Advanced x86:

BIOS and System Management Mode Internals
System Management Mode (SMM)

Xeno Kovah && Corey Kallenberg
LegbaCore, LLC

8

LEGBACORE

WE DO DIGITAL VOODOO

All materials are licensed under a Creative

Commons “Share Alike” license.
http://creativecommons.org/licenses/by-sa/3.0/

You are free:

@ to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

®

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

© ®

Attribution condition: You must indicate that derivative work
"Is derived from John Butterworth & Xeno Kovah'’s ‘Advanced Intel x86: BIOS and SMM’ class posted at http://opensecuritytraining.info/IntroBIOS.html” 2

System
Management Mode (SMM)

God Mode Activate

Long Mode

CSL=1 SMI#
64-bit Compatibility
Mode Mode RSM
CSL=0
CS1=0
EFERLME=], CRAPAE=1| | CROPG=0
then CROPG=1 then EFERLME=0 :
o Batteries Not
RSM SMI# Included!
—)

EFLACS.VM=0

Reset

Protected
Mode
J EFLAGS VM=1
A
SMI# RSM . ,
© CROPE=] CRO.PE=0 Reset .~
Reset
System ’R;I'\V » SMI
Management Mod
Mode wiode ¢ RSM
/. Reset .- 513-206.205

Figure 1-6. Operating Modes of the AMD64 Architecture

From http://support.amd.com/us/Processor TechDocs/24593.pdf ,

System Management Mode (SMM)
Overview

Most privileged x86 processor operating mode
Runs transparent to the operating system

When the processor enters SMM, all other running tasks
are suspended

SMM can be invoked only by a System Management
Interrupt (SMI) and exited only by the RSM (resume)
Instruction

Intended use is to provide an isolated operating
environment for

— Power/Battery management

— Controlling system hardware

— Running proprietary OEM code

— etc. (anything that should run privileged and uninterrupted)

System Management Mode (SMM)
Overview

The code that executes in SMM (called the SMI handler) is
instantiated from the BIOS flash

Protecting SMM is a matter of protecting both the active

(running) SMRAM address space but also protecting the flash
chip from which it is derived

— Protect itself (SMBASE (location), SMRAM Permissions)

— Write-Protect Flash

So far in our research, only about 5% of SMRAM
configurations were directly unlocked and vulnerable
to overwrite

However, since > 50% of the BIOS flash chips we've seen are
vulnerable, that means > 50% of SMRAM will follow suit

System Management Interrupt (SMI)

SMM can only be invoked by signaling a System
Management Interrupt (SMI)

SMI’s can be received via the SMI# pin on the processor
or through the APIC bus

SMI’'s cannot be masked like normal interrupts (e.g. with
the “cli” instruction, or clearing the IF bit in EFLAGS)

SMl’'s are independent from the normal processor
interrupt and exception-handling mechanisms

SMI’s take precedence over non-maskable and
maskable interrupts
— Including debug exceptions and external interrupts

If a SMI and NMI occur at the same time, only the SMI
will be handled

Causes of SMI# and SCI (Sheet 1 of 2)

