
Advanced	
 x86:	

BIOS	
 and	
 System	
 Management	
 Mode	
 Internals	

PCI	

Xeno	
 Kovah	
 &&	
 Corey	
 Kallenberg	

LegbaCore,	
 LLC	

All materials are licensed under a Creative
Commons “Share Alike” license.

http://creativecommons.org/licenses/by-sa/3.0/

2
ABribuEon	
 condiEon:	
 You	
 must	
 indicate	
 that	
 derivaEve	
 work	

"Is	
 derived	
 from	
 John	
 BuBerworth	
 &	
 Xeno	
 Kovah’s	
 ’Advanced	
 Intel	
 x86:	
 BIOS	
 and	
 SMM’	
 class	
 posted	
 at	
 hBp://opensecuritytraining.info/IntroBIOS.html”	

PCI (and PCI Express)

All	
 your	
 base.	
 base.	
 base…	

all	
 your	
 base	
 address	
 registers	
 are	

belong	
 to	
 PCI	

PCI	
 note:	

•  We’re	
 not	
 really	
 going	
 to	
 care	
 about	
 low	
 level	
 PCI	

protocol	
 details	

•  We’re	
 just	
 going	
 to	
 care	
 about	
 the	
 way	
 that	
 it’s	

exposed	
 to	
 the	
 BIOS,	
 so	
 that	
 we	
 can	
 understand	

the	
 BIOS’s	
 view	
 of	
 the	
 world,	
 and	
 therefore	

interpret	
 its	
 acEons	
 accordingly	

•  If	
 you	
 care	
 about	
 the	
 physical	
 level	
 details,	
 you	

need	
 to	
 go	
 out	
 and	
 get	
 a	
 big	
 ol’	
 book	
 (like	
 the	
 full	

version	
 of	
 this	

hBps://www.mindshare.com/files/ebooks/PCI
%20Express%20System%20Architecture.pdf)	
 	

4	

PCI
•  Peripheral Component Interconnect (PCI)

–  Also called Compatible PCI
•  It’s a bus protocol developed by Intel around 1993
•  Purpose is to attach/interconnect local hardware devices to a

computer
•  PCI is integrated into the chipset, forming a “backbone”

–  Holds true for both Intel and AMD-based systems
–  Logically speaking, the Chipset is a PCI System

•  32-bit bus with multiplexed address and data lines
–  Supports 64-bit by performing two 32-bit reads

•  PCI component interface is processor independent
–  The CPU/BIOS reads and writes to the configuration space to configure

much of the system
•  Intel’s MCH/ICH chipsets implement PCI Local Bus Protocol 2.3
•  PCH chipsets implement PCI Express protocol (v. 2.0)

–  Still supports PCI 2.3
•  PCI standards are currently maintained and defined by the PCI /SIG:

–  http://www.pcisig.com/specifications/

5	

Generic PCI Topology:
Buses, Devices, and Functions

•  Up to 256 Buses
•  Each Bus can have up

to 32 devices attached
•  Each Device can extend

up to 8 Functions
•  Buses are

interconnected by
Bridges

•  MulEple	
 bridges	
 can	
 be	

connected	
 through	
 a	

bridge	
 interface	
 and	
 are	

enumerated	
 	

6	

PCI Address Spaces
•  PCI implements three address spaces:

•  1) PCI Configuration Space (up to 256 Bytes)
–  Required/standard. Defined in the specifications. Every PCI device has

a configuration space.

•  2) PCI Memory-mapped space
–  Optional. Dependent on whether the device manufacturer needs to map

system memory to the PCI device

•  3) PCI I/O-mapped space
–  Optional. Same as PCI Memory Space

7	

PCI Express (PCIe)
•  Peripheral Component Interconnect Express (PCIe)
•  Developed around 2004 (not just by Intel but a collective)
•  Packet-based transaction protocol
•  Very different from PCI at the hardware level
•  For software configuration purposes, it is mostly the same

–  Adds an extended configuration space of 4KB

•  Provides backwards compatibility for Compatible PCI
•  Adds 4KB of PCI Express Extended Capabilities

registers
–  Located in either the Configuration space starting at offset 256

(immediately following the Compatible PCI configuration space)
–  Or located at a MMIO location specified in the Root Complex

Register Block (RCRB)

8	

PCI Express (PCIe) Address Spaces
•  PCIe implements four address spaces:

