Advanced x86:

BIOS and System Management Mode Internals
PCI

Xeno Kovah && Corey Kallenberg
LegbaCore, LLC

8

LEGBACORE

WE DO DIGITAL VOODOO

All materials are licensed under a Creative

Commons “Share Alike” license.
http://creativecommons.org/licenses/by-sa/3.0/

You are free:

@ to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

®

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

© ®

Attribution condition: You must indicate that derivative work
"Is derived from John Butterworth & Xeno Kovah'’s ‘Advanced Intel x86: BIOS and SMM’ class posted at http://opensecuritytraining.info/IntroBIOS.html” 2

PCIl (and PCIl Express)

All your base. base. base...

all your base address registers are
belong to PCI

PCl note:

 We're not really going to care about low level PCI
protocol details

 We're just going to care about the way that it’s
exposed to the BIOS, so that we can understand
the BIOS’s view of the world, and therefore
interpret its actions accordingly

* |f you care about the physical level details, you
need to go out and get a big ol’ book (like the full
version of this
https://www.mindshare.com/files/ebooks/PCI
%20Express%20System%20Architecture.pdf)

PCI

Peripheral Component Interconnect (PCI)
— Also called Compatible PCI

It's a bus protocol developed by Intel around 1993

Purpose is to attach/interconnect local hardware devices to a
computer
PCl is integrated into the chipset, forming a “backbone’
— Holds true for both Intel and AMD-based systems
— Logically speaking, the Chipset is a PCl System
32-bit bus with multiplexed address and data lines
— Supports 64-bit by performing two 32-bit reads
PCIl component interface is processor independent

— The CPU/BIOS reads and writes to the configuration space to configure
much of the system

Intel's MCH/ICH chipsets implement PCI Local Bus Protocol 2.3

PCH chipsets implement PCI Express protocol (v. 2.0)
— Still supports PCI 2.3

PCI standards are currently maintained and defined by the PCI /SIG:

— http://www.pcisig.com/specifications/

Generic PCI Topology:
Buses, Devices, and Functions

Up to 256 Buses
Each Bus can have up

to 32 devices attached PCI Dev 0 PCl Dev 2

Each Device can extend

up to 8 Functions

B Bus X

Buses are I

interconnected by Bridge

Bridges Bus Y

Multiple bridges can be

connect ed through a PCI Dev 0 PCI Dev 1 PCl-PC

bridge interface and are Bridge

enumerated | — | [Busz
PCl Dev 0, PCI Dev 0, PCI Dev 0, PCI Dev 0,
Function0 Function1 Function 0 Function 3

PCI| Address Spaces

PCI implements three address spaces:

1) PCI Configuration Space (up to 256 Bytes)

— Required/standard. Defined in the specifications. Every PCI device has
a configuration space.

2) PClI Memory-mapped space

— Optional. Dependent on whether the device manufacturer needs to map
system memory to the PCI device

3) PCI I/O-mapped space

— Optional. Same as PCl Memory Space

PCIl Express (PCle)

Peripheral Component Interconnect Express (PCle)
Developed around 2004 (not just by Intel but a collective)
Packet-based transaction protocol

Very different from PCI at the hardware level

For software configuration purposes, it is mostly the same
— Adds an extended configuration space of 4KB

Provides backwards compatibility for Compatible PCI

Adds 4KB of PCI Express Extended Capabilities
registers

— Located in either the Configuration space starting at offset 256
(immediately following the Compatible PCI configuration space)

— Or located at a MMIO location specified in the Root Complex
Register Block (RCRB) @

PCIl Express (PCle) Address Spaces

PCle implements four address spaces:

1) PCle Configuration Space (up to 4KBytes)

— Required/standard. Defined in the specifications. Every PCle device has
its configuration space mapped to memory.

— Also provides the first 256 bytes of compatible PCl (memory-mapped
and via port 1O for backwards compatibility)

2) PCle Memory-mapped space

— Optional. Dependent on whether the device manufacturer needs to map
system memory to the PCI device

3) PCle I/0O-mapped space
— Optional. Same as PCI Memory Space

4) PCle Message Space

— For low-level protocol messaging/interrupts. We don’t get into this in this
class

Generic PCle Topology:

CPU

PCl Express | PCl Express
Endpoint
Root
Complex Memory
PCI Express to PCI Express
PCI/PCI-X Bridge
PCI Express
PCI/PCI-X Switch
PCI L PCI
Express PCI PCI Express
Express Express
Legacy Legacy PCl Express PCI Express
Endpoint Endpoint Endpoint Endpoint

BRIDGE?! SWITCH?!
IT’S ANETWORK!
A NETWORK | TELL YOU!

The Root Complex
connects the processor to
the system memory and
components

Same number of devices
supported as PCI

Up to 256 PCle buses
Up to 32 PCle devices
Up to 8 Functions

Each Function can
implement up to 4 KB of
configuration space

10

Mobile 4-Series Chipset PCle Topology

GMCH
PCl-to-PCI C)
* . Bridge ' RCRB for
P%Irzxﬁ:sss PCI Express Link representing Sgg{wgﬁgﬂz Eqress Port
¢ x16 down to x1 root PCI g (access to
Device E Device -
xpress Port (Device 0) Main Memory)
(Device 1)

RCRB for DMI
(ICH attach)

I CH |

Root Complex

. Examp|e: Mobile 4-Series Chipset datasheet

« The GMCH on the 4-Series Chipset is part of a Root Complex
that connects the CPU to the graphics devices and the 10
Controller Hub

« Contains 2 RCRBs (Root Complex Register Blocks

— Device configuration space, each is 4 KB, similar to extended
configuration space

