Hacking Techniques &
Intrusion Detection

Al Al-Shemery
arabnix [at] gmail

All materials is licensed under a Creative
Commons “Share Alike” license.

http://creativecommons.org/licenses/by-sa/3.0/
You are free:

to Share — to copy, distribute and transmit the wark

to Remix — to adapt the work

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the
authar ar licensor (but not in any way that suggests that they endorse you or
your use of the waork).

Share Alike — If you alter, transform, ar build upon this woaork, you may
distribute the resulting work anly under the same, similar or a compatible

license.

whoami

Al Al-Shemery
Ph.D., MS.c., and BS.c., Jordan

More than 14 years of Technical Background
(mainly Linux/Unix and Infosec)

Technical Instructor for more than 10 years
(Infosec, and Linux Courses)

Hold more than 15 well known Technical
Certificates

Infosec & Linux are my main Interests

Software Exploitation

Prepared by:
Dr. Ali Al-Shemery
Mr. Shadi Naif

Outline

Software Exploitation Intro.
CPU Instructions & Registers
Functions, High Level View
Stacks and Stack Frames
Memory Addressing
Managing Stack Frames

Functions, Low Level View
Understanding the Process
Call Types
Assembly Language
General Trace
Code Optimizations
Stack Reliability

- Part 1

Software Exploitation Intro.

A program is made of a set of rules following a certain
execution flow that tells the computer what to do.

Exploiting the program (Goal):

Getting the computer to do what you want it to do, even if
the program was designed to prevent that action

First documented attack 1972 (US Air Force Study).

Even with the new mitigation techniques, software
today is still exploited!

What is nheeded?

To understand software exploitation,
we need a well understanding of:

Computer Languages,
Operating Systems,
Architectures.

What will be covered?

What we will cover is:
CPU Registers,
How Functions Work,
Memory Management for the IA32 Architecture,
A glance about languages: Assembly and C.

Why do | need those?

Because most of the security holes come from
I

CPU Instructions & Registers

The CPU contains many registers depending on its
model & architecture.

In this lecture, we are interested in three reqisters: EBP,
ESP, and EIP which is the instruction pointer.

(Instruction) is the lowest execution term for the CPU.
(Statement) is a high level term that is compiled and
then loaded as one or many instructions.

Assembly language is the human friendly
representation of the instructions machine code.

CPU Registers Overview

Accumulator
Base Index
Counter

Data

Base Pointer

Stack Pointer
Instruction Pointer
Source Index Pointer

Destination Index Pointer
Some registers can be accessed using there lower and higher words. For example,
AX register; lower word AL and higher word AH can be accessed separately.

The above is not the complete list of CPU registers.

Functions, High Level View

void myfun’ (char|pFx) {

printf (“You entered: %s\n", x);

void m!funl(char FetEe) |

char buffer[16];

A function consist of:

Name

strcpy (buffer, str):;

myfun? (buffer) ;

Parameters (or
arguments)

Body

: 4= ; (| * [1) L
1 va: SN \1?'\ a;gg Ghav‘ av‘rjr-rLJ . -

if (argc > 1)

myfunl (argv([1l]);

Local variable
definitions

Return value type

'eh'e . e \\ T i [HAN [TIRN
ML ITITCUIL U INO T A LT UUINIT TTT SN Ty

Functions, High Level View

void myfun2 (char *x) {

printf (“You entered: %$s\n", x);

void myfunl (char *str) {
char buffer[16];
strcpy (buffer, str);

myfunZ (buffer);

int main(int argc, char *argv[]) {
if (argc > 1)
myfunl (argv([1l]);

else printf (“No arguments!\n");

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return
Posit]

Functions, High Level View

void myfun2 (char *x) {

printf (“You entered: %$s\n", x);

void myfunl (char *str) {
char buffer[16];
strcpy (buffer, str);

myfun?2 (buffer);

in];:aén+int—a;ggy—cha1 *argv([]) |
| (axragc > 1)

myfunl (argv([1l]);

else printf (“No arguments!\n");

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return
Posit]

Functions, High Level View

void myfun2 (char *x) {

printf (“You entered: %$s\n", x);

void myfunl (char *str) {
char buffer[16];
strcpy (buffer, str);

myfunZ (buffer);

int main(int argc, char *argv[]) {

if (qro=——

mykEand (av‘rjxr[‘l]) c

else printf (“No arguments!\n");

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return
Posit]

Functions, High Level View

void myfun2 (char *x) {

printf (“You entered: %$s\n", x);

void myfunl (char *str) {
char buffer[16];
strcpy (buffer, str);

myfunZ (buffer);

int main(int argc, char *argv[]) {

if (gro——

| S kR (av‘rjxr['l]) Q

else printf (“No arguments!\n");

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return
Posit]

PUSH position
into the Stack

myfunl (argv([1l]);

Functions, High Level View

void myfun2 (char *x) {

A stack is the best
structure to trace the
program execution

printf (“You entered: %$s\n", x);

void mfyfunl (char *str) {

char buffer[16]; Current Statement

strcpy (buffer, str);
Saved Return

— Positions

myfunZ (buffer);

int main(int argc, char *argv[]) {

if (gro——

| S kR (av‘rjxr['l]) Q

else printf (“No arguments!\n");

myfunl (argv([1l]);