•  1) PCIe Configuration Space (up to 4KBytes)
–  Required/standard. Defined in the specifications. Every PCIe device has

its configuration space mapped to memory.
–  Also provides the first 256 bytes of compatible PCI (memory-mapped

and via port IO for backwards compatibility)

•  2) PCIe Memory-mapped space
–  Optional. Dependent on whether the device manufacturer needs to map

system memory to the PCI device

•  3) PCIe I/O-mapped space
–  Optional. Same as PCI Memory Space

•  4) PCIe Message Space
–  For low-level protocol messaging/interrupts. We don’t get into this in this

class

9	

Generic PCIe Topology:
•  The Root Complex

connects the processor to
the system memory and
components

•  Same number of devices
supported as PCI

•  Up to 256 PCIe buses
•  Up to 32 PCIe devices
•  Up to 8 Functions
•  Each Function can

implement up to 4 KB of
configuration space

10	

BRIDGE?!	
 SWITCH?!	

IT’S	
 A	
 NETWORK!	
 	

A	
 NETWORK	
 I	
 TELL	
 YOU!	

•  Example:
•  The GMCH on the 4-Series Chipset is part of a Root Complex

that connects the CPU to the graphics devices and the IO
Controller Hub

•  Contains 2 RCRBs (Root Complex Register Blocks)
–  Device configuration space, each is 4 KB, similar to extended

configuration space

Mobile 4-Series Chipset PCIe Topology

Mobile 4-Series Chipset datasheet

Root	
 Complex	

11	

Cheers!	

•  Chipset logical Bus 0 is
highlighted

•  Direct Media Interface(DMI)
is not PCI so from a
hardware perspective, the
Chipset is not entirely PCI

•  Logically, however, it is
considered to be PCI and is
configured as such

•  If a device (graphics card)
were to be plugged into Host-
PCI Express Bridge, it would
be on a bus other than 0
–  According to documentation,

the BIOS chooses the Bus
number

Intra-System PCIe Bus

Mobile 4-Series Chipset datasheet 12	

Configuration Space Accesses
•  There are two ways to access the compatible PCI

configuration space registers (0 to 255)…
–  Port IO or Memory-mapped IO

•  …but only one way to access the extended configuration
space offered by PCI Express (255 to 4KB)
–  Memory-mapped IO

•  Generally speaking, you will see accesses to PCI being
performed via Port I/O in a couple situations:
–  When in Real Mode when accesses to 32-bit memory space is limited

•  Real Mode may be reentered even after the system has transitioned to
Protected mode (up to the vendor and their implementation, flat real mode
could pull it off)

•  I have only seen this done in a Legacy BIOS, never in UEFI
–  Before PCIEXBAR has been configured

•  Cause it enables MMIO

•  Outside of those situations, you’ll probably see PCI accesses
performed via memory-mapped I/O

•  But of course this is all up to the developers
13	

Compatible PCI Configuration Space
•  This refers to the software generation of PCI configuration

transactions
–  those generated by the CPU/BIOS

•  Compatible PCI provides 256 bytes of Configuration address
space to the CPU/BIOS

•  CPU/BIOS programs the registers contained therein to
configure the device and system parameters

•  Compatible PCI is configured using the port I/O address/data
pair (CONFIG_ADDRESS, CONFIG_DATA)

•  Two 32-bit I/O locations are used to generate configuration
transactions
–  CF8h (CONFIG_ADDRESS)
–  CFCh (CONFIG_DATA)

•  Curiously, these are never listed in the Fixed IO Address
space registers in the applicable chipset datasheets, but are
explicitly mentioned as CF8/CFC in the datasheets

14	

I/O Port CONFIG_ADDRESS (CF8h)

•  32 bits (GIMME BUS 0, DEVICE 31 (0x1F), Function 0, offset 0x88)
•  Port CF8h
•  Bit 31 when set, all reads and writes to CONFIG_DATA are PCI

Configuration transactions
•  Bits 30:24 are read-only and must return 0 when read
•  Bits 23:16 select a specific Bus in the system (up to 256 buses)
•  Bits 15:11 specify a Device on the given Bus (up to 32 devices)
•  Bits 10:8 Specify the function of a device (up to 8 devices)
•  Bits 7:0 Select an offset within the Configuration Space (256 bytes

max, DWORD-aligned as bits 1:0 are hard-coded 0)
•  Addresses are often given in B/D/F, Offset notation (also written as

B:D:F, Offset)
15	

B	
 D	
 F	
 Offset	

I/O Port CONFIG_ADDRESS (CF8h)

•  THIS IS KEY!
•  YOU MUST UNDERSTAND THIS!