11

Intra-System PCle Bus

PCI Configuration Window

|
|
|
|
| in /O Space
|
|
|
|

Host-PCl Express Bridge
Bus 0
Device 1

Intemal Graphics |
Configuration Registers |
Bus0 Device2

| Direct Media Interface

DRAM Controller
Interface Device

Bus0
Device 0

DM —PCl

Bridge (P2)
PBus 0

o
S S 4
|
} Direct Media Interface
|
|
|
|
: LPC Device

Bus0

——
Device 31
FenO

Mobile 4-Series Chipset datasheet

Device 30
Fen0

Chipset logical Bus O is
highlighted

Direct Media Interface(DMI)
is not PCI so from a
hardware perspective, the
Chipset is not entirely PCI

Logically, however, it is
considered to be PCl and is
configured as such

If a device (graphics card)
were to be plugged into Host-
PCI Express Bridge, it would
be on a bus other than 0

— According to documentation,
the BIOS chooses the Bus
number

12

Configuration Space Accesses

There are two ways to access the compatible PCI
configuration space registers (0 to 255)...

— Port 10 or Memory-mapped IO

...but only one way to access the extended configuration
space offered by PCI Express (255 to 4KB)

— Memory-mapped 10

Generally speaking, you will see accesses to PCI being
performed via Port I/O in a couple situations:

— When in Real Mode when accesses to 32-bit memory space is limited

« Real Mode may be reentered even after the system has transitioned to
Protected mode (up to the vendor and their implementation, flat real mode
could pull it off)

* | have only seen this done in a Legacy BIOS, never in UEFI

— Before PCIEXBAR has been configured
» Cause it enables MMIO

Outside of those situations, you’'ll probably see PCI accesses
performed via memory-mapped 1/O

But of course this is all up to the developers

Compatible PCI Configuration Space

This refers to the software generation of PCI configuration
transactions

— those generated by the CPU/BIOS

Compatible PCI provides 256 bytes of Configuration address
space to the CPU/BIOS

CPU/BIOS programs the registers contained therein to
configure the device and system parameters

Compatible PCI is configured using the port I/O address/data
pair (CONFIG_ADDRESS, CONFIG_DATA)

Two 32-bit I/O locations are used to generate configuration
transactions

— CF8h (CONFIG_ADDRESS)

— CFCh (CONFIG_DATA)

Curiously, these are never listed in the Fixed |O Address

space registers in the applicable chipset datasheets, but are
explicitly mentioned as CF8/CFC in the datasheets

/O Port CONFIG_ADDRESS (CF8h)

31 30 24 23 16 15 11 10 8 7 21 0
Reserved Bus Number Device Function Register olo
Number Number Number
t B D F Offset
Enable bit ('1' = enabled, '0' = disabled)

32 bits (GIMME BUS 0, DEVICE 31 (0x1F), Function 0, offset 0x88)
Port CF8h

Bit 31 when set, all reads and writes to CONFIG_DATA are PCI
Configuration transactions

Bits 30:24 are read-only and must return O when read

Bits 23:16 select a specific Bus in the system (up to 256 buses)
Bits 15:11 specify a Device on the given Bus (up to 32 devices)
Bits 10:8 Specify the function of a device (up to 8 devices)

Bits 7:0 Select an offset within the Configuration Space (256 bytes
max, DWORD-aligned as bits 1:0 are hard-coded 0)

Addresses are often given in B/D/F, Offset notation (also written as
B:D:F, Offset)

/0O Port CONFIG_ADLC

RESS (CF8h)

31 30 24 23 16 15 11 10 8 7 21 0
Device Function Register

Reserved Bus Number Number Number Number 010
B D F Offset

L Enable bit ('1' = enabled, '0' = disabled)

 THIS IS KEY!

« YOU MUST UNDERSTAND THIS!

16

Compatible PCI Configuration Registers

PCI Configuration Registers Header

Device Dependent Region

Last byte = FFh

00h

3Fh

256 bytes

Every PCI device

Implements this space

— PCI Express further extends
this to 4KB, we’ll cover that in a
bit

First 0x40 bytes are the

header

The remaining bytes consist
of a device dependent
region, which consists of
device-specific information
per PCl SIG documentation

PCI Configuration Registers Header

16 15

0

Device |D Vendor ID
Status Command
Class Code Revision ID
BIST Header Latency |Cache Line
Type Timer Slze

Base Address Registers

Cardbus CIS Pointer

Subsystem |D

Subsystem Vendor |D

Expanslon ROM Base Address

Reserved Capabllities
Polnter
Reserved
Interrupt Interrupt
Max_Lat Min_Gnt Pin LIne

Type 0 header, General PCI Device, PCl Spec 2.3

00h
04h
08h
0Ch

10h

14h
18h
1Ch
20h
24h
28h
2Ch
30h
34h
38h

3Ch

This is what you should
visualize when we're talking
about access to specific

“register number’/"offsets
in CONFIG_ADDRESS

18

/O Port CONFIG_DATA (CFCh)

CONFIG_DATA can be accessed in DWORD, WORD, or
BYTE configurations

Reads and Writes to CONFIG_DATA with Bit 31 in
CONFIG_ADDRESS set/enabled results in a PCI
Configuration transaction to the device specified in
CONFIG_ADDRESS

PCI spec says that if Bit 31 is not enabled, then the
transaction is forwarded out as Port I/O

Compatible PCI Configuration Space

PCI Configuration Register Header

Device Dependent Region

Last byte = FFh

00h

3Fh

Implemented in PCle too
PCI Configuration register
256 bytes

Every PCI device

Implements this space

— PCI Express further extends
this to 4KB, we’ll cover that in a
bit

First 0x40 bytes are the

header

The remaining bytes consist
of a device dependent
region, which consists of
device-specific information
per PCl SIG documentation

Compatible PCI Configuration Space

PCI Configuration Register Header

Device Dependent Region

Last byte = FFh

00h

3Fh

“Enhance header! Rotate O
degrees!”

