Intermediate Intel x86:
Assembly, Architecture,
Applications, and Alliteration

Xeno Kovah — 2010
xkovah at gmail



All materials are licensed under a Creative
Commons “Share Alike” license.

 http://creativecommons.org/licenses/by-sa/3.0/

You are free:

to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

®E

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible 2
license.

© ®



Credits Page

* Your name here! Just tell me something
| didn’ t know which | incorporate into
the slides!

* Veronica Kovah for reviewing slides and

suggesting examples & questions to
answer

* Murad Kahn for Google NaCl stuff



Answer me these questions three

* What, is your name”?
* What, is your quest?
* What...is your department?




Agenda

Part 1 - Segmentation
Part 2 - Paging
Part 3 - Interrupts

Part 4 — Debugging, 1/0, Misc fun on a
bun




Miss Alaineous

Questions: Ask ‘em if you got ‘em

— If you fall behind and get lost and try to tough it out
until you understand, it’ s more likely that you will
stay lost, so ask questions ASAP.

Browsing the web and/or checking email

during class is a great way to get lost ;)

2 hours, 10 min break, 2 hours, 1 hour lunch,
1 hour at a time with 5 minute breaks after
lunch

Adjusted depending on whether I’ m running

fast or slow (or whether people are napping
after lunch :P)

6



Class Scope

We’ re going to only be talking about 32bit
architecture (also called 1A-32). No 16bit or 64bit.

Also not really going to deal with floating point
assembly or registers since you don’ t run into them
much unless you’ re analyzing math/3d code.

This class focuses on diving deeper into architectural
features

Some new instructions will be covered, but mostly in
support of understanding the architectural topics, only
two are learning new instruction” s sake. As shown in
last class, we have already covered the majority of
Instructions one will see when examining most
programs. 7



What | hope you get out of the

class

A better understanding of Intel architecture

and how it s leveraged by OSes

— Which can in turn translate to understanding how
OSes are virtualized

Knowledge of where hardware support for

security exists, and how it is or isn’ t used.

A base for understanding even more
advanced features. The curiosity to
independently explore advanced features.

The satisfaction that comes with knowing how
something works at a very fundamental level.,



Instructions Quiz

Learned around 26 instructions and variations
About half are just math or logic operations
NOP

PUSH/POP

CALL/RET

MOV/LEA

ADD/SUB

JMP/Jcc

CMP/TEST

AND/OR/XOR/NOT

SHR/SHL/SAR/SAL

IMUL/DIV

REP STOS, REP MOVS

LEAVE



Stack Quiz:
Example1.c

: sub:
[[Example1 - uglng the stack 00401000 push ebp
/[to call subroutines 00401001 mov ebp, esp
//INew instructions: 00401003 mov eax,@BEEFh
//push, pop, call, ret, mov 00401008 pop ebp
int sub(){ 004}01009 ret
main:

return Oxbeef, 00401010 push ebp
} 00401011 mov ebp,esp
int main(){ 00401013 call sub (401000h)

SUEK); 00401018 mov eax,@F@@Dh

return 0xfO0d:; 0040101D  pop ebp

0040101E ret

10



EFLAGS Re%ister Pt\)fs!cglﬁddress Code, Data or
n Linear Address Stack Segment
i Reglswrscm S—TS lect gaSR'StauiTSS)
egment Selector _ Segment
CR2 - -
CR1 - =Data

Task Register

Global Descriptor

Table (GDT)
Segment Sel. } - »| Seg. Desc. [— Ir&errupt ERNer
C Code
urrent- —
Interrupt TSS Seg. Sel.- — »| TSS Desc. TSS L Stack
Vector > Sea D
F-—- . Desc.
Interrupt Descriptor | g Task-State
Table (|DT) | - — | TSSDesc. —— segment (TSS) - Task
| > - - Code
Interrupt Gate | — - - LDT Desc. [— - " P Data
- - |: »
Task Gate . Stk
ﬁ
»|  Trap Gate '
! Local Descriptor Exception Handler
f Table (LDT) "1 Code |
; Current- — »= Stack
IDTR Call-Gate - »| Seg. Desc. L |_.
Segment Selector
L} _: Call Gate | —|— - S Protected Procedure
ode
XCRO (XFEM - Current- — »
c o o E e
Linear Address Space Linear Address
[ Dir Table | Offset |
Linear Addr. Page Directory Page Table Page
»| Physical Addr.
Pg. Dir. Entry Pg. Tbl. Entry
ol L
. This page mapping example is for 4-KByte pages
CR3* and the normal 32-bit physical address size.

*Physical Address

That’ s what
you’ re going to
learn! :D

Figure 2-1. |A-32 System-Level Registers and Data Structures

11



As a nerd | actually find this graphic to be disappointingly inaccurate because this is
not where he said the line...I couldn’ t find a good picture of that moment. 12
If | took any pride in my work | would have rented the video and taken a screen shot...



S Morning Warm Up
CPUID - CPU (feature) ldentification

» Different processors support different features

« CPUID is how we know if the chip we’ re running on
supports newer features, such as hardware
virtualization, 64 bit mode, HyperThreading, thermal
monitors, etc.

« CPUID doesn’ t have operands. Rather it “takes
input” as value preloaded into eax (and possibly
ecx). After it finished the outputs are stored to eax,

ebx, ecx, and edx.
CPUID—CPU Identification

Opcode Instruction 64-Bit Mode Compat/ Description
Leg Mode
OF A2 CPUID Valid Valid Returns processor identification

and feature information to the

EAX, EBX, ECX, and EDX registers,

as determined by input entered in | 13
EAX (in some cases, ECX as well).




How do we even know If we

can use CPUID?

« CPUID not added until late model 486s
* ID Flag in EFLAGS (bit 21)

« “The ability of a program or
procedure to set or clear this flag

indicates support for the CPUID
instruction.” (Vol. 3a, Sect. 2.3)

e How do we read/write to EFLAGS?
e PUSHFD/POPFD

14



At

PUSHFD - Push EFLAGS onto Stack

PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
SC PUSHF Valid Valid Push lower 16 bits of EFLAGS.
SC PUSHFD N.E. Valid Push EFLAGS.
SC PUSHFQ Valid N.E. Push RFLAGS.

* If you need to read the entire EFLAGS
register, make sure you use PUSHFD,
not just PUSHF. (I found Visual Studio

forces the 16 bit form if you don’ t have
the D!)

