Advanced x86:

BIOS and System Management Mode Internals
Input/Output

Xeno Kovah && Corey Kallenberg
LegbaCore, LLC

8

LEGBACORE

WE DO DIGITAL VOODOO

All materials are licensed under a Creative

Commons “Share Alike” license.
http://creativecommons.org/licenses/by-sa/3.0/

You are free:

@ to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

®

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

© ®

Attribution condition: You must indicate that derivative work
"Is derived from John Butterworth & Xeno Kovah'’s ‘Advanced Intel x86: BIOS and SMM’ class posted at http://opensecuritytraining.info/IntroBIOS.html” 2

Input/Output (1/0O)

1/0, 1/0, it’s off to work we go...

2 Types of I/O

1. Memory-Mapped I/0O (MMIO)

2. Port /0 (PIO)
— Also called Isolated I/O or port-mapped 10 (PMIO)

« X86 systems employ both-types of I/O
« Both methods map peripheral devices

« Address space of each is accessed using instructions
— typically requires Ring O privileges
— Real-Addressing mode has no implementation of rings, so no privilege
escalation needed

« |/O ports can be mapped so that they appear in the 1/O address
space or the physical-memory address space (memory mapped |/O)
or both

— Example: PCI configuration space in a PCle system — both memory-mapped
and accessible via port 1/0. We’'ll learn about that in the next section

« The I/O Controller Hub contains the registers that are located in both
the 1/O Address Space and the Memory-Mapped address space

Memory-Mapped I/O

Devices can also be mapped to the physical address
space instead of (or in addition to) the 1/O address space

Even though it is a hardware device on the other end of
that access request, you can operate on it like it's
memory:

— Any of the processor’s instructions that reference memory can
be used to access an |/O port located at a physical-memory
address (MOV, for example)

— Operations like AND, OR, and TEST can be used on data at a
memory-mapped address
Access byte, word, dword

The MOV instruction itself requires privileges only in
protected mode based on the privilege level of the
descriptor describing the segment

Memory-Mapped I/O

For people not accustomed to working in low-level
space, the term memory mapping can be a little
confusing, mainly because of how the term is often used,
for example:

“Device X is mapped to memory.”

People sometimes get confused by this phrasing:

— Are it’'s contents copied to RAM? Or are memory accesses
destined for that memory range redirected (decoded) to the
device?

It's the second one. Accesses destined to that memory
range are decoded to the device

Memory Mapped |O

4 GB

FFFF_FFFFh
Flash

* The colored regions are
memory mapped devices
Contains: Device 0, 1, 2,

* Accesses to these memory
ranges are decoded to a
device itself

APIC

Internal Graphics (optional)

TSEG (optional)

DPR (optonal) * Flash refers to the BIOS
flash
« APIC is the Advanced
Vai Memory Programmable Interrupt
Controller
- PCI Memory range is
M0 | o] oora o000 programmed by BIOS in the
PCIEXBAR

DOS Compatibility Memory | 0000_0000h

Peripherals that Map to Both

Devices can map to both memory and IO address space

PCI Express is a good example of devices that map to
both the 1O address space and the physical memory
address space

Compatible PCI configuration space maps to 10
Addresses CF8h and CFCh

Both Compatible PCI configuration space plus the
extended header are also mapped to a memory location/
size defined by the PCIEXBAR register located in the
DRAM Controller

We'll get into this again once we get to PCI

Port I/O Address Space

« Software and hardware architectures of x86
architecture support a separate address Port 65535
space called “I/O Address Space” OXFFFF

— Separate from memory space

« Access to this separate 1/O space is
handled through a set of I/O instructions

— IN,OUT, INS, OUTS
« Access requires RingO0 privileges
— Access requirement does not apply to all
operating modes (like Real-Mode)
« The processor allows 64 KB+3 bytes to be
addressed within the I/O space
* Harkens back to a time when memory was
not so plentiful
* You may never see port I/O when analyzing Port 4
high-level applications, but in systems — 0x0004

programming (and especially BIOS) you will 0x0003
see lots of port I/O Port 2

« One of the biggest impediments to Port 1
understanding what's going on in a BIOS 0x0001

Port O
0x0000

/O Address Space

0x0002

Intel Programmer’s guide, Vol 1, 16.1

Port I/O Accesses

Processor

1/0
Space

Intel Programmer’s guide, Vol 1, 16.1

OxFFFE

0x0000

Port I/O access are handled
by the Controller Hub (ICH/
PCH)

— So in a chipset that has a
Memory Controller Hub
(MCH), the MCH performs no
translation of accesses to I/O
space

— The MCH just forwards them
to DMI (and thus to the I/O

Controller Hub)

The Controller Hub contains
the registers that are located
in the 1/0O address space

Again, separate and distinct
from physical memory
address space

How does the hardware distinguish
between port IO and memory access?