21

Compatible PCI Configuration Space Header

(aka "configuration space all up in your face!")

31 16 15 0

Device |D Vendor ID
Status Command
Class Code Revision 1D
BIST Header Latency |Cache Line
Type Timer Slze

Base Address Registers

Cardbus CIS Pointer

Subsystem |D Subsystem Vendor |D

Expanslon ROM Base Address

Reserved Capabllities
Polnter

Reserved

Interrupt Interrupt
Max_ Lat Min_Gnt Pln Line

Type 0 header, General PCI Device, PCl Spec 2.3

00h

04h

08h

0Ch

10h

14h

18h

1Ch

20h

24h

28h

2Ch

30h

34h

38h

3Ch

Implemented in PCle too
Three header types (0-2)
Type 0 = General Device (this
is what we care about)

Type 1 = PCI-to-PCI Bridge
(rarely care)

Type 2 = CardBus Bridge (don’t
care)

Shown is Type O

Divided into 2 parts:

First 16 bytes (0-F) are

standard and defined the same
for all devices

The remaining header bytes
are optional per the vendor,
depending on what function the
device performs

22

PCI Device Identification

31 1615 0

Device ID Vendor ID 00h

Status Command 04h

Class Code Revision |D | 08h

BIST Header Latency |Cache Llne | gcp
Type Timer Slze

« Five fields (all required) can be used to identify the device and its basic
functionality

« Vendor ID identifies the manufacturer of the device
— Allocated by the PCI SIG to ensure each is unique

« Device ID identifies the particular device, set by the vendor

* Revision ID is set by the vendor, viewed as an extension to Device ID
(Intel is 8086h, AMD microcontrollers is 1022h)

« Class Code used to identify the generic functionality of the device

« Header Type identifies what type of header to expect (per the previous
slide, general, PCI bridge, CardBus bridge)
— Bit 7 being set (0x80) indicates device is a multi-function device

Type 0 header, PCl Spec 2.3

Aside: PCl Vendor/Device IDs

* You can see them even on a Windows machine that doesn’t have RWE

* Right click on Computer, select Manage

 Go to Device Manager (or just enter “Device Manager” from start menu)

* Right click on the device and select properties

e Go to “Details” tab and select “Hardware Ids”

[1]1._& IVE ATAJTATAFL LR o s
H-Z2 Keyboards
)i!, Mice and other pointing devices
- M| Monitors
~&F Network adapters
¥ Intel(R) PRO/1000 MT Network Connection
Y Ports (COM &LPT)
- Processars
~#y Sound, video and game controllers
-4 Storage controllers
- System devices
----- 18| ACPI Fixed Feature Button
----- 184 Composite Bus Enumerator
.M Direct memorv access controller

L-. Intel(R) PRO/1000 MT Network Connection
-

Property
Hardware lds -

Value

PCMNVEN_280864DEV_100FASUBSYS_075012ADEREV_N
PCHVEN_802864DEV_100F&SUBSYS_075012AD
PCMNVEN_80286&DEV_100F&CC_020000
PCHVEN_80864DEV_100F&CC_0200

Device |D Vendor ID
Status Command
Class Code Revision 1D
BIST Header Latency |Cache Line
Type Timer Slze

Base Address Registers

Cardbus CIS Pointer

Subsystem |D

Subsystem Vendor |D

Expanslon ROM Base Address

Reserved

Capabllities
Polnter

Reserved

Interrupt

Max_Lat Min_Gnt Pln

Interrupt
Line

Type 0 header

00h

04h

08h

0Ch

10h

14h

18h

1Ch

20h

24h

28h

2Ch

30h

34h

38h

3Ch

Base Address Registers (BARSs)

Base Address Registers point
to the location in the system
address space where the PCI
device will be located

— The device RAM, etc. (anything

really, per the vendor)

BARs are R/W and the BIOS
programs them to set up the
Memory Map

PCI Configuration Registers

provides space for up to 6
BARs (bytes 10h thru 27h)

— BAR[0-5]

Each BAR is 32-bits wide to
support 32-bit address space
locations

Concatenating two 32-bit BARs
provides 64-bit addressing
capability

Base Address Register for Memory Space

31 4 3 21 0
Base Address 0
Prefetchable ¢

Set to one. If there are no side effects on reads, the device
returns all bytes on reads regardless of the byte enables, and
host bridges can merge processor writes into this range without
causing errors. Bit must be set to zero otherwise.

Type

00 - Locate anywhere in 32-bit access space
01 - Reserved
10 - Locate anywhere in 64-bit access space
11 - Reserved

Memory Space Indicator

« Actual Base address is obtained by bitwise ANDing the value in bits
31:4 with FFFF_FFFOh (mask the low 4 bits)

— Actual Base Address = (BAR[x] & FFFF_FFFOh)
« Acleared Bit 0 indicates this will be located in memory address
space, otherwise |O space
« 064-Dbit accessibility is provided by programming back-to-back BARs
— (BAR[x] & FFFF_FFFOh) : (BAR[x+1] & FFFF_FFFOh)*
— Meaning BAR][X] is the upper 32 bits, BAR[x+1] is the lower 32 bits

*OSDEV: http://wiki.osdev.org/PCl

26

Base Address Register for I/O Space

31 2 1 0

Base Address 0|1

Reserved * T

I/O Space Indicator

» Actual Base address is obtained by logically ANDing the value in
bits 31:4 with FFFF_FFFOh (mask the low 4 bits)

— Actual Base Address = (Base Address[31:2] & FFFF_FFFCh)

« |fBit0is 1, then the Base Address will be an offset in the port I/O
address space

« PCI SIG recommends that devices are mapped to memory rather
than 1/O, because I/O can be fragmented

— Look at the Fixed and Relocatable 1/O ports in your friendly neighborhood
ICH (or PCH) datasheet

31

BAR Limit/Size

? T """"""""""""""
—> E000_0000h |

DMI Interface
(subtractive decode)

A Base Address is half
the information that’s
needed

We need a limit to
determine how this PCI

device will be mapped
iInto memory

How does the BIOS
determine how much

space the device needs?