15



A

POPFD - Pop Stack Into EFLAGS

POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
8D POPF Valid Valid Pop top of stack into lower 16 bits of
EFLAGS.
SD POPFD N.E. Valid Pop top of stack into EFLAGS.
REXW+38D POPFQ Valid N.E. Pop top of stack and zero-extend into
RFLAGS.

« There are some flags which will not be transferred
from the stack to EFLAGS unless you' re in ring O.

 If you need to set the entire EFLAGS register, make
sure you use POPFD, not just POPF. (I found Visual
Studio forces the 16 bit form if you don’ t have the D!)

16



Some Example CPUID Inputs and Outputs

REGISTER REGISTERS
BEFORE CPUID AFTER CPUID
EXECUTES , EXECUTES .
Table 3-20. Information Returned by CPUID Instruction
Initial EAX
Value Information Provided about the Processor
Basic CPUID Information
OH EAX Maximum Input Value for Basic CPUID Information (see Table 3-21)
EBX “Genu”
ECX “ntel”
EDX “inel”
01H EAX Version Information: Type, Family, Model, and Stepping ID (see
Figure 3-6)
EBX Bits 7-0: Brand Index

Bits 15-8: CLFLUSH line size (Value * 8 = cache line size in bytes)

Bits 23-16: Maximum number of addressable IDs for logical processors

in this physical package*.

Bits 31-24: Initial APIC ID

ECX Feature Information (see Figure 3-7 and Table 3-23)
EDX Feature Information (see Figure 3-8 and Table 3-24)

NOTES:

* The nearest power-of-2 integer that is not smaller than EBX[23:16]
is the number of unique initial APIC IDs reserved for addressing dif-
ferent logical processors in a physical package.

02H EAX Cache and TLB Information (see Table 3-25)
EBX Cache and TLB Information 17
ECX Cache and TLB Information
EDX Cache and TLB Information




Lab: CPUID.c

unsigned int maxBasicCPUID;

char vendorString[13];

char * vendorStringPtr = (char *)vendorString; //Move the address into its own register
IIbecause it makes the asm syntax easier

IIFirst we will check whether we can even use CPUID
//Such a check is actually more complicated than it seems_(OMITED FROM SLIDES)
if(ChecklfWeCanUseCPUID() == 1){
__asm{
mov edi, vendorStringPtr; //Get the base address of the char[] into a register
mov eax, 0; //We're going to do CPUID with input of 0
cpuid; I/As stated, the instruction doesn't have any operands
/IGet back the results which are now stored in eax, ebx, ecx, edx
/land will have values as specified by the manual
mov maxBasicCPUID, eax;
mov [edi], ebx; //We order which register we put into which address
mov [edi+4], edx; //so that they all end up forming a human readable string
mov [edi+8], ecx;

}
vendorString[12] = 0;

printf("maxBasicCPUID = %#x, vendorString = %s\n", maxBasicCPUID, vendorString);
}

else{
printf("Utter failure\n");
}

return O0xb45eba11; 18



CPUID Misc

* | highly recommend Amit Singh’ s CPUID info
dumping program for *nix systems

— http://www.osxbook.com/blog/2009/03/02/
retrieving-x86-processor-information/

« Also see “Intel Processor Identification and
the CPUID Instruction - Application Note 485"
for a lot more info about CPUID

— http://www.intel.com/Assets/PDF/appnote/
241618.pdf

19



In the beginning, there was real
mode. And it was teh suck.

 Real-address Mode - (I call it Real Mode or maybe
“For Reals Mode...Seriously. For Reals. Mode.”)
“This mode implements the programming
environment of the Intel 8086 processor with
extensions (such as the ability to switch to protected
or system management mode). The processor is
placed in real-address mode following power-up or a
reset.”

 DOS runs in Real Mode.
* No virtual memory, no privilege rings, 16 bit mode

20
Vol. 1, Sect. 3.1



Processor Modes 2

« Protected Mode - “This mode is the native state of
the processor. Among the capabilities of protected
mode is the ability to directly execute ‘Real-address
mode’ 8086 software in a protected, multi-tasking
environment. This feature is called virtual-8086
mode, although it is not actually a processor mode.
Virtual-8086 mode is actually a protected mode
attribute that can be enabled for any task.”

« Virtual-8086 is just for backwards compatibility, and |
point it out only to say that Intel says it’ s not really its
own mode.

* Protected mode adds support for virtual memory and
privilege rings.
* Modern OSes operate in protected mode -
Vol. 1, Sect. 3.1




Processor Modes 3

« System Management Mode - “This mode provides an
operating system or executive with a transparent
mechanism for implementing platform-specific functions
such as power management and system security. The
processor enters SMM when the external SMM interrupt
pin (SMI#) is activated or an SMI is received from the
advanced programmable interrupt controller (APIC).”

« SMM has become a popular target for advanced rootkit
discussions recently because access to SMM memory is
locked so that neither ring 0 nor VMX hypervisors can
access it. Thus if VMX is more privileged than ring 0 (“ring
-17), SMM is more privileged than VMX (“ring -2")
because a hypervisor can’ t even read SMM memory.

« Reserving discussion of VMX and SMM for Advanced x86
class

22
Vol. 1, Sect. 3.1



Long Mode

L= SMI#
64-bit Compatibility
Mode Mode RSM
CS.Ll=0
CS..=0
EFERLME=], CR4.PAE=] CR0.PG=0
then CRO.PG=1 then EFERLME=0
RSM SM I
RSM SMI4 ‘
— !
% EFLACSVM=0 . : Reset
Protected Y -( 8[0;2
Mode Mode
EFLACS.VM=1
A
SMI4# RSM : )
* CROPE=1 CRO.PE=0 Reset .~ .-~
Reset '
’J\ /,,-"':"
Systen h Real  \——» M
Management Mode
Mode +— RSM

Reset L 513-206.605

Figure 1-6. Operating Modes of the AMD64 Architecture
From http://support.amd.com/us/Processor TechDocs/24593.pdf

23



— g i

Privilege Rings

MULTICS was the first OS with support for
hardware-enforced privilege rings

x86 s rings are also enforced by hardware

You often hear that normal programs execute
in “ring 3” (userspace/usermode) and the
privileged code executes in “ring