Functions, High Level View

void myfun2 (char *x) {

printf (YYou entered: %$s\n", x); A stack is the best
structure to trace the
program execution

void nmufunl (char *ot o) [

char buffer[16]; Current Statement

strcpy (buffer, str);
Saved Return

myfun2 (buffer) ; Positions

int main(int argc, char *argv[]) {

if (gro——

| S kR (av‘rjxr['l]) Q

else printf (“No arguments!\n");

myfunl (argv([1l]);

Functions, High Level View

void myfun2 (char *x) {

A stack is the best
structure to trace the
program execution

printf (“You entered: %$s\n", x);

void myfunl (char *str) {

char buffer[16]; Current Statement

strcpy (buffer, str):;

Saved Return
Posit]

myfunZ (buffer);

int main(int argc, char *argv[]) {

if (gro——

| S kR (av‘rjxr['l]) Q

else printf (“No arguments!\n");

myfunl (argv([1l]);

Functions, High Level View

void myfun2 (char *x) {

A stack is the best
structure to trace the
program execution

printf (“You entered: %$s\n", x);

void myfunl (char *str) {

char buffer[16]; Current Statement

st rony (hH'F'FE'I"' 1) -

Saved Return
Posit]

myfun? (buffer) ;

int main(int argc, char *argv[]) {

if (gro——

| S kR (av‘rjxr['l]) Q

else printf (“No arguments!\n");

myfunl (argv([1l]);

Functions, High Level View

void myfun2 (char *x) ({

printf (“You entered: %$s\n", x);

void myfunl (char *str) {

char buffer[16];

ot rony (h]'I'F'FE'I’" er) -

myfun? (buffer) ;

int main(int argc, char *argv[]) {

if (gro——

AN 45 e A=V 2 2 I
Ay) T T

else printf (“No arguments!\n");

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return
Posit]

PUSH position
into the Stack

myfun2 (buffer) ;

myfunl (argv([1l]);

Functions, High Level View

void mfyfun2 (char *x) ({

printf (“You entered: %$s\n", x);

void myfunl (char *str) {

char buffer[16];

ot rony (h]'I'F'FE'I’" er) -

myfun? (buffer) ;

int main(int argc, char *argv[]) {

if (gro——

AN 45 e A=V 2 2 I
Ay) T T

else printf (“No arguments!\n");

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return
Posit]

myfun2 (buffer) ;

myfunl (argv([1l]);

Functions, High Level View

void myfun2 (char *x) ({

printf (“You entered: %s\n", x);

void myfunl (char *str) {

char buffer[16];

ot rony (h]'I'F'FE'I’" er) -

myfun? (buffer) ;

int main(int argc, char *argv[]) {

if (gro——

AN 45 e A=V 2 2 I
Ay) T T

else printf (“No arguments!\n");

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return
Posit]

myfun2 (buffer) ;

myfunl (argv([1l]);

Functions, High Level View

void myfun2 (char *x) ({

printf (“You entered: %$s\n", x);

void myfunl (char *str) {

char buffer[16];

ot rony (h]'I'F'FE'I’" er) -

myfun? (buffer) ;

int main(int argc, char *argv[]) {

if (gro——

AN 45 e A=V 2 2 I
Ay) T T

else printf (“No arguments!\n");

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return
Posit]

myfun2 (buffer) ;

myfunl (argv([1l]);

Functions, High Level View

void myfun2 (char *x) ({

printf (“You entered: %$s\n", x);

void myfunl (char *str) {

char buffer[16];

ot rony (h]'I'F'FE'I’" er) -

myfun? (buffer) ;

int main(int argc, char *argv[]) {

if (gro——

AN 45 e A=V 2 2 I
Ay) T T

else printf (“No arguments!\n");

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return
Posit]

POP Position out
of the Stack

myfun2 (buffer) ;

myfunl (argv([1l]);

Functions, High Level View

void myfun2 (char *x) {

A stack is the best
structure to trace the
program execution

printf (“You entered: %$s\n", x);

void myfunl (char *str) {

char buffer[16]; Current Statement

strcpy (buffer, str);

Saved Return
myfun?2 (buffer); .

— Positions

int main(int argc, char *argv[]) {

if (gro——

| S kR (av‘rjxr['l]) Q

else printf (“No arguments!\n");

myfunl (argv([1l]);

Functions, High Level View

void myfun2 (char *x) {

printf (“You entered: %$s\n", x);

void myfunl (char *str) {
char buffer[16];
strcpy (buffer, str);

myfunZ (buffer);

int main(int argc, char *argv[]) {

if (gro——

| S kR (av‘rjxr['l]) Q

else printf (“No arguments!\n");

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return
Posit]

POP Position out
of the Stack

myfunl (argv([1l]);

Functions, High Level View

void myfun2 (char *x) {

printf (“You entered: %$s\n", x);

void myfunl (char *str) {
char buffer[16];
strcpy (buffer, str);

myfunZ (buffer);

int main(int argc, char *argv[]) {

if (argc > 1)