4 3 21 0

Base Address = (E000_0000h & FFFF_FFFOh)

31

BAR Space Utilization (Size)

4 3 2 1

0

1111 1111 1111 1111 11171 17111 1111 1111
L1

31

Example
4 3 2 1

0

~— return =
| |

1111 1111 1111 OOOO OOOO OOOO 0000 0000
|

|

FFFF_FFFFh

FFFO_0000h

CPU/BIOS can write all 1’s to the BAR to determine how much
address space the device needs by writing all 1’s to the BAR

— Pro tip: save the original value first! ;)

Device will return O’s in all "I don'’t care if they're set" bits

— Or put another way, returns 1s in all the "don't set" bits

The device returns the don'’t care bits into the BAR thus telling you

how much address space the device needs

Ex 1: Determine Device Address Space Size

RW - Read & Write Utility v1.4.9.7
Access Specific Wind t

ﬁﬁﬂl%mwﬂm‘\\N

=l Yl (6 &

dword| 2

32hbil

word
16bit

Memory
SE W byte

g Address = F1BFFS00

dword| 2

32bil

word
16bit

byte
8bit

0
00
10
20

IBus 03, Device 01, Function 00 - Ricoh Company, Ltd. IEEE 1394 (OpenHCI 0 00 01 02 03 04 05 06 07 08 09 0A 0B OC
— 00 10 00 O1 00 00D OD OO 00D FF OF 00 OO0 3F
03020100 07060504 il il ki 10 3F 00 00 0O 00 00 OO 80 44 05 04 04 34

08 80 02100106 0C001004 008' 20 22 A0 00 FO OO CO 4F 47 E1 D9 AA 05 00

Slilonls Shlllios — 30 00 00 OO0 OO OO 40 BS DD 00O OO 00 00 OO0

???????? 9???9?PE ???????? 9??3 40 00 00 00O OO OO OO OO OO OO OO OO 00 OO

50 00 00 CE 00O OO0 OO0 CE OO OO OO 00 00 OO

60 00 00 00 OO OO0 DO 86 DD OC 00 01 00 OO0

70 00 OO OO OO OO OO OO OO OO OO OO OO OO

The IEEE 1394 FireWire device on the E6400 has a BAR
located at F1BFF800h

— Bit 0 =0, so it's mapped to memory

— Bits 2:1 = 00 so it's 32-bit address space (below 4GB)

— Bit4 =0, so it’'s not prefetchable

We can open up a memory window at F1BFF800h and see
the device

il &

0D
00
39
00
00
00
00
00

00

0E
00
33
00
00
00
00
00

00

0F
00
31
00
00
00
00
00

30

Ex 1: Determine Device Address Space Size

RW - Read & Write Utility v1.4.9.7
Access Specific Window Help

CPCPEET] P

= YR L]

= 2F EREEESE 7.
i byte | word| dword| 2

@] ﬂ 8bit| 16bit| 32bil n_ Q Address = F1BFF800

[BusU&DeviceD1,Func1i0nElEl-RicohCompany,Ltd.IEEE13EI4(OpenHCI)Contr vJ 01 02 03 04 05 06 07 08 09 OA 0B OC 0D OE OF

00 01 00 OO OO0 OO OD FF OF OO OO 3F OO 00 OO

16 03020100 07060504 0BOADS08 0FOEODOC 00 00 00 00 0D 00 80 44 0S5 04 04 34 39 33 31
00 1822440 02100106 0C001004 00804010 AD 00 FO 00 CO 4F 47 E1 D9 AA 05 00 00 00 0O
10 @ 00000000 00000000 00000000 00 00 00 00 40 BS DD 00 00 0O 00 OO 0O 0O OO
20 00000000 00000000 00000000 02331028 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
S50 00 00 CE OO OO0 OO CE OO OO OO OO OO OO OO 00 OO

60 00 00 00 OO OO DO 86 DD OC 00 01 OO OO OO o00 OO0

70 00 00 OO0 OO OO OO OO OO OO OO OO OO OO OO 00 OO

« We write all 1’s to it just like the BIOS does to determine the size of
the FireWire device

« When you try this for yourself, try to pick a device that you know is
not actively being used. ;)
— These things tend to not fail gracefully in my experience

— Butit's nothing a reboot shouldn’t fix (but still, you have been warned, there
is no guarantee the vendor has protected itself adequately from erroneous
writes)

— Check the devices datasheet you might find something interesting -

Ex 1: Determine Device Address Space Size

RW - Read & Write Utility v1.4.9.7
Access Specific Window Help

CPEPEEFT FSEr

PCI

S=1E

word
16bit

1

dword
32bit

3 . L]
= Bl A A A e e]] 4 | €O
2 N T

[Eius 03, Device 01, Function 00 - Ricoh Company:, Ltd. IEEE 1394 (OpenHCl

16
00
10
20

03020100 07060504
(L3 80 02100106
@ 00000000

0BOADS08
0C001004

0FO0l
008

The device returns the value FFFF_F800h to the BAR

— These are the don'’t care bits which tell us the range of the device memory

— ~(FFFF_F800) = 7FFh, so the device’s mapped address range in memory is
F1BF _F800h - (F1BF_F800 + 7FFh)