0" (kernelspace/kernelmode)

The lower the ring number, the more
privileged the code is

In order to find the rings, we need to N
understand a capability called segmentation



Vol. 3a
Sect. 5.5

Rings on x86

Protection Rings

Operating
System

Kemnel Level 0
Operating System

Services
S
Applications > Level 3
Figure 5-3. Protection Rings 25



Paravirtualized Xen

(requires a modified Guest OS)
(Newest Xen instead uses hw VMX to be more privileged than OS kernel)

Figure 5: execution mode

level3
level2
level1

levell

Xen

Guest OS

Application

26
http://www.valinux.co.jp/imgs/pict/shot/tech/techlib/eos/xen_ia64_memory/figure5.gif



Segmentation

« “Segmentation provides a mechanism for dividing the
processor’ s addressable memory space (called the linear
address space) into smaller protected address spaces called

segments.” (emphasis theirs)

Segment Segment Linear Address Space
Registers Descriptors (or Physical Memory)
Access Limit
| CS » A
Base Address Stack
Access | Limit
| . > Base Address -
( DS—| 3 Access Limit
: Base Address Code
Access Limit
ES |—> ‘
Base Address — 4
— I Data
:]FS a Access Limit
Base Address Data
:] Access Limit
» A »
s Base Address
Access | Limit ANy .
Base Address A
>
Access | Limit
Base Address It o
Access Limit ‘1 Data
Base Address
Access | Limit 4
Base Address —
Vol.3a, Sect. 3.1 -

& 3.2.3

Figure 3-4. Multi-Segment Model

27



Segment Addressing

« “To locate a byte in a particular segment, a logical
address (also called a far pointer) must be provided. A
logical address consists of a segment selector and an

offset.”
« “The physical address space is defined as the range of
addresses that the processor can generate on its

address bus”

— Normally the physical address space is based on how much
RAM you have installed, up to a maximum of 2*32 (4GB). But
there is a mechanism (physical address extentions - PAE)
which we will talk about later which allows systems to access a

space up to 2*36 (64GB).
— Basically a hack for people with more than 4GB of RAM but
who aren’ t using a 64 bit OS.

* Linear address space is a flat 32 bit space

 If paging (talked about later) is disabled, linear address
space is mapped 1:1 to physical address space 28
Vol.3a, Sect. 3.1



Segmentation Restated

Segmentation is not optional

Segmentation translates logical addresses to linear addresses
automatically in hardware by using table lookups

Logical address (also called a far pointer) = 16 bit segment
selector + 32 bit offset

If paging (which is talked about later) is disabled, linear
addresses map directly to physical addresses

15 0 31(63) 0
[ Seg. Selector | Offset (Effective Address) |

Y

Descriptor Table

Logical
Address

\J
. Segment BaseAddress»E]

Descriptor

31(63) | 0
Linear Address |

29
Figure 3-5. Logical Address to Linear Address Translation



Logical Address
(or Far Pointer)

The Big Picture

Assume paging is disabled for now

Y ¢ linear address == physical address
Segment
Selector Offset Linear Address
I | | Space
Global Descriptor .
Physical
Table (GDT) Address
Space
Segment
Segment | _Page |
Ly Descriptor
| Phy. Addr.
> Lin. Addr. ol
—l—> A
4 {
Segment
Base Address \\
The wool over your eyes
Segmentation

Vol.3a, Sect. 3.1

Figure 3-1. Segmentation and Paging




Segment Selectors

* A segment selector is a 16 bit value held in a
segment register. It is used to select an index for a
segment descriptor from one of two tables.

— GDT - Global Descriptor Table - for use system-wide

— LDT - Local Descriptor Table - intended to be a table per-

process and switched when the kernel switches between
process contexts

* Note that the table index is actually 13 bits not 16, so
the tables can each hold 213 = 8192 descriptors

5 33 1 0 2 bit “privilege level”?
Index ||RPL] < Hmmm...getting warm
Table Indicator ‘ pUSh that onto a
0=0GDT mental stack
1=LDT

Requested Privilege Level (RPL)

31
Figure 3-6. Segment Selector



The Six Segment Registers

(Harbingers of DOOOOOM!!!)

CS - Code Segment
SS - Stack Segment

— “Stack segments are data segments which must be read/
write segments. Loading the SS register with a segment
selector for a nonwritable data segment generates a
general-protection exception (#GP)”

DS - Data Segment
ES/FS/GS - Extra (usually data) segment registers

The “hidden part” is like a cache so that segment
descriptor info doesn’ t have to be looked up each

time. Visible Part Hidden Part

Segment Selector . Base Address, Limit, Access Information | CS
SS
DS
ES
FS
GS

32

Figure 3-7. Segment Registers



Implicit use of segment registers

« When you’ re accessing the stack, you’ re implicitly
using a logical address that is using the SS (stack
segment) register as the segment selector. (l.e.
“ESP” == “SS:ESP”)

« When you’ re modifying EIP (with jumps, calls, or
rets) you’ re implicitly using the CS (code segment)

register as the segment selector. (“"EIP” ==
“CS:EIP”)

« Even if a disassembler doesn’ t show it, the use of
segment registers is built into some of your favorite

153 AS‘ B REP MOVS m32, Valid Valid Move (E)CX doublewords from
m32 DS:[(€E)SI] to ES:[(E)DI].

33



Explicit use of segment
registers

You can write assembly which explicitly specifies
which segment register it wants to use. Just prefix the
memory address with a segment register and a colon

“mov eax, [ebx]” vs “mov eax, fs:[ebx]”

The assembly just puts a prefix on the instruction to
say “When this instruction is asking for memory, it’ s
actually asking for memory in this segment”. We will
talk about segment prefixes along with other
instruction prefixes at the end of the class if we have
time.

In this way you’ re actually specifying a full logical
address/far pointer. 34



Lab: UserspaceSegmentRegisters.c

» Userspace version of code which reads
the segment

* Moves from segment registers to
memory, but the manual considers that
the same as the other types of moves
(but it does describe the special
constraints which exist when moving to/
from segment registers)

35



Lab: KernelspaceSegmentRegisters.c

 Kernel version of the same code,
Implemented as a kernel driver.