Cause SCI | SMI | Additional Enables Where Reported
PME= Yes Yes PME_EN=1 PME_STS a u S e S O
PME_BO (Internal, Bus O, -
PME-Capable Agents) Yes |Yes |PME_BO_EN=1 PME_BO_STS s
_— PCI_EXP_EN=T Just an example, your ICH/PCH will list
PCI Express™ PME Messages Yes Yes PCI_EXP_STS
(Not enabled for SMI)
. 0T e Bl them for your system
PCI Ex Hot Plug M v v - - HOT_P T
CI Express Hot Plug Message | Yes es (Not enabled for SMI) OT_PLUG_STS
Power Button Press Yes Yes PWREBTN_EN=1 PWRBTN_STS
0 3 rr——T Causes of SMI# and SCI (Sheet 2 of 2)
ower Button Override (Note |y [no | None PRBTNOR_STS
7) Cause SCI | SMI | Additional Enables Where Reported
RTC Alarm Yes Yes RTC_EN=1 RTC_STS TCO SMI — Write attempted o vos B10SWP=1 BI0SWR STS
Ring Indicate Yes Yes RI_EN=1 RI_STS to BIOS -
USB=1 wakes Yes Yes USB1_EN=1 USB1_STS BIOS_RLS written to Yes No GBL_EN=1 GBL_STS
USB=2 wakes Yes Yes USB2_EN=1 USB2_STS GBL_RLS written to No Yes BIOS_EN=1 BIOS_STS
USB=3 wakes Yes Yes USB3_EN=1 USB3_STS Write to B2h register No Yes APMC_EN =1 APM_STS
USB=4 wakes Yes Yes USB4_EN=1 USB4_STS Periodic timer expires No Yes PERIODIC_EN=1 PERIODIC_STS
USB=35 wakes Yes Yes USB5_EN=1 USB5_STS 64 ms timer expires No Yes SWSMI_TMR_EN=1 SWSMI_TMR_STS
USB=6 wakes Yes |Ves |USB6_EN=1 USB6_STS gzgzgfévﬁf Legacy No |ves |LEGACY USB2_EN =1 |LEGACY UsB2_STS
THRM= pin active Yes Yes THRM_EN=1 THRM_STS - 3 I -
Enhanced USB Intel Specific
No Yes INTEL_USB2_EN =1 INTEL_USB2_STS
,;c:g Timer overflow (.34 |yoo lves | TMROF_EN=1 TMROF_STS Event - -
UHCI USB Legacy logic No |Yes |LEGACY_USB_EN=1 |LEGACY_USB_STS
GPI[x]_Route=10
(scI) N Serial IRQ SMI reported No Yes none SERIRQ_SMI_STS
Any GPI Yes Yes GPI[x]_Route=01 GPI[x]_STS Devi . h
(SMI) GPEO_STS aj;’;:;’;‘:'i‘t'?znm:“ No |ves |[none DEVTRAP_STS
GPEO[x]_EN=1 9
- — SMB_SMI_EN
TCO SCI Logic VYes No TCOSCI_EN=1 TCOSCL_STS SMBus Host Controller No Yes Host Controller SMBus host status reg.
TgoMiiI message from Yes No none MCHSCI_STS Eaabind
(6) SMBus Slave SMI message | No | Yes | none SMBUS_SMI_STS
TCO SMI Logic No Yes TCO_EN=1 TCO_STS .
SMBus SMBALERT+ signal No |Ves |none SMBUS_SMI_STS
TCO SMI — Year 2000 Rollover | No Yes none NEWCENTURY_STS active
TCO SMI — TCO TIMEROUT No Yes none TIMEOUT SMBus Host Notify message No Yes HOST_NOTIFY_INTRE | SMBUS_SMI_STS
e —— received N HOST_NOTIFY_STS
- writes to
. No Yes none 0S_TCO_SMI :
TCO_DAT_IN register ls\;ﬁess microcontroller 62h/ No Yes MCSMI_EN MCSMI_STS
TCO SMI — Message from
(G)MCH No |Yes [none MCHSMI_STS SLP_EN bit written to 1 No |Yes |SMI_ON_SLP_EN=1 |SMI_ON_SLP_EN_STS
TCO SMI — NMI occurred (and . . USB2_EN=1, .
No Yes NMI2SMI_EN=1 NMI2SMI_STS USB Per-Port Registers Write . USB2_STS, Write
NMIs mapped to SMI) Enable bit changes to 1. o Yos \aﬂt:'l::_lEnable_SMI_En Enable Status
TCO SMI — INTRUDER = signal _
goes active No |Ves |INTRD_SEL~10 INTRD_DET Write attempted to BIOS No |Yes |BIOSWPD =0 BIOSWR_STS
8 _ i M
TCO SMI Change of the No Ves BC.LE=1 BIOSWR_STS GPIO Lockdown Enable bit No Yes GPIO_UNLOCK_SMI_E | GPIO_UNLOCK_SMI_S

BIOSWP bit from 0 to 1

changes from 1" to '0".