16	

B	
 D	
 F	
 Offset	

Compatible PCI Configuration Registers

•  256 bytes
•  Every PCI device

implements this space
–  PCI Express further extends

this to 4KB, we’ll cover that in a
bit

•  First 0x40 bytes are the
header

•  The remaining bytes consist
of a device dependent
region, which consists of
device-specific information
per PCI SIG documentation

PCI	
 ConfiguraEon	
 Registers	
 Header	

00h

3Fh

Device	
 Dependent	
 Region	

17	

Last byte = FFh

PCI Configuration Registers Header
•  This is what you should

visualize when we're talking
about access to specific
“register number”/”offsets
 in CONFIG_ADDRESS

Type 0 header, General PCI Device, PCI Spec 2.3 18	

I/O Port CONFIG_DATA (CFCh)

•  CONFIG_DATA can be accessed in DWORD, WORD, or
BYTE configurations

•  Reads and Writes to CONFIG_DATA with Bit 31 in
CONFIG_ADDRESS set/enabled results in a PCI
Configuration transaction to the device specified in
CONFIG_ADDRESS

•  PCI spec says that if Bit 31 is not enabled, then the
transaction is forwarded out as Port I/O

19	

Compatible PCI Configuration Space
•  Implemented in PCIe too
•  PCI Configuration register
•  256 bytes
•  Every PCI device

implements this space
–  PCI Express further extends

this to 4KB, we’ll cover that in a
bit

•  First 0x40 bytes are the
header

•  The remaining bytes consist
of a device dependent
region, which consists of
device-specific information
per PCI SIG documentation

PCI	
 ConfiguraEon	
 Register	
 Header	

00h

3Fh

Last byte = FFh

Device	
 Dependent	
 Region	

20	

Compatible PCI Configuration Space
•  “Enhance header! Rotate 0

degrees!” PCI	
 ConfiguraEon	
 Register	
 Header	

00h

3Fh

Device	
 Dependent	
 Region	

21	

Last byte = FFh

Compatible PCI Configuration Space Header
(aka "configuration space all up in your face!")

•  Implemented in PCIe too
•  Three header types (0-2)
•  Type 0 = General Device (this

is what we care about)
•  Type 1 = PCI-to-PCI Bridge

(rarely care)
•  Type 2 = CardBus Bridge (don’t

care)
•  Shown is Type 0
•  Divided into 2 parts:
•  First 16 bytes (0-F) are

standard and defined the same
for all devices

•  The remaining header bytes
are optional per the vendor,
depending on what function the
device performs

Type 0 header, General PCI Device, PCI Spec 2.3 22	

PCI Device Identification

•  Five fields (all required) can be used to identify the device and its basic
functionality

•  Vendor ID identifies the manufacturer of the device
–  Allocated by the PCI SIG to ensure each is unique

•  Device ID identifies the particular device, set by the vendor
•  Revision ID is set by the vendor, viewed as an extension to Device ID

(Intel is 8086h, AMD microcontrollers is 1022h)
•  Class Code used to identify the generic functionality of the device
•  Header Type identifies what type of header to expect (per the previous

slide, general, PCI bridge, CardBus bridge)
–  Bit 7 being set (0x80) indicates device is a multi-function device

Type 0 header, PCI Spec 2.3 23	

Aside:	
 PCI	
 Vendor/Device	
 IDs	

•  You	
 can	
 see	
 them	
 even	
 on	
 a	
 Windows	
 machine	
 that	
 doesn’t	
 have	
 RWE	

•  Right	
 click	
 on	
 Computer,	
 select	
 Manage	

•  Go	
 to	
 Device	
 Manager	
 (or	
 just	
 enter	
 “Device	
 Manager”	
 from	
 start	
 menu)	

•  Right	
 click	
 on	
 the	
 device	
 and	
 select	
 properEes	

•  Go	
 to	
 “Details”	
 tab	
 and	
 select	
 	
 “Hardware	
 Ids”	