« Thisisn’t a class on windows drivers, so

— open the “Windows XP Checked Build

Environment” link on your desktop, navigate to
Intermediate X86Code\KernelspaceSegmentRegisters

— type “build —c”
— run the magic “load.bat”
« We use Sysinternals’ DebugView to see the

output of the kernel space DbgPrint()

statements. (They would also show up if
attached to a kernel debugger.)

36



¥
A

e~ i

=
T
. 5
My Compute ANDDa SENIICrOSOraistal Intermediate. .
& Z005°E...

f Y

- |

Recycle Bin Dbgwxe Wir_ldows,XP SViortcut ko ¢+ Windows XP Checked Build Environment

Checked Build Intermediate...
-y ©F
EED ey
[azilla

Environment

!:: C:\WinDDK\3798"1 .183>x
Y ““‘
g “f C:\WinDDKE\N379871 .183>cd C:\IntgrmediateX86Code

C:\IntermediateX86Code >dir
Uolume in drive C has no lahN
Uolume Serial Number is

Directory of C:\IntermediateX86Code

91,25,28108 ©B6:53 AM <DIR> .
B1,/25,2810 ©B6:53 AM <DIR> .-
01/25,2018 B6:52 AM <DIR> basic_hardware
01,25,28108 ©B6:52 AM <DIR> bhuin_keysniff
01,25,2818 6B6:50 AM <DIR> BreakMyHeart
01/18,26011 ©92:38 AM <DIR> BreakOnThruToTheOtherSide
91/25,28180 B6:52 AM <DIR> CPUID
01,25,28180 6B6:50 AM <DIR> Debug
B1,/25,28180 ©B6:52 AM <DIR> Guestimate
01,/25,2810 ©B6:52 AM <DIR> HelloKernel
01/25,2018 6B6:52 AM <DIR> InstructionPrefixes
01,25,2818 6B6:50 AM <DIR> IntermediateX86
B1,/18,2811 ©B92:32 AM 3.279.872 IntermediateX86.nch
01/24,2010 ©B4:59 PM 8,152 IntermediateX86.sln
01./25,2018 B6:52 AM <DIR> KernelspaceSegmentRegisters
B1,/25,28180 ©B6:52 AM <DIR> Nave lGaze
01/25,28180 ©B6:52 AM <DIR> ParlorTrick
01,25,28180 B6:52 AM <DIR> ProofPudding
01,25,2818 B6:52 AM <DIR> ProtMode—xeno_modified
01,25,2810 ©B6:50 AM <DIR> Release
91/25,28180 ©B6:52 AM <DIR> ScratchPad
01./25,2018 6B6:50 AM <DIR> SegmentRegisterslUserspace
01./25,2018 B6:52 AM <DIR> TryToRunTryToHide
01/25,2018 B6:52 AM <DIR> UserspaceSegmentRegisters
91,25,28108 ©B6:52 AM <DIR> UerbhoseRedPill

2 Filed(s> 3,288,024 hytes

23 Dir<(s> 792,809,472 hytes free

C:\IntermediateX86Code>



......

C:\IntermediateX86Code>cd KernelspaceSegmentRegisters

C:\IntermediateX86Code\KernelspaceSegmentRegisters>build —c
Adding /Y to COPYCMD so xcopy ops won’t hang.
Object root set to: ==> obhjchk_uxp_x86
Compile and Link for i386
Loading C:\WINDDK\3790"1.183\build.dat...
Computing Include file dependencies:

Examining c:\intermediatex86code\kernelspacesegmentregisters directory for files to compile.

c:\intermediatex86code\kernelspacesegmentregisters — 1 source files (83 lines)
BUILD: Saving C:\WINDDK\3798%1.183\build.dat...
BUILD: Compiling (NoSync) c:\intermediatex86code\kernelspacesegmentregisters directory
Compiling — kernelspacesegmentregisters.c for i386
BUILD: Linking c:\intermediatex86code\kernelspacesegmentregisters directory
Linking Executable — i386\kernelspacesegmentregisters.sys for i386
BUILD: Done

2 files compiled
1 executable built

C:\IntermediateX86Code\KernelspaceSegmentRegisters>load.bat

5:Confrm »> @ - A {5;Conﬁrm ¢4

*

P WO

Tine V Debug PrintN

00000000 The =segment =elector stored in the cs register = 0x8
.01892308 Its Requested Privilege Level i=s 0

02906068 It selects a segment in the

03753075 GDT 0: results

.04723896 of index 0=zl
.04724092

nc?22cnc Tl mmmrwmnd —~mlmmbman mdkmmnmAd e b lm e anmma bk man = (e N

o N e s s R e Y e

38



Results for our WinXP systems

(subject to change on other versions, service pack levels, etc)

UserspaceSegmentRegisters.c KernelspaceSegmentRegisters.c
Segment RPL Table Index Segment RPL Table Index
Register Register
CS = 3 GDT 3 CS = 0 GDT 1
Ox1b 0x8
SS = 3 GDT 4 SS = 0 GDT 2
0x23 0x10
DS = 3 GDT 4 DS = 3 GDT 4
0x23 0x23
ES = 3 GDT 4 ES = 3 GDT 4
0x23 0x23
FS = 3 GDT 7 FS = 0 GDT 6
0x3B 0x30

GS=0 Invalid Invalid Invalid GS=0 Invalid Invalid Invalid

39



Inferences

Windows maintains different CS, SS, &
FS segment selectors for userspace
processes Vs kernel ones

The RPL field seems to correlate with
the ring for kernel or userspace

Windows doesn’ t change DS or ES
when moving between userspace and
kernel (they were the exact same
values)

Windows doesn’ t use GS

40



One more time

One of the segment registers Address used in some
(SS/CS/DS/ES/FSIGS) assembly instruction
Logical 15\ 0 31(63) . I 0
Ad s [ Seg. Selector | | Offset (Effective Address) |
Y

Descriptor Table

Y
L | Segment Base Address>T.

Descriptor
GDTorLDT —

31(63) \ 0
Linear Address I

Figure 3-5. Logical Address to Linear Address Translation

41



All entries in
these tables
are “Segment
Descriptor”
structures

Special registers
point to the base
of the tables &

specify their size

GDT & LDT

Global Local
Descriptor Descriptor
Table (GDT) Table (LDT)
T ! !
' TI=0 TI=1
Segment
Selector
56 56
48 48
J—
40 40
32 32
_<
24 24
16 16
— 8 8
First Descriptor in
GDT is Not Used 0 0
LN »
GDTR Register " ‘ LDTR Register
| Limit [ Limit
|  Base Address Base Address

Seq. Sel.

