« Up to two memory locations can be used for SMRAM on
a system

— Which is good since on PCH there is only the Compatible and
TSEG ranges; HSEG is no longer supported

« As you can see, this means that the Compatible range is
always enabled if TSEG is enabled

* So the only question is whether or not you use TSEG

24

Demo: Locating SMRAM

Access Specific Window Help

Igdggr@dfhdl;d) 1)

fl pCI

FECELEE

dword
32bit

word
16bit

[Bus 00, Device 00, Function 00 - Intel Corporation Host Bridge

157 00 01 02 03 04 05
00 86 80 40 2A 06 00
10 00 00 00 00 00 00
20 PCI 00,00,00 Reg 09D (157)

30

40 7 6 5 4 1 0
30 00 0 0 0 1 0

60 i
70

06 07 08 09 O0A
90 20 07 00 00

00 00 00 00 00

00

00

Cancel

90 10 11 11 01 00 00O 00 OO0 40 OO0

BO 00 EO OO0 OO OO OO0 OO0 OO0 OO0 00 OO0

Co 00 00 OO0 OO OO OO OO OO0 OO0 00 OO

DO 00 00 OO0 OO OO OO OO OO OO OO OO

EO 09 00 0A 11 86 7C 40 1E 01 90 00

FO 00 00 00 OO OO OO OO0 00O AO OF o7
Hardware

| 23|
e

0B
06
00
00
00

FE

80 Tr—To—vOUvCvo UD OO U0 UD o OU oo 00 00

A0 20 00 00 12 00 OO0 OO0 OO0 OO0 00 o0 00

00
00
00

00

00 00

0D
00
00

10

00 00

00 00

00
00
02
00

00

00 00
00 00
00 00

00 00

00 00

0F
00
00
02
00

00

00
00
00
00
00

00

First let's see what
address ranges are
enabled on our system for
SMRAM

Open RW-Everything and
select PCI devices, device
0, function O (the DRAM

Controller)

Look at offset 9Dh
(SMRAMC register)

See if bit 3 (G_SMRAME)
bit is set

Compatible SMRAM at
A 0000 to B_FFFFh is set

25

Demo: Locating SMRAM

Access

Specific Window Help

P E
i) 5

PCI

[l Yl G &

dword
32bit

word
16bit

byte
8bit

[Bus 00, Device 00, Function 00 - Intel Corporation Host Bridge

el ile
g

157
00
10

00 01 02 03 04 05 06 07 08 09 O0A
86 80 40 2A 06 00 90 20 07 00 00

g0 00 00 00 00 OO OO0 OO0 00 OO0 00

20
30
40
50
60
70

PCI00,00,00 Reg 09E (158)

65 5 4 3 2 1
0111 00
39

(-3 |0

N\

80
90
A0
BO
Co
DO
EO
FO

10
20
00
00
00
09

Hardware

11 \\01 00 00
00 00 N\N12 00 00

HSEG No |

00 00 00 00 00
00 0A 11 86 7C

00 00 00 00 00

00 00

00 40 i

00
00
00
40

00

00 47

i 00

TSEG Yes

00 00 00 00
1E 01 90 00
oo A0 OF 07

0B
06
00
00
00
FE

00

0c

28

00
00
00
00
00

00

0E
00
00
33
00
00
00

00

0F
00
00
02
00
00
00
00

00

Q 00

78

00
00
01
00

00

00
00
00
00
00
00

00

Let’'s now check to see if
TSEG (or HSEG) is
enabled

We know we cannot be
using both along side the
compatible C range

Look at the register at
offset 9Eh (ESMRAMC)

Notice that TSEG Enable
bit O is asserted

— By default then, HSEG is
not enabled, but we can
also see that bit 7 is not
asserted

26

Example: Find TSEG Base/Limit

TOLUD

STOLEN - Internal Graphics (optional)
TSEG_SZ -[TSEG (optional) |

So we know that Compatible SMRAM is enabled, and that is always
at a fixed address A_0000 to B_FFFFh