GND[]
A1a[]
As[]
A12[]
A1]
Aro[]

Ag[]
Ag[]

AD; [
ADg[]
ADs[]
AD4[]
AD3[]
AD,[]
AD;[]
ADg[]
NMI[C]

INTR[
cLk[C

GND[]

http://www.cpu-

world.com/info/

O 00 N O i1 & W N -

[T S e T = o T = T = S =
O W 00 N O A W N = O

-/

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

Ve .

s Intel 8088 chip

[1A16/53

AL/Ss (from the bad old days)

[]A18/Ss

[]A15/Se

C15E] (HIGH)

—TMN/QES

M [RD

> N(RQIGTO)

i IR SN(RQIGT1) (,

m|w RIS ok NI A

o <& - - Y%

ggg There's a pin
' for that!

JALE (QS0)

B [INTARRN(eI39

M [Test

[]Ready

[JReset

Pinouts/8088.html

11

/O Mapped Address Space

Port 65535
« 1/O Address space consists of two ranges or OXFEEE
types of access:
1. Fixed
— Addresses/peripherals cannot be relocated
— !drrl some instances they can be disabled, but not /O Address Space
2. \Variable
— These addresses can be relocated
— Can also be disabled
« Addressable size can be 8 bits, 16 bits, or
32 bits
Port 4
F— ——— 0x0004
Port 3
16-bit Port 1 . 0x0003
8-bit Port 2{ Port 2
32-bit Port 0 - e 0x0002
Port 1
16-bit Port 0 , 0x0001
8-bit Port 0 «l: Port O
R S 0x0000

1. Fixed I/O Ports

 The addresses depend on the implementation of the 1/O
Controller Hub present in your system

— Check the I/O Controller Hub Datasheet to make sure you are
interpreting these signals properly

« Address ranges that are not listed or marked “Reserved” are
not decoded by the ICH

— Unless one of the variable ranges has been relocated to that
address

« Each fixed 10 address is a 2-byte word

 Remember, on the “other side” of each port address/range
there is a hardware device
— Device interaction and behavior will differ between devices
— This is why it can be difficult to decipher when analyzing

« Port 1/O is a gateway to a black box

Intel, Vol 1, 16.1

Example: ICH 9 Fixed Range

AdId/r(:ss Read Target Write Target Internal Unit
00h-08h DMA Controller DMA Controller DMA
09h-0Eh RESERVED DMA Controller DMA

OFh DMA Controller DMA Controller DMA
10h-18h DMA Controller DMA Controller DMA
19h-1Eh RESERVED DMA Controller DMA

1Fh DMA Controller DMA Controller DMA
20h-21h Interrupt Controller Interrupt Controller Interrupt
24h-25h Interrupt Controller Interrupt Controller Interrupt
28h-29h Interrupt Controller Interrupt Controller Interrupt
2Ch-2Dh Interrupt Controller Interrupt Controller Interrupt

2E-2F LPC SIO LPC SIO Forwarded to LPC

30h-31h Interrupt Controller Interrupt Controller Interrupt
34h-35h Interrupt Controller Interrupt Controller Interrupt
38h-39h Interrupt Controller Interrupt Controller Interrupt
3Ch-3Dh Interrupt Controller Interrupt Controller Interrupt
40h-42h Timer/Counter Timer/Counter PIT (8254)

43h RESERVED Timer/Counter PIT

4E-4F LPC SIO LPC SIO Forwarded to LPC

50h-52h Timer/Counter Timer/Counter PIT

53h RESERVED Timer/Counter PIT

60h Microcontroller Microcontroller Forwarded to LPC

14

Port 60 is the historic
location of the 8042
keyboard controller
status/command port.
And port 64 is the data
port. Notice how it
doesn't tell you that, it
just says they're being
forwarded on to LCP.
Annoying for trying to
figure out what's being
talked to