Figure 3-10. Global and Local Descriptor Tables

42



Global Descriptor Table Register
(GDTR)

System Table Registers
47(79) 1615 0 From Vol 3a.

GDTR |  32(64)-bit Linear Base Address | 16-Bit Table Limit| Figure 2-5

* The upper 32 bits ("base address") of the
register specify the linear address where the
GDT is stored.

* The lower 16 bits ("table limit") specify the
size of the table in bytes.

« Special instructions used to load a value into
the register or store the value out to memory
* — LGDT - Load 6 bytes from memory into GDTR
* — SGDT - Store 6 bytes of GDTR to memory

43



Local Descriptor Table Register (LDTR)

System Segment Segment Descriptor Registers (Automatically Loaded)

Regist
o Atributes — From Vol 3a.
LDTR , Seq. Sel. ‘ 32(64)-bit Linear Base Address ' Segment Limit || ' Figure 2_5

* Like the segment registers, the LDT has a
visible part, the segment selector, and a
hidden part, the cached segment info which
specifies the size of the LDT.

— The selector’ s Table Indicator (T) bit must be set
to 0 to specify that it’ s selecting from the GDT, not
from itself ;)

« Special instructions used to load a value into
the register or store the value out to memory

% — LLDT - Load 16 bit segment selector into LDTR

— SLDT - Store 16 bit segment selector of LDTR to

memory 44



Segment Descriptors

“Each segment has a segment descriptor, which specifies the
size of the segment, the access rights and privilege level for the,
the segment type, and the location of the first byte of the
segment in the linear address space (called the base address of

the segment).”

31 242322212019 1615141312 11 8 7
ol |A| Sec. D
Base 31:24 Gl/|L|v] Umit |P| p |S Type Base 23:16 4
3 L| 19:16 L
3 1615 0
Base Address 15:00 Segment Limit 15:00 0
L — 64-bit code segment (IA-32e mode only)

AVL — Available for use by system software

BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

DPL — Descriptor privilege level

G — Granularity

LIMIT — Segment Limit

P — Segment present

S — Descriptor type (0 = system; 1 = code or data)

TYPE — Segment type
45

Figure 3-8. Segment Descriptor



Descriptor Description

Base (32 bits) - linear address where the segment
starts

Limit (20 bits) - Size of segment (either in bytes or
4kb blocks). End address of segment = base + limit.

G (Granularity) flag - if O, interpret limit as size in
bytes. If 1, interpret as size in 4kb blocks.

D/B - Default operation size flag. 0 = 16 bit default, 1
= 32 bit default. This is what actually controls
whether an overloaded opcode is interpreted as
dealing with 16 or 32 bit register/memory sizes

DPL (Descriptor Privilege Level - 2 bits) - Hmm...
another interesting field which can range from 0 to 3
“with 0 being the most privileged level”. Push that

onto your mental stack with the RPL.
46



Segmentation and Opcodes

05 iw ADD AX, imm16 Valid Valid Add imm16 to AX.
05 id ADD EAX, imm32 Valid Valid Add imm32 to EAX.

We can now dig into the simplification | told you in the
intro class time about operands being treated as 32 bits
just because you’ re in protected mode.

Instead the processor (using the D/B bit in segment
descriptors) interprets instructions as referring to address
and operand sizes which are the same as the type of code
or data segment you' re currently using. So if CS points to
a 32 bit segment it uses 32 bit forms, and if it points at a
16 bit segment 16 bit forms.

A normal OS like Win/Mac/Linux is going to be using 32
bit segments for all normal code.

But what | said was good enough for before insofar as real
mode doesn’ t have the ability to use 32 bit segments, and
therefore being in protected mode is a prereq to using 32

bit instructions.
47



Descriptor Description 2

L Flag - 64 bit segment - ignore

S (System) Flag - 0 for System segment. 1 for Code
or Data segment.

Type (4 bits) - Whether a segment is code or data,
what the permissions are, whether it’ s been
accessed, and some other stuff. See next slide

P (Present) Flag - O for not present. 1 for present. “If
this flag is clear, the processor generates a segment-
not-present exception (#NP) when a segment
selector that points to the segment descriptor is
loaded into a segment register.”

48



Table 3-1. Code- and Data-Segment Types

Type Field Descriptor Description
Decimal | 11 | 10 | 9 | 8 Type
E W A
0 0 0 0 0 Data Read-Only
1 0 0 0 1 Data Read-Only, accessed
2 0 0 1 0 Data Read/Write
3 0 0 1 1 Data Read/Write, accessed
4 0 1 0 0 Data Read-Only, expand-down
5 0 1 0 1 Data Read-Only, expand-down, accessed
6 0 1 1 0 Data Read/Write, expand-down
7 0 1 1 1 Data Read/Write, expand-down, accessed
C R A

8 1 0 0 0 Code Execute-Only
9 1 0 0 1 Code Execute-Only, accessed
10 1 0 1 0 Code Execute/Read
1 1 0 1 1 Code Execute/Read, accessed
12 1 1 0 0 Code Execute-Only, conforming
13 1 1 0 1 Code Execute-Only, conforming, accessed
14 1 1 1 0 Code Execute/Read, conforming
15 1 1 1 1 Code Execute/Read, conforming, accessed

49



Table 3-2. System-Segment and Gate-Descriptor Types

Type Field Description
Decimal 11|10 9 8 32-Bit Mode IA-32e Mode
0 0 0 0 | Reserved Upper 8 byte of an 16-
byte descriptor
1 0 0 0 1 | 16-bit TSS (Available) Reserved
2 0 0 1 0 |LDT LDT
3 0 0 1 1 | 16-bit TSS (Busy) Reserved
B 0 1 0 0 | 16-bit Call Gate Reserved
5 0 1 0 1 | Task Gate Reserved
6 0 1 1 0 [ 16-bit Interrupt Gate Reserved
7 0 1 1 1 | 16-bit Trap Gate Reserved
8 1 0 0 O | Reserved Reserved
9 1 0 0 1 | 32-bit TSS (Available) 64-bit TSS (Available)
10 1 0 1 0 | Reserved Reserved
1 1 0 1 1 | 32-bit TSS (Busy) 64-bit TSS (Busy)
12 1 1 0 0 | 32-bit Call Gate 64-bit Call Gate
13 1 1 0 1 | Reserved Reserved
14 1 1 1 0 | 32-bit Interrupt Gate 64-bit Interrupt Gate
15 1 1 1 1 | 32-bit Trap Gate 64-bit Trap Gate

