
Advanced	
 x86:	

BIOS	
 and	
 System	
 Management	
 Mode	
 Internals	

Input/Output	

Xeno	
 Kovah	
 &&	
 Corey	
 Kallenberg	

LegbaCore,	
 LLC	

All materials are licensed under a Creative
Commons “Share Alike” license.

http://creativecommons.org/licenses/by-sa/3.0/

2
ABribuEon	
 condiEon:	
 You	
 must	
 indicate	
 that	
 derivaEve	
 work	

"Is	
 derived	
 from	
 John	
 BuBerworth	
 &	
 Xeno	
 Kovah’s	
 ’Advanced	
 Intel	
 x86:	
 BIOS	
 and	
 SMM’	
 class	
 posted	
 at	
 hBp://opensecuritytraining.info/IntroBIOS.html”	

Input/Output (I/O)

I/O,	
 I/O,	
 it’s	
 off	
 to	
 work	
 we	
 go…	

2 Types of I/O	

1.  Memory-Mapped I/O (MMIO)
2.  Port I/O (PIO)

–  Also called Isolated I/O or port-mapped IO (PMIO)
•  X86 systems employ both-types of I/O
•  Both methods map peripheral devices
•  Address space of each is accessed using instructions

–  typically requires Ring 0 privileges
–  Real-Addressing mode has no implementation of rings, so no privilege

escalation needed
•  I/O ports can be mapped so that they appear in the I/O address

space or the physical-memory address space (memory mapped I/O)
or both
–  Example: PCI configuration space in a PCIe system – both memory-mapped

and accessible via port I/O. We’ll learn about that in the next section
•  The I/O Controller Hub contains the registers that are located in both

the I/O Address Space and the Memory-Mapped address space

4	

Memory-Mapped I/O 	
 	

•  Devices can also be mapped to the physical address
space instead of (or in addition to) the I/O address space

•  Even though it is a hardware device on the other end of
that access request, you can operate on it like it's
memory:
–  Any of the processor’s instructions that reference memory can

be used to access an I/O port located at a physical-memory
address (MOV, for example)

–  Operations like AND, OR, and TEST can be used on data at a
memory-mapped address

•  Access byte, word, dword
•  The MOV instruction itself requires privileges only in

protected mode based on the privilege level of the
descriptor describing the segment

5	

Memory-Mapped I/O 	
 	

•  For people not accustomed to working in low-level
space, the term memory mapping can be a little
confusing, mainly because of how the term is often used,
for example:

•  “Device X is mapped to memory.”
•  People sometimes get confused by this phrasing:

–  Are it’s contents copied to RAM? Or are memory accesses
destined for that memory range redirected (decoded) to the
device?

•  It’s the second one. Accesses destined to that memory
range are decoded to the device

6	

Memory Mapped IO	

•  The colored regions are
memory mapped devices

•  Accesses to these memory
ranges are decoded to a
device itself

•  Flash refers to the BIOS
flash

•  APIC is the Advanced
Programmable Interrupt
Controller

•  PCI Memory range is
programmed by BIOS in the
PCIEXBAR

7	

Peripherals that Map to Both	

•  Devices can map to both memory and IO address space
•  PCI Express is a good example of devices that map to

both the IO address space and the physical memory
address space

•  Compatible PCI configuration space maps to IO
Addresses CF8h and CFCh

•  Both Compatible PCI configuration space plus the
extended header are also mapped to a memory location/
size defined by the PCIEXBAR register located in the
DRAM Controller

•  We'll get into this again once we get to PCI

8	

Port I/O Address Space 	
 	

•  Software and hardware architectures of x86

architecture support a separate address
space called “I/O Address Space”

–  Separate from memory space
•  Access to this separate I/O space is

handled through a set of I/O instructions
–  IN,OUT, INS, OUTS

•  Access requires Ring0 privileges
–  Access requirement does not apply to all

operating modes (like Real-Mode)
•  The processor allows 64 KB+3 bytes to be

addressed within the I/O space
•  Harkens back to a time when memory was

not so plentiful
•  You may never see port I/O when analyzing

high-level applications, but in systems
programming (and especially BIOS) you will
see lots of port I/O

•  One of the biggest impediments to
understanding what's going on in a BIOS

Port	
 0	

Port	
 1	

Port	
 2	

Port	
 3	

Port	
 4	

Port	
 65535	

0x0000

0x0001

0x0002

0x0003

0x0004

0xFFFF

.	

.	

.	

I/O	
 Address	
 Space	

.	

.	

.	