I/0

Read Target

Write Target

Internal Unit

Address

60h Microcontroller Microcontroller Forwarded to LPC

61h NMI Controller NMI Controller Processor I/F

62h Microcontroller Microcontroller Forwarded to LPC

64h Microcontroller Microcontroller Forwarded to LPC

66h Microcontroller Microcontroller Forwarded to LPC

70h RESERVED NMI and RTC Controller RTC

71h RTC Controller RTC Controller RTC

72h RTC Controller NMI and RTC Controller RTC

73h RTC Controller RTC Controller RTC

74h RTC Controller NMI and RTC Controller RTC

75h RTC Controller RTC Controller RTC

76h RTC Controller NMI and RTC Controller RTC

77h RTC Controller RTC Controller RTC

80h DMA Controller, or LPC, or DMA Controller and LPC or DMA

PCI PCI

81h-83h DMA Controller DMA Controller DMA
84h-86h DMA Controller DMA C°""°i','§1r and LFC or DMA

87h DMA Controller DMA Controller DMA

88h DMA Controller DMA C°“t"°,','glr and LPC or DMA
89h-8Bh DMA Controller DMA Controller DMA
8Ch-8Eh DMA Controller PMA Controfier and LPC or DMA

08Fh DMA Controller DMA Controller DMA
90h-91h DMA Controller DMA Controller DMA

92h Reset Generator Reset Generator Processor 1/F
93h-9Fh DMA Controller DMA Controller DMA 19

I/0

Read Target

Write Target

Internal Unit

This one we’ll
talk about
explicitly later in the
context of SMM

Address
AOh-A1lh Interrupt Controller Interrupt Controller Interrupt
A4h-AS5h Interrupt Controller Interrupt Controller Interrupt
A8h-ASh Interrupt Controller Interrupt Controller Interrupt
ACh-ADh Interrupt Controller Interrupt Controller Interrupt
BOh-B1h Interrupt Controller Interrupt Controller Interrupt
Power
B2h-B3h Power Management Power Management Management
B4h-B5h Interrupt Controller Interrupt Controller Interrupt
B8h-B9h Interrupt Controller Interrupt Controller Interrupt
BCh-BDh Interrupt Controller Interrupt Controller Interrupt
COh-D1h DMA Controller DMA Controller DMA
D2h-DDh RESERVED DMA Controller DMA
DEh-DFh DMA Controller DMA Controller DMA
FOh PCI and Master Abort! FERR#/IGNNE# / Interrupt | oo essor I/F
Controller
170h-177h SATA Controller or PCI SATA Controller or PCI g%“;arded N
1FOh-1F7h SATA Controller or PCI SATA Controller or PCI ;%"f’ded w0
376h SATA Controller or PCI SATA Controller or PCI g‘;’;";’\arded to
3F6h SATA Controller or PCI SATA Controller or PCI g‘:\'}“/_(‘arded 0
4D0h-4D1h Interrupt Controller Interrupt Controller Interrupt
CFSh Reset Generator Reset Generator Processor I/F

Takeaway: there’s a lot of fixed 10 address space, and it’s fragmented too. This is why it’s
recommended that devices map their interfaces to memory rather than IO address space

16

2. Variable I/O Ports

« (Can be relocated to another address

« Can be set/disabled using Base Address Registers
(BARSs) or configuration bits in the various PCI
configuration spaces

— Which we shall discuss very soon!

* The BIOS (and/or other PCI devices or ACPI) can adjust
these values
— Actually pretty much any privileged app can...

 The same as the fixed range, on the “other side” of each
port address/range there is a peripheral device
— Device interaction and behavior will differ between devices

* |CH does not check for overlap

— Results “unpredictable” if overlapping
 Has been used for virtualization attacks

Intel, Vol 1, 16.1

Example: ICH 9 Variable IO Range

Table 9-3.