Also notice that when we change the value in the BAR, the device

is no longer mapped to F1BF_F800h (as evident by all OxFF’s)

32

Ex 1: Determine Device Address Space Size

RW - Read & Write Utility v1.4.9.7
Access Specific Window Help

index index - SPDY fnF @ Al w=E
o il = i 2 2 R I) R

i b d| dword| 2

s H L@ﬂ abl Teb oo | Q
[] bin|)i (| bute| word| dword| & ﬂ e mrrr——

gl 8l 5] &) i 2 i « Address = F1BFFF80

[Busﬂ3,DeviceD1,FunctionUD-RicohCompany,Ltd.IEEE1394(OpenHCI‘ 0O 00 01 02 03 04 05 06 07 08 09 OA 0B OC OD OE OF

00 00 OO OO OO OO OO OO OO OO OO OO OO OO OO OO0 OO

16 03020100 07060504 0B0A0908 ORI 10 00 00 OO0 OO0 OO OO OO OO OO OO OO OO OO OO OO0 OO0

00 08321180 02100106 0C001004 008‘ 20 00 00 OO OO OO OO OO OO OO OO OO OO OO OO OO0 OO

10 AAARTLLL Hpanne Hupane 99071 30 00 00 00 00 00O 00 OO 0O 00O 0O 00 0O 00 00 0O OO

20 Sl Lol Sl 023 40 00 00 00O OO OO OO OO OO OO OO OO OO OO OO OO OO

50 00 00 OO0 OO OO OO OO OO OO OO OO OO OO OO OO OO

60 00 00 OO0 OO OO OO OO OO OO OO OO OO OO OO OO0 OO0

J : 70 00 00 Q0O OO0 00 OO OO OO OO OO0 OO OO OO OO 00 00

* SO Iet S Ve rlfy Ou r mapped 80 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
ra n g e : 90 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

A0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

) 1 BO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

* We ” VIeW memory add ress Cc0O FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

F1BF_FF80h Wthh iS 80h DO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

EO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

byteS before our upper limit FO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
address as denoted by the red ===
line

33

Ex 1: Determine Device Address Space Size

RW - Read & Write Utility v1.4.9.7
Access Specific Window Help

EFCPEERT FEETT

g - ey oI o
B e) Bl A2] N] oe v o 1 | @)
o) byte | word| dword| 2
@ : @ gbi | 16bi] 3200 1 Q Address = F1BFFF80
[Bus 03, Device 01, Function 00 - Ricoh Company, Ltd. IEEE 1394 (OpenHC|| 0 00 01 02 03 04 05 06 07 08 09 OA 0B 0OC 0D OE OF
00 00 OO0 OO OO OO OO OO OO OO OO OO OO OO OO OO0 OO
16 03020100 07060504 0B0A0908 0F0 10 00 00 00 OO OO OO OO OO OO OO OO OO OO OO OO OO
00 s & 02100106 0C001004 008 20 00 00 OO0 OO OO0 OO OO OO OO OO OO OO OO OO OO OO
10 00000000 00000000 000 30 00 00O OO OO OO OO OO OO OO OO OO OO OO OO 0O OO0
20 00000000 00000000 00000000 023/ 40 00 00 00 00 0O 00 00 00 0O OO OO 0O 0O 0O 0O OO
S50 00 00 OO OO OO OO OO OO OO OO OO OO OO OO OO OO
60 00 00 OO0 OO0 OO0 OO OO OO OO OO OO OO OO OO OO OO
) W h e n We re S et th e B A R b a C k 70 00 00 00 0O OO OO OO OO OO OO0 OO OO OO OO OO OO0
) .. 80 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
to its Orlglnal value 9 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

FIBF F 8 O O h). the d . . A0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
(—) J € aevice Is BO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
CO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

(re)mapped back to memory DO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

EO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

« And it shows our upper limit FO FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

measurement was correct Hardvare

« It's good to see for yourself
how this world works

34

Ex 2: Relocate the PCI Device Mapping

RW - Read & Write Utility v1.4.9.7
Access Specific Window Help

| index ﬂ g index | %l %' S|U1 . FD’ -£1| [
spacel [index nhu 1r1 S Memory

: 0| g byt d| dword] 2

— : FEEE R
binf] £ @ . byte | word| dword Q

LE]@ (ip] 8bit] 16biY| 32bi Address = F1BFF800

[Eius 03, Device 01, Function 00 - Ricoh Company, Ltd. IEEE 1394 (OpenHCI | 0 09 0A 0B O 0E OF

00 OF 00 00 3F 00 O8N 00
16 03020100 07060504 0BOAOD908 OFOl 05 04 04 34 39 33
00 (13 2l 02100106 0C001004 008 DO AA 05 00 00 00 00
10 @ 00000000 00000000 000 00 00 00 00 00 00 00 OO
20 00000000 00000000 00000000 023

o0 00 00 00 00 00 00 0g
o0 00 00 00 00 00 0040
00 01 00 00 0OQ~00 OO0
00 00 0O o0 00 00 00

~n -~ ~m — -~ -~ —— ~— ~ — -~ ~— ~

* S0 as you noticed, when we changed the value in the BAR,
the device was no longer mapped to memory

« We wrote a value of all 1’s to it which is an invalid base
address in itself (but is designed to return the mask)

« So what if we write a valid* address for the device to be
mapped to?

