Understanding Cryptology

Core Concepts

Dr. Kerry A. McKay

Approved for Public Release. Distribution Unlimited 13-1379

All materials is licensed under a Creative
Commons “Share Alike” license.

 http://creativecommons.org/licenses/by-sa/3.0/

You are free:

to Share — to copy, distribute and transmit the work
to Remix — to adapt the work

Under the following conditions:

your use of the work).

Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible 2
license.

Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or

P —

Goals

Provide an accessible introduction to cryptology
e No math degree required

Provide abstract ideas
e Understand form of many algorithms rather than
details of just a few
Cover a little of everything
 Lay groundwork for deeper study in specialized areas

//
/ R oA 200
Day 1
Overview of cryptology

Introduction to cryptography

A high level view of cryptography and cryptanalysis
Symmetric cryptography

Asymmetric cryptography

Additional primitives

P —

Day 2
Protocols
Cryptanalysis
Case studies

Standardization
Summary and lessons

Administrivia
Sign in

There is some math in here, but I've tried to keep it to
a minimum

This course was designed with a bachelor’s level
computer scientist in mind
e If you don’t understand something, just ask! ©

Recommended reading

* Book for course
e Understanding Cryptography: A
Textbook for Students and
Practitioners
» Paar and Pelzl

Understanding
Cryptography

* Companion website
e http://www.crypto-textbook.com/
e Slides developed by authors
* Videos

Additional Suggestions

Applied Theory
¢ Cryptography ity © Cryptography: Theory
Engineering and Practice
e Ferguson, Schneier, e Stinson
Kohno
¢ Introduction to
e Applied Modern Cryptography
Cryptography « Katz, Lindell

e Schneier

P

What is Cryptology?

Cryptology is “the scientific study of cryptography and
cryptanalysis” (according to Merriam-Webster)

* People often say “cryptography” to mean both

\\//

Cryptography is the science of secret writing with the

goal of hiding the meaning of a message

e This is different from steganography, where the presence of
the message is hidden

Cryptanalysis is the science and art of breaking

cryptosystems

- Crypto topicm}m/

course

Cryptology

Cryptography

——

|

Cryptanalysis

—

|

Symmetric Asymmetric

‘ Protocols

Mathematical

Implementation

‘ Social

Cryptography

[
Cryptography Cryptanalysis
e ———

| |

Asymmetric Mathematical

Implementation J Social ’

J Protocols ’

1 Symmetric

|

Cryptography

Cryptography has expanded over the years
Symmetric ciphers

e Both encryption and decryption use the same key
Asymmetric ciphers

* Different keys for encryption and decryption
Protocols

e Inherently cryptographic

* Applied cryptography

We'll talk about each of these more later

\\//
P
What can cryptography do for you?

People sometimes think that adding cryptography
makes something secure

e Not true
Cryptography can’t solve everything
* Buffer overflow, social engineering, malware, etc.

For the problems it can solve, it needs to be used
correctly

- Cryptogra phmon/

daSsurance

Confidentiality

 Prevents unauthorized parties from accessing information
« Encryption removes meaning from information

Integrity
e Ensures that data cannot be modified without detection
« Hash functions make it extremely difficult to change information

Authentication

e Ensure that a message was created by a particular party
» Key only known by party

14

E——
P

Start with a classic

Let’s begin with a concrete example
Caesar (shift) cipher

To do this, we need to take a quick look at modular
addition

\\//
P
Modular Arithmetic

What time is it?
What time will it be in 24 hours?

Modular arithmetic deals with operations in finite sets
e Hours are mod 24 for military time
e {0,,2,...,23}
e Hours are mod 12 on standard clocks
e foio
» The zero is written as 12 (12 mod 12 = 0)
e Minutes are mod 60
siloi 2 egl
e Days, weeks, months etc. can also be expressed this way

/\/

Modular Arithmetic

* To calculate A mod B, take the remainder
e A=gqB+r, whereo<r<B
« By the division theorem
 ris the remainder of A/B