Variable I/0 Decode Ranges

Range Name Mappable (Bsyitzees) Target
ACPI Anywhere in 64 KB I/O Space 64 Power Management
IDE Bus Master Anywhere in 64 KB I/O Space 16 IDE Unit
Native IDE Command Anywhere in 64 KB I/O Space IDE Unit
Native IDE Control Anywhere in 64 KB I/O Space IDE Unit
USB UHCI Controller #1 Anywhere in 64 KB I/O Space 32 USB Unit 1
USB UHCI Controller #2 Anywhere in 64 KB I/O Space 32 USB Unit 2
USB UHCI Controller #3 Anywhere in 64 KB I/O Space 32 USB Unit 3
USB UHCI Controller #4 Anywhere in 64 KB I/O Space 32 USB Unit 4
USB UHCI Controller #5 Anywhere in 64 KB I/O Space 32 USB Unit 5
USB UHCI Controller #6 Anywhere in 64 KB I/O Space 32 USB Unit 6
SMBus Anywhere in 64 KB I/O Space 32 SMB Unit
TCO 96 Bytes above ACPI Base 32 TCO Unit
GPIO Anywhere in 64 KB I/O Space 64 GPIO Unit
Parallel Port 3 Ranges in 64 KB I/0O Space 8 LPC Peripheral
Serial Port 1 8 Ranges in 64 KB I/0O Space 8 LPC Peripheral
Serial Port 2 8 Ranges in 64 KB I/O Space 8 LPC Peripheral
Floppy Disk Controller 2 Ranges in 64 KB I/O Space 8 LPC Peripheral
LAN Anywhere in 64 KB I/O Space 32 LAN Unit
LPC Generic 1 Anywhere in 64 KB I/O Space 4 to 256 LPC Peripheral
LPC Generic 2 Anywhere in 64 KB I/O Space 4 to 256 LPC Peripheral
LPC Generic 3 Anywhere in 64 KB I/O Space 4 to 256 LPC Peripheral
LPC Generic 4 Anywhere in 64 KB I/O Space 4 to 256 LPC Peripheral
I/O Trapping Ranges Anywhere in 64 KB I/O Space 1to 256 | Trap on Backbone

18

IN - Input from Port

IN—Input from Port

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

E4ib IN AL, imm8 Valid Valid Input byte from imm& /0 port address into
AL

ESib INAX,imm8 Valid Valid Input word from imm&1/0 port address into
AX.

ES b IN EAX, imm8 Valid Valid Input dword from imm&8 /0 port address into
EAX.

EC IN AL,DX Valid Valid Input byte from I/0 portin DX into AL.

ED IN AX,DX Valid Valid Input word from I/0 port in DX into AX.

ED IN EAX,DX Valid Valid Input doubleword from I/0 port in DX into
EAX.

* Note it's DX, not DL. That means the DX form can specify all 2*16
ports, but the IMM8 form can only specify 248 ports.

« “When accessing a 16- and 32-bit 1/O port, the operand-size
attribute determines the port size.” (Because as usual there's an
overloaded opcode for 16/32 bit form)

— Remember if you're in a 16 bit segment it's 16 bit, if you're in a 32 bit
segment it's 32 bit. But you can override it with an operand size
instruction prefix which is talked about later.

From Xeno Kovah’s Intermediate X86 class: http://OpenSecurityTraining.info/IntermediateX86.html

19

OUT - Output to Port

OUT—Output to Port

Opcode*
EG D

E7 ib

E7 b

EE

EF

EF

Instruction

OUT imm8, AL

OUT imm8, AX

OUT imm8, EAX

OUT DX, AL

OUT DX, AX

OUT DX, EAX

64-Bit
Mode
Valid
Valid
Valid
Valid

Valid

Valid

Compat/
Leg Mode

Valid
Valid
Valid
Valid
Valid

Valid

Description

Output byte in AL to I/O port
address imm&.

Output word in AX to I/0 port
address imm8.

Output doubleword in EAX to I/0
port address imm&.

Output byte in AL to I/O port
address in DX.

Output word in AX to I/0 port
address in DX.

Output doubleword in EAX to I/0
port address in DX.

« Basically the same caveat as IN

From Xeno Kovah’s Intermediate X86 class: http://OpenSecurityTraining.info/IntermediateX86.html

20

|O Privilege Level

* There are two bits in the *FLAGS register
which the OS will typically set to O, which

indicate that only ring O is allowed to issue the
IN/OUT instructions

| = Intro x86-64
Intermediate x86-64

31302928272625242322212019181716151413;211 M9 876543210

oD C

1
F

S|Z| |Al_|P

N
FIF[OF|°|F

AlV
O(ojo|O|O|OjO|O|O|O im0t el

X ID Flag (1D} | \
X Virtual Interrupt Pending (VIP)

X Virtual Interrupt Flag (VIF)
X Alignment Check (AC)
X Virtual-8086 Mode (VM)
Resume Flag (RF)
Nested Task (NT)
I/O Privilege Level (IOPL)
Overflow Flag (OF)
Direction Flag (DF)
Interrupt Enable Flag (IF)
Trap Flag (TF)
Sign Flag (SF)
Zero Flag (ZF)
Auxiliary Carry Flag (AF)
Parity Flag (PF)
Carry Flag (CF)

Indicates a Status Flag
Indicates a Control Flag
X Indicates a System Flag

OO VLOLOLOXXOOM XXX

Reserved bit positions. DO NOT USE.
Always set to values previously read.