1(argV[l]);
=—ntf (“"No arguments!\n");

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return
Posit]

Functions, High Level View

void myfun2 (char *x) {

printf (“You entered: %$s\n", x);

void myfunl (char *str) {
char buffer[16];
strcpy (buffer, str);

myfunZ (buffer);

int main(int argc, char *argv[]) {
if (argc > 1)

myfunl (argv([1l]);

else printf (“No arguments!\n");

A stack is the best
structure to trace the
program execution

Current Statement

Saved Return
Posit]

Functions, High Level View

void myfun2 (char *x) {

printf (“You entered: %$s\n", x);

void myfunl (char *str) {
char buffer[16];
strcpy (buffer, str);

myfunZ (buffer);

int main(int argc, char *argv[]) {
if (argc > 1)
myfunl (argv([1l]);

else printf (“No arguments!\n");

A stack is the best
structure to trace the
program execution

End of Execution

Saved Return
Posit]

Stack & Stack Frames

There is no “physical” stack inside the CPU. Instead; the CPU uses the main
memory to represent a “logical” structure of a stack.

The operating system reserves a contiguous raw memory space for the stack.
This stack is logically divided into many Stack Frames.

The stack and all stack frames are represented in the memory upside-down.
A stack frame is represented by two pointers:

Base pointer (saved in EBP register): the memory address that is equal to
(EBP-1) is the first memory location of the stack frame.

Stack pointer (saved in ESP register): the memory address that is equal to
(ESP) is the top memory location of the stack frame.

When Pushing or Popping values, ESP register value is changed (the stack
pointer moves)

Base Pointer (value of EBP) never change unless the current Stack Frame is
changed.

The stack frame is empty when EBP value = ESP value.

Memory Addressing

Start of Main Memory

Memory
0x00000000

Topof >
User Space

Stack

Top of Memory
OxFFFFFFFF

o o
- ————— —— -

Stack & Stack Frames inside the
Main Memory

Start of Main Memory
Memory | : |
Topof > I - :
Empty memory of
B\ o] X S S — the Stack

The newest stack
frame is indexed as

Newest Stack Frame

’

the older one Stack

And the Oldest ... Stack Frame
Stack Frame is indexed

Oldest Stack Frame

Managing Stack Frames

The Current Stack
Frame is always the
Newest Stack Frame

ESP points to the top
of the current Stack
Frame. And it points
to the top of the
Stack as well.

Whenever a function
is called, a new Stack
Frame is created.
Local variables are
also allocated in the
bottom of the
created Stack Frame.

Startof
Memory

Stack
Frame O

Top of
Memory

Main Memory

Empty memory of
the Stack

Managing Stack Frames

The Current Stack
Frame is always the
Newest Stack Frame

To create a new
Stack Frame, simply

change EBP value to
be equal to ESP.

Startof
Memory

Stack
Frame O

Top of
Memory

Main Memory

Empty memory of
the Stack

Managing Stack Frames

The Current Stack
Frame is always the
Newest Stack Frame

Now EBP = ESP, this
means that the

Newest Stack Frame
IS empty. The
previous stack frame
now is indexed as
Stack Frame 1

Startof
Memory

Stack
Frame O

Stack
Frame 1

Topof
Memory

Main Memory

Empty memory of
the Stack

Managing Stack Frames

The Current Stack
Frame is always the
Newest Stack Frame

Now EBP = ESP, this
means that the

Newest Stack Frame

IS empty. The
previous stack framg
now is indexed a
Stack Frame 1

Let’s try again. This
time we should save
EBP value before
changing it.

Startof
Memory

But WAIT!
Stack Frame 1
base is lost!

Stack
Frame O

Stack
Frame 1

Top of
Memory

Main Memory

apty memory of
the Stack

Managing Stack Frames

Start of Main Memory

The Current Stack Memory

Frame is always the

Newest Stack Frame

First, PUSH value of
EBP to save it.

Empty memory of
the Stack

Stack F-——=———c 0 __
FrameO -——""—"—"~==—===---

1
I e e e e o e o e e e = = = —
[]
1

Topof 5
Memory

Managing Stack Frames

The Current Stack
Frame is always the
Newest Stack Frame

First, PUSH value of
EBP to save it.

Now change the
value of EBP.

Start of Main Memory
Memory

Empty memory of
the Stack

Stack F-—=—=——c— 0 __
FrameO -——""—"—"~==—===---

“op) S—— -
1

Topof :
Memory

Managing Stack Frames

The Current Stack

Frame is always the
Newest Stack Frame

First, PUSH value of
EBP to save it.

Now change the
value of EBP.

PROLOGUE is:
Creating new Stack
Frame then

allocating space for
local variables.