e AmodB=r=A-qgB

* Examples
e 12+12mod 24 =0
* 12 +12mod 20 = 4
e s*1mod8=5
* 5smod20=5

/\/

Example
X PO E Y N

—

R PO FUR P PR P

18

Example
o L3 s s

e

SN PR N U PO P

Example

o L3 s s

e

S FYR PR P O P

Back to Caesar’s cipher
* Map each letter, A-Z, to __

3 13
an integer, 0-25 "
15

16

* Select letter as secret key
» Convert message and
key to integers

* Add key to each
character modulo 26

17
18
19
20

21

© N oo uw A W N = o©

22

* Convert back to letters

=
o

23

-
=

24

Z &0 R - - m o mm m g N w
N < X £ < cH®»n =m0 90 zZ

-
N

25

21

Example
° Message: HELLO _i-
WORLD

®74111114221417113
* Key: E

4

14
15

16
17

18
19
20

21

* Encryption

© N oo uw A W N = o©

22

*118151518018 21157
e LIPPSASVPH

=
o

23

-
=

24

2 A - - 6o " " 90 = >
N < X g < c 34« = 0 7 0O Z

-
N

25

22

=
Example

* Now let’s decrypt it [Letter ¢ Jleter & |
* Inverse of addition mod 26 A ° N 5
is subtraction mod 26 B ! © “
* Subtract 4 from each c : ! E
integer P . ° 1
E 4 R 17
F 5 S 18
e LIPPSASVPH . . T "
°* 118151518018 21157 H ; U 20
I 8 \% 21
¢ Decryption J 0 w 2
® 7411114221417 113 K 10 X 3
e HELLOWORLD L u b =
M 12 Z 25

=
What’s really going on?

* Encryption and decryption are abstract concepts

* Let’s abstract this further
* Plaintext: unencrypted message
* Ciphertext: encrypted message

23

24

The basic picture

* The set of all possible * The set of all possible
plaintexts ciphertexts

¢ =Encrypt(m, k)

25

The key

* The key determines the map destination

e In this picture, three different keys cause the same
element to map to three different values

26

/

* Sometimes the encryption is deterministic

e Every time you run it with the same plaintext-key pair,

you get the same result

* Sometimes the encryption is probabilistic

* You may get different results

e The same key with the same message will give one of a

set of results

* Decryption is always deterministic

* You MUST get the original message back

/

Probabilistic mappings

* Sometimes randomness is part of the encryption

process

‘ rand m

Key — | Encrypt

l

f(m, rand)

Key —>

Encrypt

l

Is the mapping one-to-one?

27

28

Enter the adversary

Throughout this course we will refer to the party
attacking the system as the adversary

The adversary’s goal is to find the plaintext or key
with much less effort than guessing

* The key is better, because then they can easily find all
plaintexts that were encrypted under the same key

29

The adversary’s view

The adversary knows the ciphertext (and maybe
more)

e Reduce the work any way they can

Know that the message must
fall in this range, so it can’t be
the orange (dashed) key

30

\\//

FOR ADDED SECURITY, AFTER

WE ENCRYPT THE DATA STREAM,

ALATH, DONEHLN, WE SEND IT THROUGH OUR
DONEHLING, ~ ALA'IH, NAVATO CODE TALKER.

ALAH, - DONEHLIN], IS HE JUST USING
DONEHLINI, DONEHLNY, \ NAVATD WORDS FOR
ALAH, ALAH, '2CR0' AND "ONE"?
DONEHLINI - ALAH,
DONEHLINl DONEH'LINI, WHOA, HEY, KEEP
DONEHLINY', YOUR \/OICE DOWN!

>;

M\J

http://xked.com/257/

31

~ The role of CW

Cryptography
Cryptanalysis plays a very important role in designing
cryptosystems
e State-of-the-art analysis techniques drive the designs
e If an attack exists, a new algorithm should be resilient
to it
e Determines the security of an algorithm
If an algorithm has a 100-bit key but there is an attack

that requires only 24° encryptions, then the algorithm
only provides 40 bits of security

* Key length determines the work for brute force, but not
for smarter attacks

32

P —

Kerckhoffs’ Principle

A cryptosystem should be secure even if the attacker
knows all details about the system, with the exception
of the secret key. In particular, the system should be
secure when the attacker knows the encryption and
decryption algorithms.

It all comes down to the key

Security through obscurity is not a good idea

33

P —

Security in Cryptography
An algorithm is only as secure as the most advanced
cryptanalysis against it

There is no silver bullet, there is no spoon, and there
is no one definition of “secure”

In fact, our definition of secure changes every day

A better question might be “What does it take to be
considered secure today?”

34

P —

Key length

We just saw that cryptography provides a map from
one set to another

* The only way to get the original message back from the
ciphertext is to invert the map (go backwards)

e This means choosing the right key

For an algorithm to be considered secure, it needs to
be computationally infeasible for an adversary to get
the key with effort under a threshold

* The key needs to come from a large enough key space
(set of possible keys)

e That threshold keeps rising

35

_
Key length and key space

Key length is measured in bits
A key that is n bits long provides a key space of size 2"

Assuming
e All keys are possible
* No two keys produce the same mapping

How big does n need to be?