N=1

TS

Generating SMI: APM

Fixed I/0 Ranges Decoded by Intel® ICH9 (Sheet 2 of 2)

I/0
Address

Read Target

Write Target

Internal Unit

84h-86h

DMA Controller

DMA Controller and LPC or
PCI

DMA

87h

DMA_Contzolles

DMA Contenllar

DMA

B2h-B3h

———

Power Management

Power Management

Power
Management

e

This is applicable to systems that support Advanced

Power Management (most do these days)
Fixed I/O range, so it cannot be relocated

Check your I/0O Controller Hub datasheet to verify its

supported

Writes to 0xB3 do not trigger an SMI#, only the write to

OxB2

0xB3 can be used to pass information

Advanced Power Management
(APM)

13.8.2 APM I/0 Decode

Table 13-10 shows the I/O registers associated with APM support. This register space is
enabled in the PCI Device 31: Function 0 space (APMDEC_EN), and cannot be moved
(fixed I/0O location).

Table 13-10. APM Register Map

Address | Mnemonic Register Name Default Type
B2h APM_CNT | Advanced Power Management Control Port 00h R/W
B3h APM_STS | Advanced Power Management Status Port 00h R/W

APM_CNT (0xB2) is the control register
APM_STS (0xB3) is the status register
Located in I/O Address space

Registers are R/W

Note: APM != ACPI, but even on other systems which
use ACPI 2.0, this still triggers an SMI#

— The PCH datasheets (up to 8-series) also still list these under
the fixed IO address

10

I/O Address:
Default Value:
Lockable:
Power Well:

APM_CNT—Advanced Power Management Control Port Register

B2h Attribute: R/W

00h Size: 8-bit

No Usage: Legacy Only
Core

Bit

Description

7:0

APM _CNT

Used to pass an APM command between the OS and the SMI handler. Writes to this
port not only store data in the APMC register, but also generates an SMI# when the
APMC_EN bit is set.

&

APM_STS

I/0O Address:
Default Value:
Lockable:
Power Well;

APM_STS—Advanced Power Management Status Port Register

B3h Attribute: R/W
00h Size: 8-bit

No Usage: Legacy Only
Core

Bit

Description

7:0

Used to pass data between the OS and the SMI handler. Basically, this is a scratchpad
register and is not affected by any other register or function (other than a PCI reset).

« Writing a byte to port 0xB2 will trigger an SMI#

* Writing to OxB3 does NOT trigger SMI#

« (Can be used to pass information to the SMI handler.

« Control flow through the SMI handler can be determined by the

values in ports B2 & B3h

« Usage: Could tell the SMI handler to measure Hypervisor memory,

or initiate a BIOS update

11

Examples

Generates SMI. SMI

handler can read port 0xB2
to see that 0x12 was

OUT 0xB2, 0x12 <

passed.

Writes 0x34 to OxB3 and

MOV DX, 0x1234 | —0x12to OxB2 all in one
OUT 0xB2, DX shot (Generating SMI).

Writes 0x34 to OxB3 and

OUT 0xB3, 0x34 then writes 0x12 to 0xB2.
OUT 0xB2, 0x12 SMI is triggered only on the

A

write to OxB2.

Generating SMI via APIC

Table 10-6. Local APIC Register Address Map Supported by x2APIC (Contd.)