*Qverlapping ranges are not checked for, “valid” means proceed at your own risk 35

Ex 2: Relocate the PCI Device Mapping

RW - Read & Write Utility v1.4.9.7
Access Specific Window Help

- indez index [‘If =0 SPDY nE @ | e
(spacel| (indexl @ [smbuslf [MSF e | Memory

r byte | word
@ pa w0l G i P H Bbill 16bit

dword
32bit

i@l

[BusUS,DeviceULFunc’(ionUU-RicohCompany,Ltd.IEEE1394(OpenHCI: 40 00 01 02 03 04 05 06 07 08 09 0OA OB 0OC 0D OE OF

). byte | word| dword] 2 | 00 =
.@. & & gbit | 16bit| 32bit| A Q

00 10 00 01 00 OO OO OO OO FF OF OO OO 3F OO 00 OO0
= i hbiioninie e ek 10 3F 00 00 OO OO OO OO 80 44 05 04 04 34 39 33 31
= 08321190 L DRI 008/ 20 22 A0 00 FO 00 CO 4F 47 EL D9 AA 05 00 00 00 0O
10 00000000 00000000 000l 30 00 00 OO0 OO OO0 40 BS DD OO OO OO OO OO OO OO0 OO
20 00000000 00000000 00000000 023. 40 00 00 00 00O 00 0O 0O OO OO OO OO OO 0O 0O 0O OO
S0 00 00 CE OO OO OO CE OO OO OO OO OO OO OO OO0 OO
60 00 00 OO0 OO O0O DO 86 DD OC 00O O1 OO OO OO 0O OO
70 00 OO0 OO0 OO OO OO OO OO OO OO OO OO OO OO OO0 OO

« Let's try moving this to F1BF_FO000h
— On the E6400 | checked beforehand and saw that this address space
appeared to be unused (was all OxFF’s)

« When we write F1BF_F00O0h to the BAR... the device has been
relocated.
« This is part of the way the CPU/BIOS builds the memory map
— And you can too, with sufficient permissions

— Not really a security issue, just a “how the world works” kind of example
36

Aside: Things to be aware of once you
start learning down at this level

Here's a recent ASIA CCS paper evaluating whether past work on attacks that
manipulate PCl (e.g. forcing MMIO overlap, configuration range overlap, etc) and
other low level information for a pass-through device inside virtual environments
(answer: doesn't seem like it, but they found a new attack :))

On the Feasibility of Software Attacks on Commodity Virtual Machine Monitors via
Direct Device Assignment — Pek et al.

Our exberiments showed that software patches (e.g., when the
device configuration space is emulated) and robust hardware pro-
tections can indeed prevent all previously discovered attacks. No-
netheless, we demonstrated that the proper configuration of these
protection mechanisms can be a daunting task. Unfortunately, VMMs
remain vulnerable to sophisticated attacks. In this paper, we discov-
ered and implemented an interrupt attack that leverages unexpected
hardware behaviour to circumvent all the existing protection mech-
anisms in commodity VMMs. To the best of our knowledge, this is
the first attack that exhibits such a behaviour and to date it seems
that there is no easy way to prevent it on Intel platforms.

https://www.iseclab.org/people/andrew/download/asial4.pdf

37

Command Register and Address Space Access

16 15

0

Device ID Vendor ID 00h 15 10 9 8 7 6 5 4 3 2 1 O
Status Command 04k —> Reserved
Class Code Revision [D | 08h Interrupt Disable A AAA ANAMNAA \
Fast Back-to-Back Enable —
BIST Header Latency |Cache Line |gch SERR# Enable
Type TImer Slze Reserved
10h Parity Error Response
VGA Palette Snoop
14h Memory Write and Invalidate Enable
, Special Cycles
Base Address Registers 18h Bus Master
1Ch Memory Space
IO Space
20h
., * Determine whether a PCI device will
Cardbus CIS Pointer 28 respond to I/O accesses and
Subsystem ID Subsystem Vendor D | acn Memory-Space accesses
Expanslon ROM Base Address .on ° The BIOS must set the applicable
Reserved Capabilles | ., bit(s) to 1 if the device will be
olnter
Roserved - mapped to memory and/or I/O space
Max_Lat | MinGnt | Merrupt [Tntermupt | o ¢ Turning these off/on will un/map the

device (BARSs) in the address space
38

Lab: Use RWE to gather info stored in the PCI
configuration space
RTFM notes:

RCBA—Root Complex Base Address Register
(LPCI/F—D31:F0)

Offset Address: FO-F3h Attribute: R/W

“ . .
Device 31, Function pefayit value: /00000000h Size: 32 bit

OII

If the bus isn't Bit / Description

Speciﬁed by the Intel 31:14 /éase Address (BA) — R/W. Base Address for the root complex register block decode
’ / range. This address is aligned on a 16-KB boundary.
data sheet you can

l?yf Reserved

Enable (EN) — R/W. When set, enables the range specified in BA to be claimed as the
Root Complex Register Block.

safely assume it's /

bus 0 0
/

Offset OxFO (and it’s 4 bytes big)

So now you have Bus/Device/Function/Offset = 0:1F:0:FO

(31 decimal = 0x1F), and can encode that into the
CONFIG_ADDRESS register

39

This association is

Ll s Lab: Use RWE to gather info stored in
' the PCI configuration space

SR CBA—Root Complex Base Address Register
T (LPC I/F—D31:F0)

Offset Address: FO-F3h Attribute: R/W
Default Value: 00000000h Size: 32 bit
Bit Description

Base Address (BA) — R/W. Base Address for the root complex register block decode

31:14 range. This address is aligned on a 16-KB boundary:

13:1 | Reserved

Enable (EN) — R/W. When set, enables the range specified in BA to be claimed as the
Root Complex Register Block.