But TSEG is dependent on other addresses

The TSEG location can be calculated (if you are analyzing a system
that does not have an explicit TSEG register):

From the manual, TSEG Range for this machine is calculated as:

(TOLUD - STOLEN — TSEG_SZ) to (TOLUD — STOLEN)

27

Example: Find TSEG: TOLUD

il pcr

===

=

byte
8bit

dword
32bit

word
16bit

'-AJ_JQ

[Bus 00, Device 00, Function 00 - Intel Corporation Host Bridge

150
00
10
20
30
40
50
60
70
80
90
AD
BO
Co

0100 0302
8086 2A40
0000 0000
0000 0000
0000 0000
5001 FEDA
0000 0002
0005 F800
0000 0000
0000 0000
1110 0111

0504
0006
0000
0000
00EOD
0000
0343
0000
0000
0000
0000

0706
2090
0000
0000
0000
0000
0000
0000
0000
0000
0000

0908
0007
0000
0000
0000
0001
0000
4001
1001
0000
0040
0000

0BOA
0600
0000
0000
0000
FEDA
0000
FEDA
0000
0000
0047

0DOC OFOE ‘

TOLUD - Top of Low Used DRAM Register
B/D/F/Type: 0/0/0/PCI

Address Offset: B0-B1ih

Default Value: 0010h

Access: R/W/L; RO

Size: 16 bits

“2 ==/ TOLUD = E000_0000h

1200
E000 o0
s 0000

0000
0000

(TOLUD STOLEN — TSEG SZ)to (TOLUD — STOLEN)
(E0000000 - ? - ?) to (E0000000 - ?)

28

Lab: Find TSEG: STOLEN

GGC - (G)MCH Graphics Control Register (Device 0)

- B/D/F/Type: 0/0/0/PCI
il pc Address Offset: 52-53h

— " =0 Default Value: 0030h
B M =t=| P& | Access: RO; R/W/L
@ ﬂ ﬁl 4 Size: 16 blts

[B“S 00, Device 00, Function 00 - Intel Corporation | o| the bits in this register are Intel TXT locked. In Intel TXT mode, R/W bits are RO.

150 0100 0302 0504 GTT Graphics Memory Size (GGMS): This field is used to select

00 8086 2A40 0006 the amount of Main Memory that is pre-allocated to support the

10 0000 0000 0000 Internal Graphics Translation Table. The BIOS ensures that

>0 [:H:”:”:' l:”:”:H:' |:||:u:u:| memory is pre-allocated only when Internal graphics is enabled.
- - R GSM is assumed to be a contiguous physical DRAM space with

L Shld . 00EQ DSM, and BIOS needs to allocate a contiguous memory chunk.

40 5001 : 0000 Hardware will drive the base of GSM from DSM only using the GSM

50 0000 0343 steeprogrammed in the register.

60 0005 0000 0000)= No memory pre-allocated.

70 0000 0000 0001 = No VT mode, 1 MB of memory pre-allocated for GTT.

80 0000 0000 0011 = No VT mode, 2 MB of memory pre-allocated for GTT

90 1110 0000 RAW/L Oh Core 1001 = VT mode, 2 MB of memory pre-allocated for 1 MB of Global

0020 0000 GTT and 1 MB for Shadow GTT

STO L E N — O h D00 0000 0000 0000 0000

« Next is to find the amount of memory (if any) that has been stolen
from graphics

« Bits 11:8 determine the amount of graphics memory stolen
* Inthiscaseitis O

« (TOLUD — STOLEN —TSEG_SZ)to (TOLUD — STOLEN)
« (EO000000 -0 - ?) to (EO000000 - 0)

29

Lab: Find TSEG: TSEG_SZ

PCl

=

(=]

ﬂ

word
16bit

byte
8bit

dword
32bit

[Bus 00, Device 00, Function 00 - Intel Corporation Host Bridge

telila
]