Startof
Memory

Stack

“eep § Esp |

Main Memory

Empty memory of
the Stack

Stack
Frame 1

Topof
Memory

Managing Stack Frames

Start of Main Memory
Memory

The Current Stack

Frame is always the
Newest Stack Frame

PUSH and POP
operations affect ESP Empty memory of
value only. the Stack

We don’t need to

save ESP value for

stack

the previous stack

frame, because it is Fr
equal to the current E

EBP value

Stack
Frame 1

Topof
Memory

Managing Stack Frames

Start of Main Memory
Memory

The Current Stack

Frame is always the
Newest Stack Frame

To empty out the
current Stack Frame, Empty memory of

ESP value should be the Stack

stack

set to the same
value of EBP

j o

Stack
Frame 1

Topof
Memory

Managing Stack Frames

Main Memory

The Current Stack Isltart of - -

) emory]]
Frame is always the ! !
Newest Stack Frame
To empty out the
current Stack Frame,
ESP value should be Empty memory of
set to the same the Stack
value of EBP
To delete the current Stack
Stack Frame and ﬂrﬁ <
return backtothe Bl et n s
previous one, we L e
should POP out the I

Frame 1
top value from the
Stack into EBP. e
Topof i i

Memory

Managing Stack Frames

The Current Stack
Frame is always the
Newest Stack Frame

To empty out the
current Stack Frame,
ESP value should be
set to the same
value of EBP

To delete the current
Stack Frame and
return back to the

previous one, we
should POP out the
top value from the
Stack into EBP.

Startof
Memory

EPILOGUE is:
Emptying the
current stack

frame and

deleting it, then
returning to the
calling function

Stack
Frame O

Top of
Memory

Main Memory

Empty memory of
the Stack

Functions, Low Level View

- Understanding the

A simple
function
call in a
high level
language is
not a
simple
operation
as it
seems.,

add(x, y):

—

PUSH arguments
(if any)

Call the function

PROLOGUE

Xecute tne

EPILOGUE

POP arguments

Process -

PUSH arguments
(if any)
PUSH EIP

Jump to function’s
first instruction

PUSH EBP
Set EBP = ESP

PUSH local

variables

(if Aanys)
Xecute e

POP out all local
variable

POP EBP
POP EIP
POP arguments

Functions, Low Level View
- Understanding the Process -

Each PUSH operation must be
reversed by a POP operation
somewhere in the execution

Performing (PUSH arguments)
is done by the caller function.

Arguments are pushed in a
reverse order.

Performing (POP arguments) can
be done by the caller or the
callee function. This is specified
by the (call type) of the callee

function

Return value of the callee is
saved inside EAX register while
executing the function’s body

PUSH arguments
(if any)
PUSH EIP

Jump to function’s
first instruction

PUSH EBP

Set EBP = ESP
PUSH local

variables

(if Aanys)
Xecute e

POP out all local
variable

POP EBP

POP EIP
POP arguments

Functions, Low Level View
- Call Types -

Programming languages provide a mechanism to specify the call type
of the function.

(Call Type) is not ().

The caller needs to know the call type of the callee to specify how
arguments should be passed and how Stack Frames should be

cleaned.
There are many call types; two of them are commonly used in most
programming languages:
cdecl: the default call type for C functions. The caller is responsible
of cleaning the stack frame.

stdcall: the default call type for Win32 APIs. The callee is
responsible of cleaning the stack frame.

Some call types use deferent steps to process the function call. For
example, fastcall send arguments within Registers not by the stack

frame. (Why?)

Functions, Low Level View
- Assembly Language -

Each of these steps are processed by
one or many instructions.

As like as other programming
languages; assembly provides many
ways to perform the same operation.
Therefore, the disassembled code can
vary from one compiler to another.

Now we are going to introduce the
default way for performing each of
these steps using assembly language.

PUSH arguments
(if any)
PUSH EIP

Jump to function’s
first instruction

PUSH EBP

Set EBP = ESP

PUSH local

variables

(if Aanys)
Xecute e

POP out all local
variable

POP EBP
POP EIP
POP arguments

callee caller

caller

A

A

Functions, Low Level View
- Assembly Language -

cdecl stdcall PUSH arguments
(if any)

PUSH EIP

Jump to function’s
first instruction

PUSH EBP
Set EBP = ESP

push <arg2> push <arg2>

push <argl> push <argl>

call <callee> call <callee>

ep ep
movebp, esp movebp, esp
push push

<default <default

value of value of

local local

PUSH local

variables

(if Aanys)
Xecute e

POP out all local
variable

POP EBP
pop ecx POP EIP

<args size>

Pop ecx POP arguments

Functions, Low Level View
- General Trace -

cdecl

push <arg2> <:E:|

push <argl> EIP register always

1 1
1 1
: :
1 1
1 1
1 1
1 1
1 1
]]
! !
push ebp instruction to be i |
mov ebp, esp executed. Once the i i
1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

push CPU executes the

<default instruction, it
value of

automatically
local

moves EIP forward.