50



Lab:
WinDbg & the !descriptor plugin

* Found a WinDbg plugin for printing out
IDT/GDT/LDT entries here

— http://www.codeguru.com/cpp/w-p/system/
devicedriverdevelopment/article.php/

c8035/

* Made modifications relevant for the
class such as printing out segment
types, dumping entire table

+ First we need to get cozy with WinDbg _




Configuring VMWare for kernel debugging

(tested on VMWare Server 1.x (Windows & Linux), & ESX & vSphere)
(for ESX/vSphere don’ t put the \\.\pipe\ in front of names)

Debuggee This slide is for if you want to
*Add virtual serial port test this with your own VMs

*Use named pipe

- Windows name: \\.\pipe\whatever

- Linux name: /tmp/whatever

* This end is a server

(VM Debugger) Other end is a virtual machine
(Host Debugger) Other end is an application

VM Debugger Host Debugger (Windows only)
*Add virtual serial port *In WinDbg on the host when you’ ve
*Use named pipe selected kernel debug

- Windows name: \\.\pipe\whatever ~Under the COM tab

- Linux name: /tmp/whatever - Port: \\.\pipe\whatever

* This end is a client - Click the “pipe” checkbox

* Other end is a virtual machine 52



Connecting Debugger

%4 WinDbg:6.10.0003.233 X86
=08 Edit  Yiew Debug Window Help

Open Source File... Ctrl+0
Open Executable. .. Ctrl+E
Attach to a Process... Fé

Open Crash Dump... Ctrl+D

Connect to Remote Session... Ctrl+R

Symbol File Path ... Ctrl+5
Source File Path ... Ctrl+P
Image File Path ... Ctrl+I

Kernel Debuq... Ctrl+K

Kernel Debugging

COM 1394 |USB20 | NET | Local |

Baud Rate:
Pi
115200 [¥1Pipe
Port: []Reconnect
\\.\pipe\whatever Resets:
0

Kemel debuaging over a COM port or vittual senal device

Help

53




Connecting Debugger 2

&1 Kernel ‘com: port=com ,baud=115200" - WinDbg:6.10.0003.233 X86

File Edit Yew Debug Window Help

B o EE HEES oo f DEQEOREOEE [F A

Micro=soft (R) Windows Debugger Version 6.10.0003.233 X86
Copyright {(c) Microsoft Corporation. All rights reserved.

opened \\.\pipe\whatever

Waiting to reconnect. ..

& Kernel ‘com: port=com1 ,baud=115200" - WinDbg:6.10
File Edit View NeEs0GN Window Help

Hicro=soft
Copvright

Opened N\

TMaatanea +m

Ctrl+Break

54



1 Kernel ‘com:port=com1 ,baud=115200" - WinDbg:6.10.0003.233 X86

File Edit WYew Debug Window Help

S

SR EEHE TR

ommand - Kernel ‘com:port=com1,baud=115200" - WinDbg:6.10.0003.233 X&

Hicro=soft (R) Windows Debugger Version 6.10.0003.
Copyvright (c) Microsoft Corporation. All rights rEsg

Opened N . SNcoml

Waiting to reconnect. ..

Connected to Windows XP 2600 =86 comp
Kernel Debugger connection establishe
Symbol search path is: SREV*C: \WINDOWS
Executable search path is:

Windows XP Kernel Version 2600 (Servi
Product: WinNt, suite: TerminalServer
Built by: 2600 .=xpsp_sp2_gfe.070227-23
Machine Hame:

Mouse over to see
description of which | ., .. _ .. .
type of window it hatible

opens up

System Uptime: 0 days 0:38:17.921

nt |RtlpBreakWithStatusInstruction:
80522980 cc int 3

*

%* You are seeing this message because you pressed either
%* CTRL+C {(i1f wou run kd.e=xe) or,

* CTRL+BREAK {(if wou run WinDBG),

%* on your debugger machine's keyboard.

*

* THIS IS HOT A BUG OR A SYSTEM CRASH

*

* If you did not intend to break into

* press the "Enter" key now. This message might immediately reappear. If it
* does, press "g" and "Enter" again.

*

Kernel base = 0x804d7000 PsloadedModulelist = 0x8055c700
Debug =session time: Sat Jan 16 15:42:15.593 2010 (GHMT-5)

Break instruction exception — code 80000003 {(first chance)
36 36 36 36 36 I I I I I I I 6 I I I I I I I I I I 6 I 6 I I I I I I I I I I 6 I I I I 36 I 36 I 636 6 I 3636 I 36 I 36 I 36 I 636 6 36 I 36 36 36 36 3636 363 63 633 ¥

the debugger, press the "g" key, then

¥ K K K K K K K K XK X X

636 36 36 36 36 36 36 36 36 36 I I6 I 6 36 36 36 36 I I6 36 6 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 6 36 36 36 36 36 36 36 6 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 6

b.464 2010 (GMT-5)). ptred4 FALSE

kd> |

Ln0, Col 0 Sys 0:KdSrv:S Proc 000:0 Thrd 000:0

On
~On

NUM



%1 Kernel ‘com: port=com1,baud=115200" - WinDbg: 6.10.0003.233 X86 M (=3
I B2 Registers - Kernel ‘com:port=com1 ,baud=115200" - WinDbg:6.10.0003.233 X86

Value

0

30

23

23
664c0lfb

5430? 10 (GHT-5)).

38

80552780 Eywbols
1
80550320
80522980
g

202
805503b0
10

fE££0££0
400
1f6
)
437
3f8
2780
1
3c0
a980
202

< 0] | 3
[kd> | 56
Ln0, Col 0 Sys 0:KdSrv:S Proc 000:0 Thrd 000:0 A5k OVE CAPS MNUM




1 Kernel ‘com:port=com1 ,baud=115200" - WinDbg:6.10.0003.233 X86 [;HEHX[
£ Registers - Kernel ‘com:port=com1,baud=115200" - WinDbg:6.10.0003.233 X86 EN (=] 3

Customize. .. @

Customize Register List ' L>_RES

Enter reqister names in Otder separated by whitespace.
Reaisters not named will be placed at the end of the list.