Intel	
 Programmer’s	
 guide,	
 Vol	
 1,	
 16.1	
 9	

Port I/O Accesses	

•  Port I/O access are handled

by the Controller Hub (ICH/
PCH)
–  So in a chipset that has a

Memory Controller Hub
(MCH), the MCH performs no
translation of accesses to I/O
space

–  The MCH just forwards them
to DMI (and thus to the I/O
Controller Hub)

•  The Controller Hub contains
the registers that are located
in the I/O address space

•  Again, separate and distinct
from physical memory
address space

Intel	
 Programmer’s	
 guide,	
 Vol	
 1,	
 16.1	

I/O	
 	

Space	

0xFFFF

0x0000

10	

How	
 does	
 the	
 hardware	
 disEnguish	

between	
 port	
 IO	
 and	
 memory	
 access?	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Intel	
 8088	
 chip	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (from	
 the	
 bad	
 old	
 days)	

hBp://www.cpu-­‐
world.com/info/
Pinouts/8088.html	
 	

There's	
 a	
 pin	

for	
 that!	

11	

I/O Mapped Address Space	

•  I/O Address space consists of two ranges or
types of access:

1.  Fixed
–  Addresses/peripherals cannot be relocated
–  In some instances they can be disabled, but not

all
2.  Variable

–  These addresses can be relocated
–  Can also be disabled

•  Addressable size can be 8 bits, 16 bits, or
32 bits

12	

1. Fixed I/O Ports	

•  The addresses depend on the implementation of the I/O
Controller Hub present in your system
–  Check the I/O Controller Hub Datasheet to make sure you are

interpreting these signals properly
•  Address ranges that are not listed or marked “Reserved” are

not decoded by the ICH
–  Unless one of the variable ranges has been relocated to that

address
•  Each fixed IO address is a 2-byte word
•  Remember, on the “other side” of each port address/range

there is a hardware device
–  Device interaction and behavior will differ between devices
–  This is why it can be difficult to decipher when analyzing

•  Port I/O is a gateway to a black box

Intel,	
 Vol	
 1,	
 16.1	
 13	

Example: ICH 9 Fixed Range 	
 	

14	

Port	
 60	
 is	
 the	
 historic	

locaEon	
 of	
 the	
 8042	

keyboard	
 controller	

status/command	
 port.	

And	
 port	
 64	
 is	
 the	
 data	

port.	
 NoEce	
 how	
 it	

doesn't	
 tell	
 you	
 that,	
 it	

just	
 says	
 they're	
 being	

forwarded	
 on	
 to	
 LCP.	

Annoying	
 for	
 trying	
 to	

figure	
 out	
 what's	
 being	

talked	
 to	

15	

Takeaway:	
 there’s	
 a	
 lot	
 of	
 fixed	
 IO	
 address	
 space,	
 and	
 it’s	
 fragmented	
 too.	
 	
 This	
 is	
 why	
 it’s	

recommended	
 that	
 devices	
 map	
 their	
 interfaces	
 to	
 memory	
 rather	
 than	
 IO	
 address	
 space	

This	
 one	
 we’ll	

talk	
 about	
 	

explicitly	
 later	
 in	
 the	
 	

context	
 of	
 SMM	

16	

2. Variable I/O Ports	

•  Can be relocated to another address
•  Can be set/disabled using Base Address Registers

(BARs) or configuration bits in the various PCI
configuration spaces
–  Which we shall discuss very soon!

•  The BIOS (and/or other PCI devices or ACPI) can adjust
these values
–  Actually pretty much any privileged app can…

•  The same as the fixed range, on the “other side” of each
port address/range there is a peripheral device
–  Device interaction and behavior will differ between devices

•  ICH does not check for overlap
–  Results “unpredictable” if overlapping

•  Has been used for virtualization attacks

Intel,	
 Vol	
 1,	
 16.1	
 17	

Example: ICH 9 Variable IO Range	

18	

IN - Input from Port

•  Note it's DX, not DL. That means the DX form can specify all 2^16
ports, but the IMM8 form can only specify 2^8 ports.

•  “When accessing a 16- and 32-bit I/O port, the operand-size
attribute determines the port size.” (Because as usual there's an
overloaded opcode for 16/32 bit form)
–  Remember if you're in a 16 bit segment it's 16 bit, if you're in a 32 bit

segment it's 32 bit. But you can override it with an operand size
instruction prefix which is talked about later.