CallerStack - - - - - - - -1
Frame [~~~ ~~~~7"

pop ecx EED b m——— 4

POopP ecx ! !

push
push

call <callee>

pus

Functions, Low Level View
- General Trace -

cdecl

<arg2>
<argl>

ebp

mov ebp, esp

push

<default
value of
local

pPop

pPop

ecx
ecx

G

Functions, Low Level View
- General Trace -

cdecl

push <arg2> (call) actually

push <argl> pushes EIP value
then performs an

<:E::| unconditional jump

pus ebp to the callee (by

movebp, esp changing EIP

9L value)

<default
value of
local

pop ecx

pop ecx

Functions, Low Level View
- General Trace -

cdecl

push <arg2>
push <argl>

call <callee>
ebp

pus
mov ebp, esp
push

<default
value of
local

Caller EIP
<argl>
<arg2>

pop ecx
pop ecx

Functions, Low Level View
- General Trace -

cdecl

push <arg2>
push <argl>

call <callee>
ebp

pus
mov ebp, esp
push

<default EBP value
value of

local

Caller EIP
<argl>
<arg2>

pop ecx
pop ecx

Functions, Low Level View
- General Trace -

cdecl

push <arg2>
push <argl>

call <callee>
ebp

pus
mov ebp, esp
push
<default
value of
local

pop ecx

pop ecx

Let’s say we have
one local variable
of type int.

EBP value
Caller EIP
<argl>

<arg2>

Functions, Low Level View
- General Trace -

Start of
cdecl Memeory ! !
push <arg2> ESP may change inside the | i |
push <argl> callee body, but EBP does : :
not change. Therefore, EBP | i |
location is used to locate i i
PHS eLp variable and arguments. i i

mov ebp, esp

push zZero

EBP wvalue
Caller EIP
<argl>

<default
value of
local

<arg2>

pop ecx b o e e e - = i<
PopP ecx Top of 5]

Functions, Low Level View
- General Trace -

cdecl

push <arg2>
push <argl>

call <callee>
ebp

pus
mov ebp, esp
push
<default
value of
local

pop ecx

pop ecx

Startof

Memeory
ESP can change in the

callee body, but EBP does
not change. Therefore, EBP
location is used to locate
variable and arguments.

Remember that
each row of ___EBP___ _
this stack

graph is 32bits
(4 bytes)

zZero

EBP value

Caller EIP
<argl>

<arg2>

Functions, Low Level View
- General Trace -

cdecl

push <arg2>
push <argl>

call <callee>
ebp

pus
mov ebp, esp
push

<default
value of
local

pop ecx
pop ecx

ESP_
_EBP

At the end of the
callee, EPILOGUE
is processed.
Cleaning
variable space is
made by a POP
operation.

zZero

EBP value

Caller EIP
<argl>

<arg2>

Functions, Low Level View
- General Trace -

cdecl

push <arg2>
push <argl>

call <callee>
ebp

pus
mov ebp, esp
push

<default
value of
local

pop ecx
pop ecx

Now caller
base EBP

should be
retrieved

EBP value
Caller EIP
<argl>

<arg2>

Functions, Low Level View
- General Trace -

cdecl

push <arg2> . y
deference between cdecl

call <callee> and-stdeall

BEs ek ret instruction
mov ebp, esp simply pops a
push value from the
<default stack and save it in
value of EIP, that should Caller EIP
HEEE. direct the <argl>
- execution back to <arg2>
the caller

pop ecx
pop ecx

Functions, Low Level View
- General Trace -

cdecl

push <arg2>

H mes th
push <argl> Here comes the

deference between cdecl

call <callee> and-stdeall
ebp

pus
mov ebp, esp
push

<default

value of Now the caller is
local responsible of

e cleaning the stack
from passed
arguments using
POP operations.

pop ecx <:E:__|

pop ecx

push
push

Functions, Low Level View
- General Trace -

cdecl

<arg2>
<argl>

call <callee>
ebp

pus
mov ebp, esp
push

<default
value of
local

Here comes the

deference between cdecl
~nA ci-rlr:”

UlTTUu JUUCU

Now the caller is
responsible of
cleaning the stack
from passed

POP operations.

pPop
pPop

ecx
ecx

_ESP
arguments using
G

Functions, Low Level View
- General Trace -

cdecl

push <arg2>
push <argl>

1 1

1 1

1 1
Here comes the | i
deference between cdecl |: |
call <callee> and-stdcall | |
pus ebp i i
mov ebp, esp I l
i i

1 1

1 1

I I

I I

i i

i i

push
<default
value of
local

pop ecx EED b m——— 4

pop ecx :]

Functions, Low Level View
- General Trace -

push <arg2> . y
deference between cdecl

call <callee> and-stdeall
ebp

pus . .
mov ebp, esp ret Instruction
' proceeded by an
push . |
integer value will
add that value to 11
ESP immediately Caller EIP
after performing <argl>
POP EIP <arg2>

<default
value of
local

<args size>

Functions, Low Level View

- General Trace -

push <arg2>
push <argl>

call <callee>
ebp

pus
mov ebp, esp
push
<default
value of
local

<args size>

Here comes the
deference between cdecl

AnA ctd-call
AT T\ A IDCUAULCUT]

Now EIP is
changed, but the
CPU did not finish
executing the
instruction. It will
add <args size>
value to ESP.