[ eax ebx ecx edx edi esn ebp esp eip cs 58 d

diaik spbldlclal
bh dh ch ah fpcw fpsw fptws fopcode fplp fpipsel fpdp 10 (GMT-5))
fpdpsel st st1 st2 st3 std st st6 st7 mm0 mm1 mm2 ‘
mm3 mmd mmS mmb mm? mxcsr xmm0 xmm1 <mm2
#mm3 #mmd xmmS =mmb xmm? iopl of df if tf sf zf af pf cf
vip vif o0 cr2 cr3 crd gdtr adtl idtr idtl tr Idtr

=ymbols

[] Display modified register values first
[ Do not display subregisters

dr0
drl
dr?2
dr3
dré fE££f0££0
dr? 400
di 1f6
=1 5
bx 43c7
d= 3f8
2780
1
3c0
a980
202
<l i | 3
fkd> | 57

Ln0, Col0 Sys 0:KdSrv:S Proc 000:0 Thrd 000:0 ~50 OVE CAPS NUM




%] Kernel ‘com:port=com1,baud=115200" - WinDbg:6.10.0003.233 X86
File Edit View Debug Window Help

B e A G ") DRRAEOREOOR [ A

Registers e (X
Customize...

Reg Value e
eax 1 =
ebx 243c? =
ecx 80552780

edx 3f8

edi 664c01f6

esi 5

ebp 8055030

esp 805503b0

eip 80522980

cs 8

== 10

ds 23

efl 202 v

CTRL4+C (i1f wou run kd.e=xe) or.
CTRL+BREAK (if wou run WinDBG),
on yvour debugger machine's kevboard.

THIS IS NOT A BUG OR A SYSTEM CRASH

If you did not intend to break into the debugger, press the "g" key, then
press the "Enter" key now. Thi=s message might immediately reappear. If it
does, press "g" and "Enter" again.

K K % % K K k %k X
¥ K K K % K K K Xk X

I 36 36 36 6 36 I I 6 36 I I 6 36 I I 6 36 36 I I6 3636 I I6 3636 I I6 36 36 I I 36 36 36 I 6 36 36 I6 6 36 36 36 6 36 36 36 36 36 36 36 36 36 36 36 I 36 36 36 36 36 36 36 I6 36 36 36 36 6 36 36 36 6 363 ¥

nt |RtlpBreaklWithStatusInstruction:
8052a980 cc int 3

i |L >
kd> | o8

Ln0, Col 0 Sys 0:KdSrv:S Proc000:0 Thrd 000:0 A5k OVE L CAPS NUM



&1 Kernel ‘com:port=com1 ,baud=115200" - WinDbg:6.10.0003.233 X86

File Edit View Debug Window Help

B 0 o0 A HAn G M DFREOPFEO0E 213 Ay o

ebx 243c7
ecx 80552780

edx 3f8
edi f64c0lf6
esi 5

ebp 8055030
esp 805503b0
eip 8052a980
cs 8
== 10
23

z]Be

Typecast Locations Customize...
Name Value Reg Value N
eax 1 E)

%]
* CTRL+BREAK (if wou run WinDBG), * ~
* on your debugger machine's keyboard. %* D
* *
* THIS IS HOT A BUG OR A SYSTEM CRASH *
* *
%* If you did not intend to break into the debugger, press the "g" key, then %*
* press the "Enter" key now. This message might immediately reappear. If it
* does, press "g" and "Enter" again. %*
* *
6 I 36 I 36 6 I 6 I 6 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I HHEH =
nt |RtlpBreakWithStatusInstruction: 3
80522980 cc int 3 L
b
<_ 111 l
Disassembly HCommand ‘ 59
Ln0, Col0 Sys 0:KdSrv:S Proc 000:0 Thrd 000:0 A5/ OVE L CAPS NUM




Getting kernel debug symbols

=8 Edit View Debug Window Help
Symbol path:
Open Source File... Ctrl4+0O 0K
Close Current Window Chrl+F4 SRV CAWINDOWSASymbols™http: //msdl. micros
oft.com/download/symbols
Cancel
Help
Browse...
[v] Reload
Symbol File Path ... Ctrl+5S .
r————r— D You can alsc_) download symb?Is for offline
Image File Path ... Chri+I debugging, in which case you' d just put

put the folder you installed them into.
Also if you’ re working on your own code,
you can specify the folder where you have

the .pdb files.
60



If “Source mode
on” is clicked,
when you step, it
will step one
source line at a
time (assuming
you have source)

Step intoJ Step over

———

LStep out

If “Source mode
off” is clicked,
when you step,
it will step one
asm instruction

at a time

|File Edit View Debug ‘Window M \/

= 'gl'i(}'i?é'in [ARDE S @\@@@D@DD@
[ L 7 A — [ Frow T Nlri] !S;ource mode off
vr . revious = Hsknmize. ..
Continue Stop debugging S Il el o
wherever the

Restart debugging

cursor is currently




WinDbg breakpoints

bp <address> : Set breakpoint

— Address can be number or human readable input
like “main” or “Example1:main”

— This will be a software (int 3) breakpoint
bl : Breakpoints list

bd <bp ID> : Breakpoint disable

— <bp ID> as given by first column of bl

be <bp ID> : Breakpoint enable
— <bp ID> as given by first column of bl

bc <bp ID> : Breakpoint clear (delete)



WinDbg misc of note

* WinDbg lists the upper 32 bits of the
GDTR as “gdtr” but the lower 16 bits as
“gdtl”

* Load the plugin in windbg with
".load protmode”

 type "ldescriptor” to list the possible
commands (also supports tab
completion)

63



R K “
Stop!

We' ve actually overshot what we need to know to discuss the
protection rings. They are the interaction between the
Requested Privilege Level (RPL), Descriptor Privilege Level
(DPL), and introducing the Current Privilege Level (CPL)

“The CPL is defined as the protection level of the currently
executing code segment.” (Sect 2.1.1)

Privilege rings are automatically enforced by the hardware on
certain operations.
— E.g. if attempting to jump/call/return from one segment into a

different segment, the hardware will check the DPL of the target
segment and allow the access only if CPL <= DPL

— E.qg. if attempting to use many privileged assembly instructions, the
hardware will only allow it if CPL ==

Kernel is responsible for setting up userspace in the first place
and making sure that when it allows userspace programs to run,

their CPL == 3. 64



You wish

* You may be saying, “Oh, well, if the
CPL is just the lower two bits of CS, I' Il
just go ahead and load a segment
selector which is the same as the
current one, but with those bits set to 0,

and | will be ring 0!”

