
Advanced	
 x86:	

BIOS	
 and	
 System	
 Management	
 Mode	
 Internals	

System	
 Management	
 Mode	
 (SMM)	

Xeno	
 Kovah	
 &&	
 Corey	
 Kallenberg	

LegbaCore,	
 LLC	

All materials are licensed under a Creative
Commons “Share Alike” license.

http://creativecommons.org/licenses/by-sa/3.0/

2
ABribuEon	
 condiEon:	
 You	
 must	
 indicate	
 that	
 derivaEve	
 work	

"Is	
 derived	
 from	
 John	
 BuBerworth	
 &	
 Xeno	
 Kovah’s	
 ’Advanced	
 Intel	
 x86:	
 BIOS	
 and	
 SMM’	
 class	
 posted	
 at	
 hBp://opensecuritytraining.info/IntroBIOS.html”	

System	
 	

Management	
 Mode	
 (SMM)	

God	
 Mode	
 AcEvate	

3	

4 From http://support.amd.com/us/Processor_TechDocs/24593.pdf

Batteries Not
Included!

System Management Mode (SMM)
Overview

•  Most privileged x86 processor operating mode

•  Runs transparent to the operating system
•  When the processor enters SMM, all other running tasks

are suspended
•  SMM can be invoked only by a System Management

Interrupt (SMI) and exited only by the RSM (resume)
instruction

•  Intended use is to provide an isolated operating
environment for
–  Power/Battery management
–  Controlling system hardware
–  Running proprietary OEM code
–  etc. (anything that should run privileged and uninterrupted)

5	

System Management Mode (SMM)
Overview

•  The code that executes in SMM (called the SMI handler) is
instantiated from the BIOS flash

•  Protecting SMM is a matter of protecting both the active
(running) SMRAM address space but also protecting the flash
chip from which it is derived
–  Protect itself (SMBASE (location), SMRAM Permissions)
–  Write-Protect Flash

•  So far in our research, only about 5% of SMRAM
configurations were directly unlocked and vulnerable
to overwrite

•  However, since > 50% of the BIOS flash chips we've seen are
vulnerable, that means > 50% of SMRAM will follow suit

6	

System Management Interrupt (SMI)

•  SMM can only be invoked by signaling a System
Management Interrupt (SMI)

•  SMI’s can be received via the SMI# pin on the processor
or through the APIC bus

•  SMI’s cannot be masked like normal interrupts (e.g. with
the “cli” instruction, or clearing the IF bit in EFLAGS)

•  SMI’s are independent from the normal processor
interrupt and exception-handling mechanisms

•  SMI’s take precedence over non-maskable and
maskable interrupts
–  Including debug exceptions and external interrupts

•  If a SMI and NMI occur at the same time, only the SMI
will be handled

7	

Causes of SMI#
Just	
 an	
 example,	
 your	
 ICH/PCH	
 will	
 list	

them	
 for	
 your	
 system	

8	

Generating SMI: APM

•  This is applicable to systems that support Advanced
Power Management (most do these days)

•  Fixed I/O range, so it cannot be relocated
•  Check your I/O Controller Hub datasheet to verify its

supported
•  Writes to 0xB3 do not trigger an SMI#, only the write to

0xB2
•  0xB3 can be used to pass information

9	

Advanced Power Management
(APM)

•  APM_CNT (0xB2) is the control register
•  APM_STS (0xB3) is the status register
•  Located in I/O Address space
•  Registers are R/W
•  Note: APM != ACPI, but even on other systems which

use ACPI 2.0, this still triggers an SMI#
–  The PCH datasheets (up to 8-series) also still list these under

the fixed IO address
10	

APM_CNT
&
APM_STS

•  Writing a byte to port 0xB2 will trigger an SMI#
•  Writing to 0xB3 does NOT trigger SMI#
•  Can be used to pass information to the SMI handler.
•  Control flow through the SMI handler can be determined by the

values in ports B2 & B3h
•  Usage: Could tell the SMI handler to measure Hypervisor memory,

or initiate a BIOS update
11	

Examples

OUT 0xB2, 0x12

MOV DX, 0x1234
OUT 0xB2, DX

OUT 0xB3, 0x34
OUT 0xB2, 0x12

Generates SMI. SMI
handler can read port 0xB2
to see that 0x12 was
passed.

Writes 0x34 to 0xB3 and
0x12 to 0xB2 all in one
shot (Generating SMI).

Writes 0x34 to 0xB3 and
then writes 0x12 to 0xB2.
SMI is triggered only on the
write to 0xB2.