In this example, we
have two 32bits
arguments (8

bytes) m

Functions, Low Level View
- General Trace -

push <arg2>
push <argl>

call <callee>
ebp

pus
mov ebp, esp
push
<default
value of
local

<args size>

Here comes the

deference between cdecl
~nA ci-rlr:”

UlTTUu JUUCU

The stack has been
cleaned by the
callee. Now
execution is back
to the caller.

Functions, Low Level View
- Code Optimization -

Compilers do not generate the default code like previous
example. They use intelligent methods to optimize the
code to be smaller and faster.

For example, instructions mov and xor can be used to
set EAX register to zero, but xor is smaller as a code
byte. Therefore, compilers use xor instead of mov for
such scenarios:

mov eax, 0 0code bytes: B8 00 00 00 00
Xor eax, eax [code bytes: 3¢ 00

Discussing code optimization is out of the scope of this
course, but we are going to discuss few tricks that you
will see in the code generated by GCC for our examples.

Functions, Low Level View
- Code Optimization -

cdecl

push ebp
mov ebp, esp
push <default

value of
local
variable>

G

These mstructions are
going to be executed by the
callee. Let's assume that
callee is going to make
another call to a function
foo that require 1 integer
argument. callee will set it’s
local integer variable to 7
then send double it’'s value

LU TUVU

+tAn fon

Functions, Low Level View
- Code Optimization -

cdecl
push ebp void callee (int argl) {
mov ebp, esp int vl:
push 0 g1 = 7(
mov [ebp-4], 7 foo(v1l*2);

mov ecx, [ebp-4] s
addecx, ecx

P < n—

pop ecx

__EBP__

Before we
continue; let’s take
a look on the stack

[aaY=YaaYalaVi o - -
TTreTTToTy L]

Functions, Low Level View
- Hint about Endianness -

—————

e e e e e o = =
| |

Functions, Low Level View
- Hint about Endianness -

Start of Memory

little-endian big-endian

In little-endian
architect (like intel
processors); multi-
byte values are
filled starting from
the least
significant byte. In
big-endian (like
SPARC processors)
they are filled in a
reverse order
(starting from
most significant
byte)

Top of Memory

Functions, Low Level View
- Code Optimization -

cdecl
ebp
mov ebp, esp
push 0

push

mov [ebp-4], 7
movecx, [ebp-4]
addecx, ecx

push

<L

We can see that the default
value 0 that was pushed in
the epilogue section was
not used. Compilers (like in
C) do not push a default
value. Instead; they reserve
the space by moving ESP
register

__ESP__
i)
__EBP__

Also, instead of performing
POP to clean local variables
space; we can move ESP to
empty the stack frame

Functions, Low Level View
- Code Optimization -

cdecl

push ebp ESP will move to reserve
mov ebp, esp space for the local
sub esp, 4 variable, but that space is

1
1
1
1
1
1
1
l
. . ags . 1
1
mov [ebp-4], 7 still not initialized. |
1
1
1
1
1
1
1
1
1
1
1
1

Now you know exactly
mov ecx, [ebp-4] T .

why uninitialized variables
addecx, ecx . : .

in C will contain unknown

values (rubbish) ;)
T <

pop ecx

Another thingwe candois feoeceo——o__.
using the instruction | p=====-=----
leave Which do exactly . ,
like these two instructions = 1~ - !

Functions, Low Level View
- Code Optimization -

cdecl
ebp

mov ebp, esp

sub esp, 4

push

mov [ebp-4], 7
movecx, [ebp-4]
addecx, ecx

pop

ecx

leave

ret

Compilers read the code In
many passes before
generating object-codes.
One of the thing the
compiler do is calculating
needed space for all
arguments of called
functions. In our example,
foo needs 4 bytes

G

__ESP__
i)
__EBP__

push IS a slow instruction.
Therefore, the compiler
reserves the arguments
space in the epilogue
section

Functions, Low Level View
- Code Optimization -

addecx, ecx
mov [ebp-8], ecx
P G .

cdecl I I
push ebp i :
e e If foo takes two arguments, | | :
b P el; q then EBP-8 is the first one, |1 |

— and EBP-12 is the second. | |

mov [ebp-4], 7 (same as performing push : l
mov ecx, [ebp-4] for 2nd then 1lst argument) i i
i i

1 1

l l

l l

1 1

__EBP__

leave
ret

[ebp-8] Iis for sure the

argument to passed. But we
can replace it with [esp] In |1 i
this scenario only. (Why?)] ']

Functions, Low Level View
- Code Optimization -

cdecl
push ebp

mov ebp, esp
sub esp, 8

mov [ebp-4], 7/
mov ecx, [ebp-4]
addecx, ecx

cdecl
push ebp

mov ebp, esp
push 0

call <foo>

leave
ret

mov [ebp-4], 7/
mov ecx, [ebp-4]
addecx, ecx

pop ecx

Functions, Low Level View
- Example from GCC -

void myfunl (char *str) {
push ebp

mov ebp, esp

char buffer[16];

sub esp, [(EEE

strcpy (buffer, str);

mowv eax, DWORD PTR [ebp+8]
mov DWORD PTR [esp+t4],eax
lea eax, [ebp-16]

mov DWORD PTR [esp],eax
call 0x80482c4 <strcpyW@plt>

myfunZ (buffer) ;

lea eax, [ebp-16]

mov DWORD PTR [esp],eax
call 0x80483b4 <myfun2z2>
}

IRSERvS

ret

The function myfunl require
16 bytes for the local array.