MSR Address MMIO Offset . MSR R/W

(X2APIC mode) (XAPIC mode) Register Name Semantics | comments

830H4 300H and 310H Interrupt Command Register | Read/write See Figure 10-28 for reserved bits

(ICR)
63 32
Destination Field
' .
 We've not yet had time to
31 2019181716 151413121110 8 7 0
Reserved Vector

Destination Shorthand
00: No Shorthand

01: Self

10: All Including Self

11: All Excluding Self

‘:] Reserved

Address: 830H (63 - 0)

Value after Reset: OH

Level
0 = De-assert
1 = Assert

0: Edge
1: Level

Delivery Mode
000: Fixed

100: NMI
101: INIT
110: Start Up
111: Reserved

Destination Mode
0: Physical
1: Logical

Trigger Mode

play with this

Should be able to generate
SMI by programming the
Interrupt Command
Register in the APIC

Architecture (and APIC
type) dependent

There is also a Self IPI
register

13

“Corollary” SMI# generation

9.1.34 SWSMI—Software SMI

B/D/F/Type: 0/2/0/PCI
Address Offset: EO-E1lh
Default Value: 0000h
Access: R/W
Size: 16 bits
Bit Access Default | oor/pwr Description
Value
15:8 R/W 00h Core Software Scratch Bits (SWSB):
7:1 R/W 00h Core Software Flag (SWI_:_): This field is u.sed .to .indicate caller
< o s well as peturn result.

GMCH Software SMI Event (GSSMIE): When Soo
< 0 R/W 0b Core bit will trigger an SMI. Software must write a 0 to clear >
this bit.

« Looking through the datasheets there are various (too
many to show) register/bit-combinations that will also
generate an SMI

« John called this a “corollary” SMI#. The SMI# is
correlated with software is setting a register bit

10 Space

SMI invocation example

— o

(= Bel A o o] o] vl o] 4| €D

| 10 Space Base = 00B2 |
0 0100 0302 0504 0706 0908 0BOA obocC 0F0E
00 1| 0DOD FFFF 0DOD FFFF 0DOD FFFF 4040
10 FFFF 0000 0000 0000 0000 0000 0000 0000
20 FFFF FFFF FFFF FFFF FFFF FFFF 0EQE FFFF
30 FFFF FFFF FFFF FFFF FFFF FFFF FFFF 0000
40 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
50 FFFF FFFF FFFF FFFF FAAT EEEE FFFF FFFF
60 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
70 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
80 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
a0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
A0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
BO FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
Cco FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
DO FFFF FFFF FFFF FFFF FAAT EEEE FFFF FFFF
EO FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FO FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

Hardware

Open a port IO window in
RW-E at address 0xB2

Type in the number 1 and

hit enter

» | choose 1 because | know it
to be a ‘safe’ value to enter

Notice anything?
* (You’re not supposed to)

The system just
transitioned into SMM,
executed code, and then
exited SMM

15

SMI invocation counter

So we’ve seen that there are a lot of events that can generate
SMI and we’'ve generated some on our own as well

One logical question is: how frequently are these generated?
As always, the answer is “it depends”

On a system like a laptop, SMM will likely be called frequently
to check the battery/power status
Should be an SMI# in that case

But on a desktop it may be called much less frequently

SMI counter (MSR)

34H 52 MSR_SMI_COUNT

Core

SMI Counter (R/0)

31:0

SMI Count (R/0)
Running count of SMI events since last RESET.

63:32

Reserved.

Nehalem (Core i series & Xeon) and later architectures only!

* And as if answering my wishes for some way to track how
frequently SMM is entered, | found this in Intel's Software
Programming Guide (Chapter 35, MSRs)

« It's only available on Nehalem and later processor families (new

stuff)

* Trying to read this will crash any system that doesn’t support it
» | hope you read this before trying ;)

From Intel Vol. 3. Ch. "Model Specific Registers (MSRs)"

Periodic SMI#

GEN_PMCON_1—General PM Configuration 1 Register
(PM—D31:F0)

Offset Address: AOh Attribute: R/W, RO, R/WO

Default Value: 0000h Size: 16-bit

Lockable: No Usage: ACPI, Legacy
Power Well: Core

Periodic SMI# Rate Select (PER_SMI_SEL) — R/W. Set by software to control
the rate at which periodic SMI# is generated.