Intel Vol 1 Sec 3.4.3.1 - page 3-21 - May 2012 manuals Figure 3-8. EFLAGS Register

Port 10 Assembly Examples

(showing that you can either use an 8 bit immediate or a 16 bit register (dx) to specify port
and 8 bit immediate or 8/16/32 bit registers (but only AL/AX/EAX) to specify the data being read/

written)
Read from port 0xB3: IN AL, OxB3
. MOV AX, 0x1234
Write 0x1234 to port 0xB2: MOV AX, 0x1234 | | MOV DX, OxB2
OUT 0OxB2, AX OUT DX, AX
Index/Data pair read offset 0x05: MOV DX, 0x70 MOV AL, 0x05
OUT DX, 0x05 MOV DX, 0x70
MOV DX, Ox71 OUT DX, AL
IN EAX, DX MOV DX, 0x71
IN EAX, DX
Index/Data pair write to offset 0x05: MOV AL, Ox05
MOV DX, 0x70
OUT DX, AL
MOV DX, 0x71
MOV EAX, Ox10
OUT DX, EAX

Port 1O
MOV DX, PORT
C four o, mase | (R

MOV DX, PORT
— Black Box

« IMMS8 (one byte constant) could be a command or data —
that’'s up to the interpretation by the device

 Itis not necessarily known what the black box on the end
of a port does

* Check your Controller Hub datasheet and/or the LPC
decode registers (might offer clues)

24

Port |O Index/Data Pair

MOV DX, 0x70 l Black Box
MOV DX, 0x71 I

Some devices use an index/data pair for 10
An offset is written to the index port
Next a value is read from or written to that offset from the Data port

Devices such as this are CMOS, PCI, and the Keyboard Embedded
Controller on the E6400 (per the below research)

 http://esec-lab.sogeti.com/dotclear/public/publications/11-recon-

stickyfingers slides.pdf

25

|dentifying Port I/O

First try deciphering port IO devices by using the
datasheets (Controller Hub either ICH or PCH)

OS Dev
— http://wiki.osdev.org/l/O_Ports (which links you to...)

Boch'’s or Ralf’'s
— http://bochs.sourceforge.net/techspec/PORTS.LST
— Last change was in 11/6/94 and that’s just how it is with most
BIOS information
Vendors can extend a device interface to any
unoccupied IO address

UEF!I indirection

* When we eventually get to UEFI you will see
that there’s a lot of indirection.

* So this is just to say that if you were REing
some code, while you might eventually find
the actual IN/OUT instructions, it would
suffice to find
“EFI_CPU_102_PROTOCOL.lo.Read() and
lo.Write()” which are functionally equivalent

— You can read more about them in the UEFI specs’
Volume 5

Example: Port |O Configuring
PCIEXBAR

DRAM Controller

B0O:DO:FO

60h PCIEXBAR F8000001h =~

4GB

4 GB minus 2 MB

4 GB minus 17 MB
4 GB minus 18 MB

4 GB minus 19 MB

4 GB minus 20 MB

4 GB minus 256 MB

Possible address
range

§~>

. FFFF_FFFFh
High BIOS FFED_0000h
DMI Interface
(subtractive decode)
FEFO0_0000h

FSB Interrupts

FEEO_0000h

DMI Interface
(subtractive decode)

FEDO_0000h

Local (CPU) APIC FEC8 0000h
/O APIC FECO_0000h
DMI Interface Optional HSEG
(subtractive decode) FEDA_0000h to
FEDB_FFFFh
F000_0000h
PCI Express Configuration
Space
F800_0000h

* On the Mobile 4-Series Chipset, the BIOS (executed by the

CPU), configures the PCIEXBAR in the DRAM Controller

« F800_0000h (on an E6400 with 4GB RAM for example)

« PCI Memory range is now mapped

« So how does this configuration actually occur? PCI...

28