19	
 From	
 Xeno	
 Kovah’s	
 Intermediate	
 X86	
 class:	
 hBp://OpenSecurityTraining.info/IntermediateX86.html	

OUT - Output to Port

•  Basically the same caveat as IN

20	
 From	
 Xeno	
 Kovah’s	
 Intermediate	
 X86	
 class:	
 hBp://OpenSecurityTraining.info/IntermediateX86.html	

IO	
 Privilege	
 Level	

•  There	
 are	
 two	
 bits	
 in	
 the	
 *FLAGS	
 register	

which	
 the	
 OS	
 will	
 typically	
 set	
 to	
 0,	
 which	

indicate	
 that	
 only	
 ring	
 0	
 is	
 allowed	
 to	
 issue	
 the	

IN/OUT	
 instrucEons	

21	

S
F

= Intro x86-64

R

F

I
O
P
L

I
F

I
D

D

F

O

F

A
F

P
F

C

F

T
F

Intel Vol 1 Sec 3.4.3.1 - page 3-21 - May 2012 manuals

= Intermediate x86-64
Z
F

Port IO Assembly Examples
(showing that you can either use an 8 bit immediate or a 16 bit register (dx) to specify port

and 8 bit immediate or 8/16/32 bit registers (but only AL/AX/EAX) to specify the data being read/
written)	

Read from port 0xB3:

Write 0x1234 to port 0xB2: MOV	
 AX,	
 0x1234	

OUT	
 0xB2,	
 AX	

MOV	
 AX,	
 0x1234	

MOV	
 DX,	
 0xB2	

OUT	
 DX,	
 AX	

MOV	
 DX,	
 0x70	

OUT	
 DX,	
 0x05	

MOV	
 DX,	
 0x71	

IN	
 EAX,	
 DX	

IN	
 AL,	
 0xB3	

Index/Data pair read offset 0x05: MOV	
 AL,	
 0x05	

MOV	
 DX,	
 0x70	

OUT	
 DX,	
 AL	

MOV	
 DX,	
 0x71	

IN	
 EAX,	
 DX	

Index/Data pair write to offset 0x05: MOV	
 AL,	
 0x05	

MOV	
 DX,	
 0x70	

OUT	
 DX,	
 AL	

MOV	
 DX,	
 0x71	

MOV	
 EAX,	
 0x10	

OUT	
 DX,	
 EAX	

23	

Port IO	

CPU	

MOV DX, PORT
OUT DX, IMM8

•  IMM8 (one byte constant) could be a command or data –
that’s up to the interpretation by the device

•  It is not necessarily known what the black box on the end
of a port does

•  Check your Controller Hub datasheet and/or the LPC
decode registers (might offer clues)

CPU	

MOV DX, PORT
IN AX, DX

Black	
 Box	

Black	
 Box	

24	

Port IO Index/Data Pair	

Black	
 Box	

CPU	

•  Some devices use an index/data pair for IO
•  An offset is written to the index port
•  Next a value is read from or written to that offset from the Data port
•  Devices such as this are CMOS, PCI, and the Keyboard Embedded

Controller on the E6400 (per the below research)
•  http://esec-lab.sogeti.com/dotclear/public/publications/11-recon-

stickyfingers_slides.pdf

	

MOV	
 DX,	
 0x70	

OUT	
 DX,	
 IMM8	

MOV	
 DX,	
 0x71	

OUT	
 DX,	
 IMM8	

	

25	

Identifying Port I/O	

•  First try deciphering port IO devices by using the

datasheets (Controller Hub either ICH or PCH)
•  OS Dev

–  http://wiki.osdev.org/I/O_Ports (which links you to...)
•  Boch’s or Ralf’s

–  http://bochs.sourceforge.net/techspec/PORTS.LST
–  Last change was in 11/6/94 and that’s just how it is with most

BIOS information

•  Vendors can extend a device interface to any
unoccupied IO address

26	

UEFI	
 indirecEon	

•  When	
 we	
 eventually	
 get	
 to	
 UEFI	
 you	
 will	
 see	

that	
 there’s	
 a	
 lot	
 of	
 indirecEon.	

•  So	
 this	
 is	
 just	
 to	
 say	
 that	
 if	
 you	
 were	
 REing	

some	
 code,	
 while	
 you	
 might	
 eventually	
 find	

the	
 actual	
 IN/OUT	
 instrucEons,	
 it	
 would	

suffice	
 to	
 find	

“EFI_CPU_IO2_PROTOCOL.Io.Read()	
 and	

Io.Write()”	
 which	
 are	
 funcEonally	
 equivalent	

– You	
 can	
 read	
 more	
 about	
 them	
 in	
 the	
 UEFI	
 specs’	

Volume	
 5	

27	

Example: Port IO Configuring
PCIEXBAR

•  On the Mobile 4-Series Chipset, the BIOS (executed by the
CPU), configures the PCIEXBAR in the DRAM Controller

•  F800_0000h (on an E6400 with 4GB RAM for example)
•  PCI Memory range is now mapped
•  So how does this configuration actually occur? PCI…

Chipset	

Offset	
 Name	
 Value	

60h PCIEXBAR F8000001h

DRAM	
 Controller	
 B0:D0:F0	

F800_0000h

28	