00 = 64 seconds
01 = 32 seconds
10 = 16 seconds
11 = 8 seconds

1:0

More as a side note (but related to the SMI counter), SMI#
can be configured to fire periodically

This way it can be guaranteed that SMI will be generated at
least once every 8, 16, 32, or 64 seconds

This register is R/W and resides on the LPC bus (D31:F0,
offset AOh, bits 1:0)

18

13.8.3.8

Note:

SMI_EN-—SMI Control and Enable Register

I/O Address: PMBASE + 30h Attribute: R/W, R/WO, WO
Default Value: 00000002h Size: 32 bit

Lockable: No Usage: ACPI or Legacy
Power Well: Core

This register is symmetrical to the SMI status register.

Bit Description

31:28 | Reserved

GPIO_UNLOCK_SMI_EN—R/WO. Setting this bit will cause the Intel® PCH to
generate an SMI# when the GPIO_UNLOCK_SMI_STS bit is set in the SMI_STS
register.

Once written to 1, this bit can only be cleared by PLTRST#.

27

26:19 | Reserved

INTEL_USB2_EN—R/W.
18 0 = Disable
1 = Enables Intel-Specific USB2 SMI logic to cause SMI#.

LEGACY_USB2_EN—R/W.
17 0 = Disable
1 = Enables legacy USB2 logic to cause SMI#.

16:15 | Reserved

PERIODIC_EN—R/W.
14 0 = Disable.

34h, bit 14) is set in the SMI_STS register (PMBASE + 34h).

1 = Enables the PCH to generate an SMI# when the PERIODIC_STS bit (PMBASE +

19

From Intel Vol. 2

Reversing tip: searching for SMI
communication bvte patterns

OUT—Output to Port

Opcode* Instruction Op/ 64-Bit
En Mode
OUT imm8&, AL I Valid
OUT imm8, AX I Valid
OUT imm8, EAX I Valid
OUT DX, AL NP Valid
OUT DX, AX NP Valid
OUT DX, EAX NP Valid

Compat/
Leg Mode

Valid
Valid
Valid

Valid
Valid
Valid

Description

Output byte in AL to I/0 port address imm8.
Output word in AX to I/0 port address imm&.

Output doubleword in EAX to I/0 port address
imm8.

Output byte in AL to I/O port address in DX.
Output word in AX to I/0 port address in DX.

Output doubleword in EAX to I/0 port address
in DX.

* You can search for instances where a program is
communicating with SMM via port 10 by searching for byte

patterns like those above

» To locate triggering of SMI via port 0xB2, you can search for
the bytes “E6 B2” and "E7 B2” in IDA Pro

« Single byte searches for EE and EF yield many false-positives so
analyze the code before it to ensure that the DX register contains B2

* You can also script IDA to create IDB files for all binaries in a
folder, and then search within those binaries for “out 0B2h,”

20

SMI byte patterns example

—

—
66 E7 B2 out 0B2h, ax s Advanced Power Management Control Port ““\\\
; generates SHI interrupt if APMC_EN bit is set
E6 B2 out 8B2h, al ; Advanced Power Management Control Port
; generates SHI interrupt if APMC_EN bit is fgs/

« Searching for instances of “E6 B2” and
“E7 B2” in IDA will yield a list of

Asmi out 0B2h, al
R e examples like that on the left
sub_3D1B99 out 0B2h, al
SMIi out 0B2h, al
SNDI out 0B2h, al . .
e el I Most |m_portantly, IDA provides an
Fub-3DORC e interesting clue here to a problem that
b 30310 o o o we’ll be covering shortly...
db 0EGh ; . . .
SMIL0:CY .« wma |+ And is actually the only reason this slide