157 00 01 02 03 04 05 06 07 08 09 O0A
00 86 80 40 2A 06 00 90 20 07 00 0O
10 00 00 OO OD OO0 OO OO OO 00 OO0 OO0
20 PCI 00,00,00 Reg O9E (158) lﬁj 00
30 00
40 7 6 5 4 3f2 1\0 IDA
50 001 11 (1] 0) 1 :
60 H o H

o = L[carea | T
9 10 11 11 01 00 00 00 OO 40 00 47
A0 20 00 00 12 00 OO0 OO0 OO OO OO OO

IDA F

o ESMRAMC - Extended System Management RAM Control
0/B/D/F/Type: 0/0/0/PCI

0|Address Offset: 9Eh

n/ Default Value: 38h

_|Access: R/W/L; R/WC; RO

Y Size: 8 bits

F L8]

00 00 00 00 00

00 = 1 MB Tseg. (TOLUD:Graphics Stolen Memory Size -
1M) to (TOLUD - Graphics Stolen Memory Size).
01 = 2 MB Tseg (TOLUD:Graphics Stolen Memory Size -
2M) to (TOLUD - Graphics Stolen Memory Size).
10 = 8 MB Tseg (TOLUD:Graphics Stolen Memory Size -
8M) to (TOLUD - Graphics Stolen Memory Size).

00 00 00 00

00 00

00 00

00 00
00 00

00 00

11 = Reserved.

And lastly we need to determine the size of TSEG

This will differ based on architecture but for our system it's 8 bits
(TOLUD — STOLEN - TSEG_SZ) to (TOLUD — STOLEN)
(EO0O0_0000 -0 -10_0000) to (EOOO0000 - 0)

30

Calculate TSEG Base/Limit

TOLUD

STOLEN - Internal Graphics (optional)
TSEG_SZ -[TSEG (optional) |

We plug our known values into:

EO00_0000h

- 0

]-1IVIB

(TOLUD — STOLEN - TSEG_SZ) to (TOLUD — STOLEN)

(E000_0000h — 0 — 1 MB) to (E000_0000 — 0)

Provides us the range:

DFFO_0000h to EOOO_0000h
— Technically it's DFFO_0000 to DFFF_FFFFh

This *should* be the SMBASE address (which is relocatable of course

but in all likelihood will be here)

You can also read the SMRR PHYSBASE MSR if it's supported or on a
newer system read the TSEG Base/Limit from the TSEG register

— SMRRs covered in a little bit

31

Calculate TSEG Base/Limit

TOLUD EO000_0000h
STOLEN - Internal Graphics (optional) -0
TSEG_SZ-[TSEG (optional) | }1ms

The TSEG base address marks the beginning of the protected
SMRAM range

Therefore the TSEG base *should* equate to SMBASE

— Or the lowest SMBASE value in a multi-core system, assuming shared
SMRAM range

WEe'll see in a bit that this isn’t necessarily the case

32

TSEG STOLEN varies

* For the MCH 4, the TSEG range is defined as
(TOLUD — STOLEN — TSEG_SZ) to (TOLUD —

STOLEN)
e But different systems will have different

values, and you have to look it up in the
datasheets. E.g. on a 4t gen Haswell:

* (TOLUD — DSM SIZE — GSM SIZE — TSEG SIZE)
to (TOLUD — DSM SIZE — GSM SIZE)

Homework heads up

* Determine if your system’s TSEG/TOLUD are
locked, or if they could be moved by an
attacker

* On some systems they will be locked by

D LCK, and on some TSEGMB will have its
own lock bit. You need to determine which is

the case for your hardware.

Memory Map Protection

TOLUD - Top of Low Used DRAM Register
B/D/F/Type: 0/0/0/PCI
Address Offset: BO-B1h
Default Value: pTaERATy
Access: ‘M RO
Size: B DIts
Z GGC - (G)MCH Graphics Control Register
B/D/F/Type: 0/0/0/PCI
All the bits in this register are locked in Intel® TXT mode. Address Offset: 52-53h
They are also locked in Intel Management Engine mode Defaylt Value: 0030k
nd when D_LCK bit is set in SMRAM register. Access: RS @
Size: 16 bit