24	

Base Address Registers (BARs)
•  Base Address Registers point

to the location in the system
address space where the PCI
device will be located
–  The device RAM, etc. (anything

really, per the vendor)
•  BARs are R/W and the BIOS

programs them to set up the
Memory Map

•  PCI Configuration Registers
provides space for up to 6
BARs (bytes 10h thru 27h)
–  BAR[0-5]

•  Each BAR is 32-bits wide to
support 32-bit address space
locations

•  Concatenating two 32-bit BARs
provides 64-bit addressing
capability

Type 0 header 25	

•  Actual Base address is obtained by bitwise ANDing the value in bits
31:4 with FFFF_FFF0h (mask the low 4 bits)
–  Actual Base Address = (BAR[x] & FFFF_FFF0h)

•  A cleared Bit 0 indicates this will be located in memory address
space, otherwise IO space

•  64-bit accessibility is provided by programming back-to-back BARs
–  (BAR[x] & FFFF_FFF0h) : (BAR[x+1] & FFFF_FFF0h)*
–  Meaning BAR[x] is the upper 32 bits, BAR[x+1] is the lower 32 bits

Base Address Register for Memory Space

*OSDEV:	
 hBp://wiki.osdev.org/PCI	
 26	

Base Address Register for I/O Space

•  Actual Base address is obtained by logically ANDing the value in
bits 31:4 with FFFF_FFF0h (mask the low 4 bits)
–  Actual Base Address = (Base Address[31:2] & FFFF_FFFCh)

•  If Bit 0 is 1, then the Base Address will be an offset in the port I/O
address space

•  PCI SIG recommends that devices are mapped to memory rather
than I/O, because I/O can be fragmented
–  Look at the Fixed and Relocatable I/O ports in your friendly neighborhood

ICH (or PCH) datasheet

27	

BAR Limit/Size

•  A Base Address is half
the information that’s
needed

•  We need a limit to
determine how this PCI
device will be mapped
into memory

•  How does the BIOS
determine how much
space the device needs?

?	

Base Address = (E000_0000h & FFFF_FFF0h)

28	

BAR Space Utilization (Size)

•  CPU/BIOS can write all 1’s to the BAR to determine how much
address space the device needs by writing all 1’s to the BAR
–  Pro tip: save the original value first! ;)

•  Device will return 0’s in all "I don’t care if they're set" bits
–  Or put another way, returns 1s in all the "don't set" bits

•  The device returns the don’t care bits into the BAR thus telling you
how much address space the device needs

1111	
 	
 1111	
 	
 1111	
 	
 1111	
 	
 1111	
 	
 1111	
 	
 1111	
 	
 1111	

1111	
 	
 1111	
 	
 1111	
 	
 0000	
 	
 0000	
 	
 0000	
 	
 0000	
 	
 0000	

Example	

return	

FFFF_FFFFh

FFF0_0000h

29	

Ex 1: Determine Device Address Space Size

•  The IEEE 1394 FireWire device on the E6400 has a BAR
located at F1BFF800h
–  Bit 0 = 0, so it’s mapped to memory
–  Bits 2:1 = 00 so it’s 32-bit address space (below 4GB)
–  Bit 4 = 0, so it’s not prefetchable

•  We can open up a memory window at F1BFF800h and see
the device

30	

Ex 1: Determine Device Address Space Size

•  We write all 1’s to it just like the BIOS does to determine the size of
the FireWire device

•  When you try this for yourself, try to pick a device that you know is
not actively being used. ;)
–  These things tend to not fail gracefully in my experience
–  But it’s nothing a reboot shouldn’t fix (but still, you have been warned, there

is no guarantee the vendor has protected itself adequately from erroneous
writes)

–  Check the devices datasheet you might find something interesting 31	

Ex 1: Determine Device Address Space Size

1.  The device returns the value FFFF_F800h to the BAR
–  These are the don’t care bits which tell us the range of the device memory
–  ~(FFFF_F800) = 7FFh, so the device’s mapped address range in memory is

F1BF_F800h - (F1BF_F800 + 7FFh)

2.  Also notice that when we change the value in the BAR, the device
is no longer mapped to F1BF_F800h (as evident by all 0xFF’s)

32	

Ex 1: Determine Device Address Space Size

•  So let’s verify our mapped
range:

•  We’ll view memory address
F1BF_FF80h which is 80h
bytes before our upper limit
address as denoted by the red
line

33	

Ex 1: Determine Device Address Space Size

•  When we reset the BAR back
to its original value
(F1BF_F800h), the device is
(re)mapped back to memory

•  And it shows our upper limit
measurement was correct

•  It’s good to see for yourself
how this world works

34	

Ex 2: Relocate the PCI Device Mapping

•  So as you noticed, when we changed the value in the BAR,
the device was no longer mapped to memory

•  We wrote a value of all 1’s to it which is an invalid base
address in itself (but is designed to return the mask)

•  So what if we write a valid* address for the device to be
mapped to?