IS included

21

Entering SMM

When receiving an SMI, the processor waits for all instructions
to complete and stores to complete
SMI interrupts are handled on an architecturally defined

“interruptible” point in program execution
— Like an instruction boundary:

| XOR EAX, EAX | __ Architecturally “interruotible” boint
ADD EAX, 1 rchitecturally “interruptible™ poin

Processor saves the context in SMRAM and begins executing
the SMI Handler

In a multi-core processor, no SMI handler code is executed
until all cores have performed the above and entered SMM

From Intel Vol. 3. Ch. "System Management Mode"

Entering SMM due to |O

Table 34-8. 1/0 Instruction Restart Field Values

Value of Flag After Value of Flag When Action of Processor When Exiting SMM
Entry to SMM Exiting SMM

OOH OOH Does not re-execute trapped I/0 instruction.
OOH FFH Re-executes trapped I/0 instruction.

 |O Instruction restart field is located in the state save area in
SMRAM
— SMBASE + 8000 + 7F00h

« If an IO instruction to a device triggers an SMI, the SMI
handler has the option of re-executing that instruction upon
returning from SMM

— Example: If a device is asleep, port IO to it may generate SMI#. The
SMI handler can then wake up the device and re-execute the instruction
that generated the original SMI#

From Intel Vol. 2

Exiting SMM: RSM

RSM—Resume from System Management Mode

Opcode* Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF AA RSM NP Invalid Valid Resume operation of interrupted program.

The only way to exit SMM is through the RSM instruction

— Or system reset/shut down

Returns control to the application program or operating-system
procedure that was interrupted by the SMI

The processor’s state is restored from the save state area within
SMRAM. If the processor detects invalid state information during
state restoration, it enters the shutdown state.

The operating mode the processor was in at the time of the SMI is
restored.

RSM can only be executed from within SMM
— So if you see this, you are debugging the SMRAM code
— RSM multi-byte opcode is: 0xOF OxAA

Executing RSM while not in SMRAM generates an invalid opcode
exception

“Performance Implications of System
Management Mode”

 Here’s a good paper which pushes back against all the
academic researchers who act like they can just implement all
their security features in SMM

e http://web.cecs.pdx.edu/~karavan/research/
SMM _IISWC_preprint.pdf

Kernel Compilation Performance Degradation:
Linux Virtualized Guest on Xen
12.0% 10.8%
§ 10.0%
L1~}
=
B 8.0%
o
o 6.0% 2.2%
2
E 4.0%
:E- 2.5%
S 2.0% 1.1%
0.0% 0.4% 0.6%
0.0%
0 1x1.43ms 1x5ms 1x10ms 1x20ms 1x50ms 1x100ms
SMis per second

Figure 6: Kernel Compilation Performance for Linux/Xen

“Performance Implications of System
Management Mode” 2

User time billing on
2.6.32 kernel drops 9%

SPECTRE Heap HyperSentry of user time.
Spray/Overflow
checks (25-32ms) UT3 Game: 11% frames
SICE context BIOSBITS SMI <30 FPS
Timer switch time Latency Guideline HyperCheck
interrupts (67 usS) (150 uS) 10% CPU cycles
perturbed |) " unavailable to host
- 0 UT3 Game: 6% software
Micraneconds \ W , frames <30 FPS l
L
S S T o — — .
0 5,10 15 20 25 30 35 40 45 50 55 60 €5 70 75 EO BS 90 95 100
USB / SMI Duration {milliseconds)
Speaker User time billing on 2% CPU cycles
Warnings 2.6.32 kernel drops unavailable to
2% of user time. host software
SPECTRE :
Linux Rootkit Youtube Audio
Detection Garbled

SHA1 Hash Xen Code SPECTRE Windows
(HyperSentry) Rootkit Detection

Figure 8: SMM Preemption Effects, one SMI per second