0

@

« Let's find the RCRB address, since we’'ll be using it to get to
the SPI flash interface

— Refer to your datasheet if doing on your own system but it should be at
B0:D31:FO (LPC device), offset FOh

Find Root Complex Register Block @
(method 1

RW - Read & Write Utility v1.4.9.7
Access Specific Window Help

Pl = = =]
[] binf £ byte | word| dword| 2
. =l g 51 ghit | 16bit| 32bit| A
Bus 00, Device 1F, Function 00 - Intel Corporation ISA Bridge i~ Test | Summary
0 03020100 07060504 0BOA0908 0FOEQDOC DeviceAVendor ID - 0x23178086 o
Revision ID 003
00 29178086 02100107 06010003 00800000 Class Code 0060100
10 00000000 00000000 00000000 00000000 Cacheling _5 ize 0x00
20 00000000 00000000 00000000 02331028 :-natteer::,lcpi 'I';lir:er El?noe 3
30 00000000 000000ED 00000000 00000000 Interrupt Line None
40 00001001 00000080 00001081 00000010 gig; gzgggggggg
50 00000000 00000000 00000000 00000000 BAR3 000000000
60 8ASBSAS3 000000D1 808B838A oooooors || B4R et
70 00000000 00000000 00000000 00000000 BARE 0=x00000000
........ Expansion ROM 000000000
80 3C040000 007C0901 00000000 003C0C81 Subsystem ID 0x02331028
a0 00000000 00000000 00000000 00000000 GPIO0D = Not GPIO
AD 00000E20 00800239 004A1C28 40000300 || GPIOT =Input High
GPIO2 = Input Low
BO 00F00000 00010008 00000000 GPI03 = Input Low
co 00000000 00000000 GPI04 = Input High
GPIOS = Input Low
DO 0000F080 00000008 GPIOG = Input High
$) E0 9 00000004 00000000 gg:g; = :nput Eigﬂ
= t Hi
[=1) FED18001 00030F86 00000000 RPING = |:gllj' | ,.IEN N

IRCBA register holds RCRB address |

« |t serves as a base address for memory mapped BARs such as the
MCHBAR and SPIBAR (will be identified/explained as they come)

* On the example Dell E6400 with 4GB RAM, RCRB was at FED1_8000h

@ 41

Find Root Complex Register Block

Access Specific Window Help

R jf%ﬂ QDI.IIII!ET%j.
spaceml/ [in MUnwu

(method 2)

il WEc| Lo 010y —@| = |
ﬁﬂ S ush| [os

\ |0 Space Base = 0CF8 |

0
00
10
20
30
40
50

CF8h and CFCh are adjacent DWORDs
LPC (BO:F31:D0, offset FOh) is 8000F8FO0

03020100
8000FSF

i) elr) il @

CFCh
07060504/ 0BOA0908
FFFFC001 FFFFFFFF
FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF

OFOEODOC
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF

So enter 8000F8FO0 into port CF8h

=

0123456789ABCDEF
O OO0 OO00O00000000
O000000000000000
O000000000000000
OO0O00000000000000O
O000000000000000
O000000000000000

g

42

Find Root Complex Register Block @

(method 2, cont)

& 10 Space
E byte | word| dword| 2

‘ |0 Space Base = 0CF8 ’ /CFCh (o | Text |
0 03020100 07060504 0B0OA0908 0FOEODOC 0123456
00 FFFFOOFF FED18001 FFFFFFFF FFFFFFFF O OO %0l
10 FFFFFFFF FFPgAF FFFFFFFF FFFFFFFF OOo0oooootl
20 FFFFFFFF == F FFFFFFFF FFFFFFFF OoOooooootl
30 FFFFFFFF FF F FFFFFFFF FFFFFFFF Oooooooot
40 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF ooooooot
cn e e e v il i i it b B

So we have now determined that the RCRB address is FED1_8000h
— Bit 0 is just an enable bit, still a 32-bit physical address

Aside, the dword at CF8h resets itself. If you keep this |O window
open you might see PCI port IO accesses (if there are processes
running that perform this)

— | have seen this occur on Windows 8 where the vendor/device ID of one of
the PCI devices on the CPU is read every few seconds or so; | have not
determined which process(es) are doing this

43

PCl vs. PCle config space access

Compatible PCI Configuration Registers

00h

« This is your brain on PCI

PCI Configuration Registers Header

3Fh

Device Dependent Region

Last byte = FFh

PCle Configuration Space

00h

PCI Configuration Register Header * This is your brain on PCle

3Fh * (hint: the scale just shifted)

Device Dependent Region

FCh

PCle Extended Config Space
Device Dependent Region

Last byte = FFFh

PCle Extended Config Space Access

* The BIOS needs to set the PCIEXBAR register
to the location that it wants the memory
controller to start routing to PCl space

From 3-series-express-chipset-family-datasheet.pdf

Memory Map to PCI Express Device Configuration Space

FFFFFFFh FFFFFh 7FFF FFFh
Bus 255 Device 31 Function 7
PCI Express*
Extended
Configuration
Space
1FFFFFh FFFFh 1FFFh FFh B0l
Bus 1 Device 1 Function 1 Compatible
Config Space
FFFFFh 7FFFh FFFh 3Fh Cl
Bus 0 Device 0 Function 0 Compatible
Config Header
Oh
Located By PCI
Express* Base
Address

The PCI Express Enhanced Configuration Mechanism utilizes a flat memory-mapped
address space to access device configuration registers. This address space is reported
by the system firmware to the operating system. There is a register, PCIEXBAR, that
defines the base address for the block of addresses below 4 GB for the configuration
space associated with busses, devices and functions that are potentially a part of the
PCI Express root complex hierarchy. In the PCIEXBAR register there exists controls to
limit the size of this reserved memory mapped space. 256 MB is the amount of address
space required to reserve space for every bus, device, and function that could possibly
exist. Options for 128 MB and 64 MB exist in order to free up those addresses for other
uses. In these cases the number of busses and all of their associated devices and
functions are limited to 128 or 64 busses respectively.