* The location of TSEG is dependent on the values of TOLUD
and Stolen Memory

* Modifying this value is something that an attacker could try, to
shift the TSEG region

 However these registers can be locked down by D _LCK bit in
the SMRAM register (a key-bit)

35

SMRAM Lock-Down

SMRAM - System Management RAM Control

B/D/F/Type: 0/0/0/PCI
Address Offset: 9Dh

Default Value: 02h

Access: RO; R/W/L; R/W
Size: 8 bits

The SMRAMC register controls how accesses to Compatible and Extended SMRAM
spaces are treated. The Open, Close, and Lock bits function only when G_SMRAME bit
is set to a 1. Also, the OPEN bit must be reset before the LOCK bit is set.

4 R/W/L

0ob

SMM Space Locked (D_LCK): When D_LCK issettoal
then D_OPEN is reset to 0 and D_LCK, D_OPEN, G_SMRARE,
C_BASE_SEG, H_SMRAM_EN, GMS, TOLUD, TOM, TSEG_SZ
and TSEG_EN become read only. D_LCK can be setto 1 via a
normal configuration space write but can only be cleared by
a Full Reset. The combination of D_LCK and D_OPEN provide
convenience with security. The BIOS can use the D_OPEN
function to initialize SMM space and then use D_LCK to "lock
down” SMM space in the future so that no application
software (or BIOS itself) can violate the integrity of SMM
space, even if the program has knowledge of the D_OPEN
function.

This bit when set locks itself.

« D LCKis pretty much a necessity and is rarely left unset (5% or
so of measured BIOS have D_LCK not set)

 When set prevents changes to a lot of registers

36

Where can you find the all-important
D LCK bit?
* MCH3 & 4 = “SMRAM” register 0/0/0/9D

e 2"d Gen (Sandy Bridge) CPU and newer =
“SMRAMC” register 0/0/0/88

D OPEN

B/D/F/Type: 0/0/0/PCI
Address Offset: 9Dh

Default Value: 02h

Access: RO; R/W/L; R/W
Size: 8 bits

SMRAM - System Management RAM Control

The SMRAMC register controls how accesses to Compatible and Extended SMRAM
spaces are treated. The Open, Close, and Lock bits function only when G_SMRAME bit
is set to a 1. Also, the OPEN bit must be reset before the LOCK bit is set.

Bit Access I Description
Value

7 RO ob Reserved
SMM Space Open (D_OPEN): (When D_OPEN=1 and
D_LCK=0, the SMM space DRAM is made visible even when
SMM decode is not active. This is intended to help BIOS

6 R/W/L ob initialize SMM space. Software should ensure that
D_OPEN=1 and D_CLS=1 are not set at the same time.
This register is locked in Intel® TXT mode (RO in Intel TXT
mode). It also locks when D_LCK bit is set.

« To help the BIOS configure SMRAM, the chipset provides a
means for leaving SMRAM open even when the processor is

not in SMM

« D LCK prevents this bit from being asserted

38

vulnBIOS specific: Viewing SMRAM

B ra

Il i il & 8

dword
32bit

word
16bit

byte
8bit

ls:

[Bus 00, Device 00, Function 00 - Intel Corporation Host Bridge

Memory

£

byte
8bit

word
16bil

dword
32bil

157 00 01 02 03 04 05 06 07 08 09 0A OB
‘133 °° [pc100.00,00 Reg 09D (157)

20 00
30 00 7 5 4 3 2 10
40 01 0 oo 1 0 1 0

50 00

44 Cancel
60 05
70 00
80 00 00 00 OO0 OO OO OO0 OO0 OO0 nan Qo0 00
90 10 11 11 01 00O 0O 0O 00 40 00 47 00
A0 20 00 00 12 00 OO0 OO OO OO0 OO0 OO0 OO0

0c
00
00
28
00
00
00
00
00

00

0D
00
00
10
00
00
00
00

00

00 00 00

|

Address = DFFO0000

]