*Overlapping	
 ranges	
 are	
 not	
 checked	
 for,	
 “valid”	
 means	
 proceed	
 at	
 your	
 own	
 risk	
 35	

Ex 2: Relocate the PCI Device Mapping

•  Let’s try moving this to F1BF_F000h
–  On the E6400 I checked beforehand and saw that this address space

appeared to be unused (was all 0xFF’s)
•  When we write F1BF_F000h to the BAR… the device has been

relocated.
•  This is part of the way the CPU/BIOS builds the memory map

–  And you can too, with sufficient permissions
–  Not really a security issue, just a “how the world works” kind of example

36	

Aside:	
 Things	
 to	
 be	
 aware	
 of	
 once	
 you	

start	
 learning	
 down	
 at	
 this	
 level	

•  Here's	
 a	
 recent	
 ASIA	
 CCS	
 paper	
 evaluaEng	
 whether	
 past	
 work	
 on	
 aBacks	
 that	

manipulate	
 PCI	
 (e.g.	
 forcing	
 MMIO	
 overlap,	
 configuraEon	
 range	
 overlap,	
 etc)	
 and	

other	
 low	
 level	
 informaEon	
 for	
 a	
 pass-­‐through	
 device	
 inside	
 virtual	
 environments	

(answer:	
 doesn't	
 seem	
 like	
 it,	
 but	
 they	
 found	
 a	
 new	
 aBack	
 :))	

•  On	
 the	
 Feasibility	
 of	
 Soqware	
 ABacks	
 on	
 Commodity	
 Virtual	
 Machine	
 Monitors	
 via	

Direct	
 Device	
 Assignment	
 –	
 Pek	
 et	
 al.	

•  hBps://www.iseclab.org/people/andrew/download/asia14.pdf	

37	

Command Register and Address Space Access

•  Determine whether a PCI device will
respond to I/O accesses and
Memory-Space accesses

•  The BIOS must set the applicable
bit(s) to 1 if the device will be
mapped to memory and/or I/O space

•  Turning these off/on will un/map the
device (BARs) in the address space

38	

Lab: Use RWE to gather info stored in the PCI
configuration space

RTFM notes:

39	

“Device	
 31,	
 FuncEon	

0”	

If	
 the	
 bus	
 isn't	

specified	
 by	
 the	
 Intel	

data	
 sheet	
 you	
 can	

safely	
 assume	
 it's	

bus	
 0	

Offset	
 0xF0	
 (and	
 it’s	
 4	
 bytes	
 big)	

	

So	
 now	
 you	
 have	
 Bus/Device/FuncEon/Offset	
 =	
 0:1F:0:F0	

(31	
 decimal	
 =	
 0x1F),	
 and	
 can	
 encode	
 that	
 into	
 the	

CONFIG_ADDRESS register	
 	

Lab: Use RWE to gather info stored in
the PCI configuration space

•  Let’s find the RCRB address, since we’ll be using it to get to
the SPI flash interface
–  Refer to your datasheet if doing on your own system but it should be at

B0:D31:F0 (LPC device), offset F0h

40	

This	
 associaEon	
 is	

highly	
 refreshing!	

Find Root Complex Register Block
(method 1)

•  RCBA register holds RCRB address
•  It serves as a base address for memory mapped BARs such as the

MCHBAR and SPIBAR (will be identified/explained as they come)
•  On the example Dell E6400 with 4GB RAM, RCRB was at FED1_8000h

41	

•  CF8h and CFCh are adjacent DWORDs
•  LPC (B0:F31:D0, offset F0h) is 8000F8F0
•  So enter 8000F8F0 into port CF8h

CFCh	

42	

Find Root Complex Register Block
(method 2)

Find Root Complex Register Block
(method 2, cont)

•  So we have now determined that the RCRB address is FED1_8000h
–  Bit 0 is just an enable bit, still a 32-bit physical address