* Intel says “Yeah right” - “The MOV
instruction cannot be used to load the CS register.
Attempting to do so results in an invalid opcode
exception”

65



("I'm down with Bill Gates, | call him Money for short. | phone him up at home, and | make him do my tech support!"

31

Call Gates

- Weird Al, "It's All About the Pentiums")

1615141312 1 87 6 54

Offset in Segment 31:16

~TVOo

0/1(1/0(0

Type

Param.
Count

31

16

15

Segment Selector

Offset in Segment 15:00

DPL Descriptor Privilege Level

Gate Valid

«Call gates are basically a way to transfer control from one segment to

Figure 4-8. Call-Gate Descriptor

another segment (possibly at a different privilege ring, possible at a
different size in terms of whether it's 16/32 bits.)

-But the key point is you don't want people to be able to call to anywhere
in the other segment, you want the interface to be controlled and well-
understood. So calling to a call gate brings code to a specific place 66

which the kernel has set up.




Call Gates 2

The CALL, RET, and JMP x86 instructions have a
special form for when they are doing inter-segment
control flow transfer (normal call, ret, jmps are
intra-segment for reasons which will become clear
shortly.)

Each of them takes a single far pointer as an
argument (though in ret's case, it's popping it off
the stack).

A call gate expects as many parameters as
specified by the "Param Count" field on the
previous slide (max of 16 due to 4 bit field).
Parameters are just pushed onto the stack right to
left like a normal cdecl/stdcall calling convention.

Return value from the far call is returned in eax.

__asm{call fword ptr 0x08:0x12345678};

67



Surprise! No one uses segmentation
directly for memory protection! :D g

.

providing the primary RWX type permissions
they instead rely on paging protections.

‘ On most systems, segmentation is not
.

- Linear Address Space 4
(or Physical Memory)
Segment e |
, Re isters Code | FFFFFFFFH
S Code- and Data-Segment
™ ss \ Descripors Not Present :
; I DS ]‘\; Access Limit Data and
| | ES },,.’ Base Address 1 - Stack 0
- -
| Gs
Vol.3a, Sect. 68

3.2.1 Figure 3-2. Flat Model



Why did we even bother learning it?

« Because it subtly influences aspects of the system.

— We' ve already seen that it’ s the basis for the notions of
userspace/kernel separation (which includes the
enforcement of limiting access to privileged instructions), but
it also influences most of the topics we will be covering in
this class

« On 32 bit systems, the GDT is required, and at least

flat segmentation must be set up.

— Segmentation support mostly removed in x86-64, but it’ s so
embedded in the architecture, and chip makers so prize
backward compatibility. that it will continue to influence
design for a while.

« It’' s just good to understand how stuff works as
accurately as possible :)
69



Who uses segmentation for
memory protection?

« Paravirtualized Xen uses it to protect the hypervisor
from the OS. Jives with the notion of putting the OS in

ring 2 per the picture we saw early on. (http:/
www.cs.uiuc.edu/class/sp06/cs523/lectures/05/523-5-xen.pdf)

« Google Native Client (NaCI)!?
— Thanks to Murad Khan for pointing this out

— System for sandboxing browser plugins, which aims to allow the
plugin to be custom compiled to x86 code, and then it only
executes x86 instructions natively if they meet criteria which
ensures NaCl can analyze them to ensure safety

— Segmentation is used to provide a “data sandbox” which the
code cannot access outside of

— Combination of a lot of other academic work, but segmentation
Is basically just an optimization to prevent having to intercept
reads/writes looking for things targeted to the outside of the

sandbox (can just check at the analysis stage)

— http://nativeclient.googlecode.com/svn/data/docs_tarball/nacl/googleclient/native cllent/
documentation/nacl_paper.pdf



Misc usage of segments

 On Windows as a RE you will see access to the FS
segment register frequently (e.g. mov eakx, fs:[0]).
Windows manages the FS register to have it always
pointing at the base of the Thread Environment Block
(TEB) which is used to store some per-thread
information.

* In the Intro x86 class | noticed in a Linux/GCC
example which had stack cookies enabled, it seemed
to be pulling the random cookie from some structure
based at GS. But | don’ t know what it was, so if
anyone wants to figure that out and LMK, I' d be
much obliged. 1



Why isn’ t segmentation widely used?

Answer: | dunno. Ideas? LMK

Speculation: It s one of the standard security tradeoffs, security
vs. performance. How much overhead does it add? Probably
not much, but since many OS design decisions were made in
the unfortunate time after COTS overtook MLS (Multi-level
secure) OSes, the designers probably sided with performance.

Speculation 2: With only 6 segment registers, you can’ t have a
1:1 mapping of segments to binary memory sections, because
some binaries have > 6 sections, so then the questions
becomes, what are the most appropriate places to apply
segmentation (other than code vs data), how frequently do you
want to switch, or what if there’ s no compiler support?

Speculation 3: Wikipedia says segmentation “make[s]
programming and compilers design difficult because the use of
near and far pointers affect performance” Citation needed ;),
but | can see how it would make compilers more difficult. How
does the compiler know what your OS is doing with
segmentation?

Speculation 4: All of the above. Whatever it is, support for

72



Misc: NoPill & ScoopyNG,
using LDT/GDT to detect that

we’ re in a VM
 NoPIill

— http://lwww.offensivecomputing.net/files/active/0/vm.pdf

— Redpill equivalent which profiles the LDTR rather
than IDTR (talked about later)

— Done because RedPill signature can have false
positives outside of VMSs.
« ScoopyNG

— Does 7 checks including LDT/GDT as well as
other things like the VMWare 1/O channel

— http://www.trapkit.de/research/vmm/scoopyng/index.html
— Source code is in the zip file

73



Misc Instructions Picked Up

Along The Way
CPUID - Identify CPU features
PUSHFD/POPFD — Push/Pop EFLAGS

SGDT/LGDT — Store/Load GDTR
SLDT/LLDT — Store/Load LDTR

74