48

PCle Memory-Mapped Config Space

PCle memory-mapped decoding:

35 28 27 20 19 15 14 12 11
PCIEXBAR'’s Bus Device Function Offset
Bits 35:28 (8 bits) (5 bits (3 bits) (12 bits)

Compare to PCl I0-mapped decoding:

31 30 24 23 16 15 11 10 8 7 2 1
Device Function Register
Reserved Bus Number Number Number Number 0

L Enable bit ('1' = enabled, '0' = disabled)

49

Optional TODO

* Change the slides after this to search for
BIOS CNTL instead of PCIEXBAR

BIOS Analysis: Finding where the BIOS
does PCI stuff

PCIEXBAR—PCI Express Register Range Base Address

B/D/F/Type: 0/0/0/PCI

Address Offset: 60-67h

Default Value: 00000000EOOOO0OOK
Access: RO, R/W/L, R/W/L/K
Size: 64 bits

This is the base address for the PCI Express configuration space. This window of
addresses contains the 4 KB of configuration space for each PCI Express device that
can potentially be part of the PCI Express Hierarchy associated with the (G)MCH. There

Scenario: Let’'s say we want to locate where in the executable
BIOS the system programs the PCIEXBAR

Looking in our datasheet, we see that, on our sample system,
it is located in the DRAM Controller, which is located at
B0:DO0:FO. The specific 64 bit register is then at offset 60-67h

So we know 1I/O accesses to this will be to 0x80000060
— Remember, accesses to CONFIG_ADDRESS are always 4-byte aligned

It's not elegant, but it is scriptable

51

BIOS Analysis: Finding PCI Configuration

S e

Library function

Balfn® B 3

Data [l Regular function

Unexplored [l Instruction

—

daedF-Fa X > OO

)
11 |/ I

External symbol

E Functonswindow O & X ’ IDA View-A m Occurrences of binary: 60 00 00 80 | (O] Hex view-A

Function name

e

sub_3F3E57
sub_3F3E87
sub_3F3EAE
sub_3F3EE0
sub_3F4185
sub_3F43F0
sub_3F4640
sub_3F47B3
sub_3F47CD
sub_3F48FD
sub_3F4ALE
sub_3F4AE0
sub_3F4B89
sub_3F5168
sub_3F5316
sub_3F5338
sub_3F5358
sub_3F53D8
sub_3F566F
sub_3F576B

So with 80000060h in mind, let’s look at our BIOS binary

P

boot:0800811BE ;

SUBROUTINE

b=~~~ L~ - -
=

€® Binary search

S

Enter binary search string:
r binary sear ing
String 60 0000 80

@ Search Down

Search Up

[] case-sensitive

[Unicode strings

[¥] Find all occurrences

9@ Hex
Decimal

Octal

Vi

[

OK

H Cancel][

Help

«ch View Debugger
Bl ® B 3

ta [Regular function
8 x | [mA view-

Options Windows Help

%) @ O (ui}: [Ei}? ﬁ# + e :é}’] *\J » m D No debt
11

Unexplored [l Instruction

External symbol

‘ (,‘ Occurrences of binary: 60 00 00 80 ’ @ Hex View-A | I

-

Address

d_seq:00003735
boot:000011DE

which we dumped using Copernicus

Looking in IDA Pro (Free version works fine), we can go to
Search -> sequence of bytes, and enter: 60 00 00 80

— Little endian byte order

Function

' \ _27_seg:0000967C

MIO2
sub_3F11BE

Simplistic, perhaps even lame, yet yields useful results:

Instruction

mov eax, 80000060h
mov eax, 80000060h
mov eax, 80000060h

52

BIOS Analysis:
Interpreting PCI Configuration

mov
mov
out
mov
mov
out

eax, 80000066h
dx,

dx, eax

dx,

eax, OF8000665h
dx, eax

_—)

FC00_0000h

F800_0000h

FECO_0000h

FO00_0000h

I/0 APIC

PCI Express
configuration space

For example the following disassembly snapshot maps the PCI
Express registers to memory address F800 0000h

Per the PCIEXBAR register definition in the datasheet, it also
allocates 64MB of space for it in the memory map (bits 2:1) and
then activates it (bit 0)

— So interestingly not all devices/functions may be mapped to memory
System configuration is very concise!

Back to that Memory Map...

proc near

mov eax, 80000646h

mov dx, .

out dx, eax

mov dx, FC

mov eax, OFEDASB61h
_____ out _dx, eax __________

mov eax, 80000648h

mov dx, :

out dx, eax

mov dx, FC

mov eax, OFEDAOBGB1h
_____ out ___dx, eax __________

mov eax, 80000666h

mov dx, .

out dx, eax

mov dx, FC

mov eax, OF8000665h
_____ out ___dx, eax __________

mov eax, 80000668h

mov dx, '

out dx, eax

mov dx, FC

mov eax, OFEDA4GO1h
_____ out = _dx, eax __________

mov eax, 8000066E4h

mov dx, :

out dx, eax

mov dx,

in eax, dx

test eax, 20006h

Looking for 80000060h led us to a big ol’
block of memory map configuration code

I'll leave it up to you to verify, but this block
(in order):

Sets the Egress Port Base Address to
FEDA 5000h and enables it

Sets the MCH Memory Mapped Register
Range Base to FEDA _0000h and enables it

Allocates 64MB of memory for PCIEXBAR at
base address F800 0000h

Sets DMIBAR to FEDA_4000h and enables it

And lastly it's testing bit 49 (not a typo) in the
Capabilities register to check whether the
MCH is capable of supporting DDR SDRAM

You will find a lot more in the BIOS, but this is
how its done

54