•  Aside, the dword at CF8h resets itself. If you keep this IO window
open you might see PCI port IO accesses (if there are processes
running that perform this)
–  I have seen this occur on Windows 8 where the vendor/device ID of one of

the PCI devices on the CPU is read every few seconds or so; I have not
determined which process(es) are doing this

CFCh	

43	

PCI	
 vs.	
 PCIe	
 config	
 space	
 access	

44	

Compatible PCI Configuration Registers

•  This is your brain on PCI
PCI	
 ConfiguraEon	
 Registers	
 Header	

00h

3Fh

Device	
 Dependent	
 Region	

45	

Last byte = FFh

PCIe Configuration Space
•  This is your brain on PCIe
•  (hint: the scale just shifted)

PCI	
 ConfiguraEon	
 Register	
 Header	

00h

3Fh

FCh

Device	
 Dependent	
 Region	

46	

PCIe	
 Extended	
 Config	
 Space	

Device	
 Dependent	
 Region	

Last byte = FFFh

PCIe	
 Extended	
 Config	
 Space	
 Access	

•  The	
 BIOS	
 needs	
 to	
 set	
 the	
 PCIEXBAR	
 register	

to	
 the	
 locaEon	
 that	
 it	
 wants	
 the	
 memory	

controller	
 to	
 start	
 rouEng	
 to	
 PCI	
 space	

47	

48	
 Fr
om

	
 3
-­‐s
er
ie
s-­‐
ex
pr
es
s-­‐
ch
ip
se
t-­‐
fa
m
ily
-­‐d
at
as
he

et
.p
df
	

PCIe	
 Memory-­‐Mapped	
 Config	
 Space	

Access	

49	

PCIEXBAR’s	

Bits	
 35:28	

Bus	

(8	
 bits)	

Device	

(5	
 bits	

FuncEon	

(3	
 bits)	

Offset	

(12	
 bits)	

0	
 11	
 12	
 14	
 15	
 19	
 20	
 27	
 28	
 35	

PCIe	
 memory-­‐mapped	
 decoding:	

Compare	
 to	
 PCI	
 IO-­‐mapped	
 decoding:	

OpEonal	
 TODO	

•  Change	
 the	
 slides	
 aqer	
 this	
 to	
 search	
 for	

BIOS_CNTL	
 instead	
 of	
 PCIEXBAR	

50	

BIOS Analysis: Finding where the BIOS
does PCI stuff

•  Scenario: Let’s say we want to locate where in the executable
BIOS the system programs the PCIEXBAR

•  Looking in our datasheet, we see that, on our sample system,
it is located in the DRAM Controller, which is located at
B0:D0:F0. The specific 64 bit register is then at offset 60-67h

•  So we know I/O accesses to this will be to 0x80000060
–  Remember, accesses to CONFIG_ADDRESS are always 4-byte aligned

•  It’s not elegant, but it is scriptable

51	

BIOS Analysis: Finding PCI Configuration

•  So with 80000060h in mind, let’s look at our BIOS binary
which we dumped using Copernicus

•  Looking in IDA Pro (Free version works fine), we can go to
Search -> sequence of bytes, and enter: 60 00 00 80
–  Little endian byte order

•  Simplistic, perhaps even lame, yet yields useful results:
52	

BIOS Analysis:
Interpreting PCI Configuration

•  For example the following disassembly snapshot maps the PCI
Express registers to memory address F800_0000h

•  Per the PCIEXBAR register definition in the datasheet, it also
allocates 64MB of space for it in the memory map (bits 2:1) and
then activates it (bit 0)
–  So interestingly not all devices/functions may be mapped to memory

•  System configuration is very concise!

F800_0000h

FC00_0000h
PCI Express

configuration space

53	

Back to that Memory Map…

•  Looking for 80000060h led us to a big ol’
block of memory map configuration code

•  I’ll leave it up to you to verify, but this block
(in order):

•  Sets the Egress Port Base Address to
FEDA_5000h and enables it

•  Sets the MCH Memory Mapped Register
Range Base to FEDA_0000h and enables it

•  Allocates 64MB of memory for PCIEXBAR at
base address F800_0000h

•  Sets DMIBAR to FEDA_4000h and enables it
•  And lastly it’s testing bit 49 (not a typo) in the

Capabilities register to check whether the
MCH is capable of supporting DDR SDRAM

•  You will find a lot more in the BIOS, but this is
how its done

54	