12	

Generating SMI via APIC

•  We've not yet had time to
play with this

•  Should be able to generate
SMI by programming the
Interrupt Command
Register in the APIC

•  Architecture (and APIC
type) dependent

•  There is also a Self IPI
register

13	

“Corollary” SMI# generation

•  Looking through the datasheets there are various (too
many to show) register/bit-combinations that will also
generate an SMI

•  John called this a “corollary” SMI#. The SMI# is
correlated with software is setting a register bit

14	

•  Open a port IO window in
RW-E at address 0xB2

•  Type in the number 1 and
hit enter
•  I choose 1 because I know it

to be a ‘safe’ value to enter

•  Notice anything?
•  (You’re not supposed to)

•  The system just
transitioned into SMM,
executed code, and then
exited SMM

SMI invocation example

15	

SMI invocation counter
•  So we’ve seen that there are a lot of events that can generate

SMI and we’ve generated some on our own as well
•  One logical question is: how frequently are these generated?
•  As always, the answer is “it depends”
•  On a system like a laptop, SMM will likely be called frequently

to check the battery/power status
•  Should be an SMI# in that case

•  But on a desktop it may be called much less frequently

16	

SMI counter (MSR)

•  And as if answering my wishes for some way to track how
frequently SMM is entered, I found this in Intel’s Software
Programming Guide (Chapter 35, MSRs)

•  It’s only available on Nehalem and later processor families (new
stuff)

•  Trying to read this will crash any system that doesn’t support it
•  I hope you read this before trying ;)

Nehalem	
 (Core	
 i	
 series	
 &	
 Xeon)	
 and	
 later	
 architectures	
 only!	

From	
 Intel	
 Vol.	
 3.	
 Ch.	
 "Model	
 Specific	
 Registers	
 (MSRs)"	
 17	

Periodic SMI#

•  More as a side note (but related to the SMI counter), SMI#
can be configured to fire periodically

•  This way it can be guaranteed that SMI will be generated at
least once every 8, 16, 32, or 64 seconds

•  This register is R/W and resides on the LPC bus (D31:F0,
offset A0h, bits 1:0)

18	

19	

Reversing tip: searching for SMI
communication byte patterns

•  You can search for instances where a program is
communicating with SMM via port IO by searching for byte
patterns like those above

•  To locate triggering of SMI via port 0xB2, you can search for
the bytes “E6 B2” and “E7 B2” in IDA Pro
•  Single byte searches for EE and EF yield many false-positives so

analyze the code before it to ensure that the DX register contains B2
•  You can also script IDA to create IDB files for all binaries in a

folder, and then search within those binaries for “out 0B2h,”

From	
 Intel	
 Vol.	
 2	

20	

SMI byte patterns example

•  Searching for instances of “E6 B2” and
“E7 B2” in IDA will yield a list of
examples like that on the left

•  Most importantly, IDA provides an
interesting clue here to a problem that
we’ll be covering shortly…

•  And is actually the only reason this slide
is included

21	

Entering SMM

•  When receiving an SMI, the processor waits for all instructions
to complete and stores to complete

•  SMI interrupts are handled on an architecturally defined
“interruptible” point in program execution
–  Like an instruction boundary:

XOR	
 EAX,	
 EAX	

ADD	
 EAX,	
 1	
 Architecturally	
 “interrupEble”	
 point	

•  Processor saves the context in SMRAM and begins executing
the SMI Handler

•  In a multi-core processor, no SMI handler code is executed
until all cores have performed the above and entered SMM

22	

Entering SMM due to IO

•  IO Instruction restart field is located in the state save area in
SMRAM
–  SMBASE + 8000 + 7F00h

•  If an IO instruction to a device triggers an SMI, the SMI
handler has the option of re-executing that instruction upon
returning from SMM
–  Example: If a device is asleep, port IO to it may generate SMI#. The

SMI handler can then wake up the device and re-execute the instruction
that generated the original SMI#

From	
 Intel	
 Vol.	
 3.	
 Ch.	
 "System	
 Management	
 Mode"	

23	

Exiting SMM: RSM

•  The only way to exit SMM is through the RSM instruction
–  Or system reset/shut down

•  Returns control to the application program or operating-system
procedure that was interrupted by the SMI

•  The processor’s state is restored from the save state area within
SMRAM. If the processor detects invalid state information during
state restoration, it enters the shutdown state.

•  The operating mode the processor was in at the time of the SMI is
restored.

•  RSM can only be executed from within SMM
–  So if you see this, you are debugging the SMRAM code
–  RSM multi-byte opcode is: 0x0F 0xAA

•  Executing RSM while not in SMRAM generates an invalid opcode
exception

From	
 Intel	
 Vol.	
 2	

24	

“Performance	
 ImplicaEons	
 of	
 System	

Management	
 Mode”	

•  Here’s	
 a	
 good	
 paper	
 which	
 pushes	
 back	
 against	
 all	
 the	

academic	
 researchers	
 who	
 act	
 like	
 they	
 can	
 just	
 implement	
 all	

their	
 security	
 features	
 in	
 SMM	

•  hBp://web.cecs.pdx.edu/~karavan/research/
SMM_IISWC_preprint.pdf	

25	

“Performance	
 ImplicaEons	
 of	
 System	

Management	
 Mode”	
 2	

26	