strcpy require 8 bytes for it's
arguments

myfun2 require 4 bytes for it’s
arguments

The compiler made a
reservation for 24 bytes (0x18)

which is 16 for array + 8 for
maximum arguments space

Functions, Low Level View
- Example from GCC -

By default, EBP+4 points

void myfunl (char *str) {
push ebp to the saved EIP of the

mov ebp, esp caller (main in this

char buffer[16]; example). EBP points to
the saved EBP by

sub esp, 0x18 : .
strcpy (buffer, str); epHogue section.
mov eax, DWORD PTR [ebp+8] | Strcpy takes

mov DWORD PTR [esp+4],eax two arguments,
lea eax, [ebp-16] destination dst
mov DWORD PTR [esp],eax then source src.

call 0x80482c4 <strcpy@plt>¢|

fun2 (buffer) ; -
myfun2 (buffer) EBP+8 is the sent

lea eax, [ebp-16
r Lebp16] value by the caller
mov DWORD PTR [esp],eax ,
main to the callee

11 0x80483b4 <myfun2> :
-9 " my=un myfunl that is

) named str in this .
leave _—— -

code. I .
ret !

.
0]
U
Uy
3
Q

Functions, Low Level View
- Example from GCC -

void myfunl (char *str) {
push ebp

mov ebp, esp

char buffer[16];,

sub esp, 0x18

strcpy (buffer, str);

mov eax, DWORD PTR [ebp+8] X
mov DWORD PTR [esp+t4],eax

lea eax, [ebp-16]

mov DWORD PTR [esp],eax

call 0x80482c4 <strcpyW@plt>
myfunZ (buffer) ;
lea eax, [ebp-16]

mov DWORD PTR [esp],eax
call 0x80483b4 <myfun2z2> ¢I
}

leave
ret

.
0]
U
Uy
3
Q

T

myfun?2 takes one argument
X

"'r'
[
[
.

Functions, Low Level View
- Example from GCC -

void myfunZ (char *x) |

push ebp

mov ebp, esp

sub esp, 0x8

printf (" You entered: $%$s\n'", x);

mowv eax, DWORD PTR [ebp+8]

mov DWORD PTR [esp+t4],eax

mov DWORD PTR [esp],0x804852 2

call 0x80482d4 <printf@plt> .

} Q
Uy

leave Uy
S

ret Q

EPB+8 points to the first argument sent to the current
function. EBP+12 points is the second and so on. But only
one argument used by myfun2. Therefore, EBP+12 points
to an irrelevant location as myfun?2 can see.

Can you guess what is currently saved in [EBP+12] ?

Functions, Low Level View
- Example from GCC -

int main(int argc, char *argv/[]){

push ebp _ _ _ : :
o ebp, esp main is a function as like as | | |
sub esp, 0x4 any other function.]]
if (argc > 1) i i
cmp DWORD PTR [ebp+8],0x1 ' '
jle .
myfunl (argv([1]) ; : :
mzz eax,gWZRD PTR [ebp+12] Can you tell i i
a eax, 0x I I
mov eax, DWORD PTR [eax] yvhat thgse . ESP ' |
mov DWORD PTR [esp],eax instructions do?

call 0x80483cf <myfunl> ¢|

Jmp 0x804841le

else printf (“No arguments!\n") ;

DWORD PTR [esp],0x8048540
call 0x80482d4 <printf@plt>
J What do these memory
leave locations contain <m1>,
ret <m2>, and <m3>7?

Functions, Low Level View
- Stack Reliability -

Startof
Memory

So,

What if we can locate Caller EIP in the

stack and change it using mov or any
other instruction?

What if the new value is a location of
another block of code?

What if the other block of code is
harmful (security wise)?

Bad for the user, good for the Exploit O

ESP_
_EBP

Topof
Memory

zZero

EBP value

Caller EIP
<argl>

<arg2>

References (1)

Papers/Presentations/Links:

ShellCode, http://www.blackhatlibrary.net/Shellcode

Introduction to win32 shellcoding, Corelan,
http://www.corelan.be/index.php/2010/02/25/exploit-writing-tutorial-part-9-introduc

Hacking/Shellcode/Alphanumeric/x64 printable opcodes,
http://skypher.com/wiki/index.php/Hacking/Shellcode/Alphanumeric/x64 _printable ¢

Learning Assembly Through Writing Shellcode,
http://www.patternsinthevoid.net/blog/2011/09/learning-assembly-through-writing-¢

Shellcoding for Linux and Windows Tutorial,
http://www.vividmachines.com/shellcode/shellcode.html

Unix Assembly Codes Development,
http://pentest.cryptocity.net/files/exploitation/asmcodes-1.0.2.pdf