36
00
10
20
30
40
50
60
70
80
90
AD
BO

00
ks
==
=
£z
==
==
FF
FF
FF
ks
==
=

01 02 03 04 05 06
FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF

07
==
==
=
5
==
==
==
FF
FF
==
==
=

08
==
==
=
==
==
==
FF
==
FF
==
==
=

09
ks
==
=
e
FF
FF
FF
FF
FF
ks
==
=

0A
==
==
-
=2
==
==
==
FF
Fe
==
==
-

il@l

==
==
=
=3
==
==
==
FF
FF
==
==
=

0C
==
==
=
=
==
==
FF
==
FF
==
==
=

0D
ks
==
=
£z
FF
==
FF
FF
FF
ks
==
=

0E
B
==
=
FF
FF
==
==
FF
Fe
B
==
=

OF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

« |If SMRAM is properly locked down this isn’t possible
« Assert the D_OPEN bit in the SMRAMC register (DO:FO, offset 9Dh)
* Since it’'s unlocked, let's take a look at SMRAM
« According to our TSEG calculations it should be located at

DFFO_0000h

 This should be SMBASE...butis it? Let's see...

39

vulnBIOS specific: Viewing SMRAM

PCI
*FEECEEEEEER
| [l | AP [8bit| 16bit| 32bit E il | o Memory
Bus 00, Device 00, Function 00 - Intel Corporation Host Bridge = i g byte | word
| | . . & ' g 8bit | 16bit
157 00 01 02 03 04 05 06 07 08 09 0A 0B 0OC OD OE OF y
00 86 80 40 2A 06 00 90 20 07 00 00 06 00 00 0O OO0 ddress = DFFO0Q000 |
10 00 00 OO0 OO0 OO OO OO OO OO OO OO OO OO OO OO OO
L 36400 01 02 03 04 05 06 07 08
20 o0 00 00 OO OO0 OO OO OO OO OO OO OO0 28 10 33 02
el L EB 38 8D 98 00 00 00O 00O E9
30 00 00 00 OO0 EO OO OO OO OO OO OO OO OO OO OO0 OO - - - - -
40 01 S50 DA FE 00 00O OO OO O1 OO DA FE OO OO 00 00 0§ 7D 0 1 05 l:‘ l:l [:l ‘:k - l:‘ ‘:l -
S0 00 00 02 00 43 03 00 OO0 OO OO OO OO OO OO OO0 OO 20 | 18 I:l ‘:I 00 4 l:‘ l:’ 00 SE l:‘ ‘:’ 01
60 05 00 00 F8 OO OO OO0 OD0 O1 40 DA FE 00 00 00 OO0 30 |10 00 18 20 00 B6 10 00 18
e I L 40 E8 80 66 2 OF 01 16 5C 80
70 o0 00 OO0 OO OO0 OO OO OO O1 10 0O 00
. 50 22 C3 66 EA 00 32 FO DF 08
80 00 00 OO0 OO0 OO OO OO OO OO0 OO0 OO0 OO T
90 10 11 11 01 00 00O 0O 0O 40 00 47 00 0 SD 98 ':‘ l:’ e ':‘ ‘:’ -
A0 20 00 00 12 00 00 OO OO OO OO OO OO0 FF FF 00 00 00 SF CF 00 FF
80N\ 00 10 00 00O C8 93 00 FE FF
a0 FF 00 00 00 93 00 00 FF
A0 FF 00 00 00 93 00 00 FF
BO FF FF N 00 00 93 00 00 FF

S~
 Well, there is some binary at DFFO_0000h

« EB 38 is a JMP instruction which would take us to
DFFO_003Ah

« But shouldn’t our code enter at SMBASE + 8000h
(DFFO_8000h) instead? Maybe this is just random bits.

40

vulnBIOS specific: Viewing SMRAM

il Memory

EI A

word

16bi

|1/

Address = DFFO8000

|

01 02

EO 00 00 00 00 00O 00 0O OO OO OO OO 0O OO 0O OO OC
FO 00 00 00 00 00 00 OO0 OO 0O 0O 0O 0O 0O OO0 OO0 OC

Hardware

z 0 05 06 07 08 09 0OA 0B 0C 0D OE OF
Q 00 00 00 OQ OO 0O OO OO OO OO OO OO 00O OO0 OO
10 TUOSSe—gie 00 00 00 00O OO0 OO0 OO OO OO OO OO OC
20 00 00 OO OO OO OO OO OO OO OO OO OO OO OO OO oOC
30 00 00O OO OO OO OO OO OO OO OO OO OO OO OO OO OC
40 00 00 OO OO OO OO OO OO OO OO OO OO OO OO 00 OO
50 00 0O OO OO OO OO OO OO OO OO OO OO OO OO OO OC
60 00 00 OO 00O OO OO OO OO OO OO OO OO OO OO OO0 OO
70 00 00 OO OO OO OO OO OO OO OO OO OO OO OO OO oOC
80 00 00 OO OO OO OO OO OO OO OO OO OO OO OO OO OO
90 00 00 00 OO OO OO OO OO OO OO OO OO OO OO OO0 OC
AO 00 00O 00O OO OO OO OO OO OO OO OO OO OO OO OO OO
BO 00 00O 00O OO OO OO OO OO OO OO OO OO OO OO OO OC
co 00 00O OO OO OO OO OO OO OO OO OO OO OO OO OO oOC
Do 00 00O 00O OO OO OO OO OO OO OO OO OO OO 0O OO OC

Let's look at address
DFFO_8000h

Definitely not executable
code

Call it a hunch but let’s
look at address
DFFO_7EF8h

Recall that the SMBASE
field in the state save

register is located at
offset SMBASE + 8000h

+ 7EF8h

Let's see what that shows
us

vulnBIOS specific: Viewing SMRAM

’IﬂIWenuMy
; e m— W
A G o] 3| el e
| Address = DFFO7EFS |
156 03020100 07060504 0BOAO908
00 00030100 00000000
10 00000000 00000000 00000000
20 00186001 00000000 00000000
30 00000000 00000000 00000000
40 00000000 00000000 00000000
50 00000000 00000000 00000000
60 00000000 00000050 00000000
70 00000000 00000000 00000000
80 00000000 8293ECA98 00000000
aQ 00000000 8556AB60 00000000
A0 00000000 00000000 00000000
BO 00000023 00000008 00000010
Co 00000030 00000000 00000000
DO 00000400 00000000 FFFFOFFO
EO 923D1F88 00000000 00000800
FO 00000046 00000000 00185000
Hardware

(7]

0FOEODOC

00000001
8556A998
8293ED20
82941D20
10000014
00000023
00000028

This is the SMBASE
value and its value is
DFEF_8000h

So SMBASE + 8000h is
DFFO_0000h which is

our TSEG base

Technically, the SMRAM
range is outside of the
TSEG protected area

42

Unprotected SMRAM Range

TOLUD

Internal Graphics (optional)

TSEG (optional)

________ Ao

Unprotected Memory

 We can see that it's outside the range if we go to an address

Protected Memory

just under DFFO_0000nh and write some bytes

« Then we can toggle the D_OPEN bit off and on and see that
the bytes we just wrote are still present whether SMRAM is

open or closed

DFF0_0000h (SMBASE + 8000h)
DFEF_8000h (SMBASE)

43

So how bad is this?

TOLUD

Internal Graphics (optional)

Protected Memory

TSEG (optional)

DFF0_0000h (SMBASE + 8000h)
-------- ?-------- DFEF_8000h (SMBASE)

Unprotected Memory

It's definitely not good! But...

In *this* case the SMI handler neither references nor calls anything in this
unprotected range

So it’s “okay” in this case, but could be catastrophic in another

The moral of the story: Ensure that all SMI handler accessed code/data is
within the protected memory range

— ITL found multiple bugs in Intel's SMM code where it was accessing data outside
the protected ranges, which could consequently be attacker controlled (which led
to simple "change a function pointer to jump to my code" type attacks, and could
lead to buffer overflow attacks)

44

TODO

* Needs a discussion of TSEG as DMA protection