Win32 Assembly Components,
http://pentest.cryptocity.net/files/exploitation/winasm-1.0.1.pdf

http://www.blackhatlibrary.net/Shellcode
http://www.corelan.be/index.php/2010/02/25/exploit-writing-tutorial-part-9-introduction-to-win32-shellcodeing/
http://skypher.com/wiki/index.php/Hacking/Shellcode/Alphanumeric/x64_printable_opcodes
http://www.patternsinthevoid.net/blog/2011/09/learning-assembly-through-writing-shellcode/
http://www.vividmachines.com/shellcode/shellcode.html
http://pentest.cryptocity.net/files/exploitation/asmcodes-1.0.2.pdf
http://pentest.cryptocity.net/files/exploitation/winasm-1.0.1.pdf

References (2)

Papers/Presentations/Links:

64-bit Linux Shellcode,
http://blog.markloiseau.com/2012/06/64-bit-linux-shellcode/

Writing shellcode for Linux and *BSD,
http://www.kernel-panic.it/security/shellcode/index.html|

Understanding Windows’s Shellcode (Matt Miller’'s, aka skape)
Metasploit’'s Meterpreter (Matt Miller, aka skape)
Syscall Proxying fun and applications, csk @ uberwall.org

X86 Opcode and Instruction Reference, http://ref.x86asm.net/

Shellcode: the assembly cocktail, by Samy Bahra,
http://www.infosecwriters.com/hhworld/shellcode.txt

http://blog.markloiseau.com/2012/06/64-bit-linux-shellcode/
http://www.kernel-panic.it/security/shellcode/index.html
http://ref.x86asm.net/
http://www.infosecwriters.com/hhworld/shellcode.txt

References (3)

Books:
Grayhat Hacking: The Ethical Hacker’'s Handbook, 3rd Edition

The Shellcoders Handbook,
The Art of Exploitation, 2nd Edition,
Shellcode Repositories:
Exploit-DB: http://www.exploit-db.com/shellcodes/
Shell Storm: http://www.shell-storm.org/shellcode/

Tools:
BETA3 - Multi-format shellcode encoding tool, http://code.google.com/p/beta3/

X86 Opcode and Instruction Reference, http://ref.x86asm.net/

bin2shell, http://blog.markloiseau.com/wp-
content/uploads/2012/06/bin2shell.tar.gz

http://code.google.com/p/beta3/
http://ref.x86asm.net/

	Slide 1
	Slide 2
	# whoami
	Slide 4
	Outline – Part 1
	Software Exploitation Intro.
	What is needed?
	What will be covered?
	CPU Instructions & Registers
	CPU Registers Overview
	Functions, High Level View
	Functions, High Level View
	Functions, High Level View
	Functions, High Level View
	Functions, High Level View
	Functions, High Level View
	Functions, High Level View
	Functions, High Level View
	Functions, High Level View
	Functions, High Level View
	Functions, High Level View
	Functions, High Level View
	Functions, High Level View
	Functions, High Level View
	Functions, High Level View
	Functions, High Level View
	Functions, High Level View
	Functions, High Level View
	Functions, High Level View
	Stack & Stack Frames
	Memory Addressing
	Stack & Stack Frames inside the Main Memory
	Managing Stack Frames
	Managing Stack Frames
	Managing Stack Frames
	Managing Stack Frames
	Managing Stack Frames
	Managing Stack Frames
	Managing Stack Frames
	Managing Stack Frames
	Managing Stack Frames
	Managing Stack Frames
	Managing Stack Frames
	Functions, Low Level View - Understanding the Process -
	Functions, Low Level View - Understanding the Process -
	Functions, Low Level View - Call Types -
	Functions, Low Level View - Assembly Language -
	Functions, Low Level View - Assembly Language -
	Functions, Low Level View - General Trace -
	Functions, Low Level View - General Trace -
	Functions, Low Level View - General Trace -
	Functions, Low Level View - General Trace -
	Functions, Low Level View - General Trace -
	Functions, Low Level View - General Trace -
	Functions, Low Level View - General Trace -
	Functions, Low Level View - General Trace -
	Functions, Low Level View - General Trace -
	Functions, Low Level View - General Trace -
	Functions, Low Level View - General Trace -
	Functions, Low Level View - General Trace -
	Functions, Low Level View - General Trace -
	Functions, Low Level View - General Trace -
	Functions, Low Level View - General Trace -
	Functions, Low Level View - General Trace -
	Functions, Low Level View - General Trace -
	Functions, Low Level View - Code Optimization -
	Functions, Low Level View - Code Optimization -
	Functions, Low Level View - Code Optimization -
	Functions, Low Level View - Hint about Endianness -
	Functions, Low Level View - Hint about Endianness -
	Functions, Low Level View - Code Optimization -
	Functions, Low Level View - Code Optimization -
	Functions, Low Level View - Code Optimization -
	Functions, Low Level View - Code Optimization -
	Functions, Low Level View - Code Optimization -
	Functions, Low Level View - Example from GCC -
	Functions, Low Level View - Example from GCC -
	Functions, Low Level View - Example from GCC -
	Functions, Low Level View - Example from GCC -
	Functions, Low Level View - Example from GCC -
	Functions, Low Level View - Stack Reliability -
	References (1)
	References (2)
	References (3)