36

_
Key length then and now

In 1976, DES was the standard algorithm, with a 56-bit key
In 1980, Skipjack had an 8o-bit key

TDEA (triple DES) has 112 or 168 bits of key, depending on
version

* 56-bit version for backward compatibility

In 1998, NIST called for a new standard with key sizes 128, 192,
and 256

Today, you should have at least 112 bits of security
80 bits is still acceptable, but is being phased out
o After 2013, the minimum will be 112

(Note: these sizes are for symmetric algorithms. Asymmetric algorithms, in
general, require larger keys)

/
A game: adversarial

indistinguishability

One of the many definitions of security involves a
game

e Two players
Rules

e Player 2 chooses two messages and tells player 1

e Player 1 chooses one of the two messages
 Encrypts the message
 Sends the encrypted message back to player 2

e Player 2’s task is to determine whether the encrypted
message is an encryption of m_ or m,

m'Sarialwindistingws ability
(continued)

m,, m,
Choose i=0
or i=1. Encrypt
m;. E(m,, key)
Seti to
guess
i (oori)
correct/incorrect

=i

39

P ~=§§\\§§__a/4/////%(

Exercise

* Pair up and decide who is player 1 and who is player two

* Player1

¢ Come up with a simple deterministic function to encrypt a
number from 1 to 100 (remember it needs to be invertible)

e For example, f(x) = 2x
* You need to be able to compute this in your head!

* Player 2

« Choose two numbers from 1 to 100 (but not the same one twice!) to
use as messages

* Play a few rounds
» Keep track of when player 2 is right and wrong
e player 1 has to use the same function every time

40

Exercise (continued)

» After a few rounds,
 Did you begin to see patterns?

* Did you choose numbers (messages) in ways to get new
information?

* Do you choose them in a way that made you right more
often?

Exercise (continued)

e If player 2 knows something useful (doesn’t have to be the
function, but a hunch) then they will have significantly
more right or wrong after many rounds

¢ Can distinguish ciphertext from noise

e If player 2 knows nothing, they will have about as many
right as wrong after many rounds

» No better than flipping a coin
20

15
10

count

H Correct

5 -
o

B Incorrect

know nothing know something know something

42

Section Summary
* Cryptology is the study of codes

e Cryptography is the study of designing codes

e Cryptanalysis is the study of breaking codes

* Cryptanalysis plays a key role in algorithm design

* Encryption algorithms generally fall into two
categories

e Symmetric

e Asymmetric

43

Symmetric cryptography

Cryptology

Cryptography

——

|

Cryptanalysis

\——-—T——-—————/

|

Symmetric

Asymmetric

‘ Protocols ’ J Mathematical ’

Implementation

44

\\//
e

Symmetric algorithms

The sending and receiving party use the same key
e Alice computes y = Encrypt(x,k)
e Alice sends y to Bob
* Bob computes x’ = Decrypt(y,k)

The Caesar cipher was an example of symmetric
cryptography

\\//
e

Types of symmetric crypto

Symmetric encryption algorithms fall into two
categories

* Block ciphers
e Stream ciphers

Used for different purposes
Both must provide confusion and diffusion

45

46

P —

Confusion and Diffusion

Claude Shannon was a famous information theorist

Defined two properties that are widely used in symmetric
cryptographic primitives

Confusion
» Relationship between key and ciphertext is obscured

Diffusion

e The influence of one plaintext symbol is spread over many
ciphertext symbols with the goal of hiding statistical
properties of the plaintext

» Adversary must do more work to find statistical properties

47

/ T e

Exercise

Form groups of 4-6 people
Each group should
» Come up with a one-sentence message
e Choose a key in A-Z (0-25)
e Encrypt the message with the Caesar cipher
» Exchange your ciphertext with another group
 Find the message the other group wrote

48

. —

Another Look at the Caesar Cipher

How does the Caesar cipher stack up in terms of
confusion and diffusion?

Confusion
* Yes

Diffusion

e Changing one symbol in the plaintext has a very
predictable result

e Only changes one symbol in the output

/ e LYY —=

One-time pad

One-time pad (OTP) is the only cryptosystem that
achieves perfect secrecy

» Given ciphertext c, plaintext message m

e Random variables X and Y (for plaintext and ciphertext,
respectively)
e Pr[X=m|Y=c] = Pr[X=m]
« The a posteriori probability that the plaintext is m is equal to
the a priori probability that the plaintext is m

« In other words, knowing the ciphertext doesn’t give you any
additional insight into the value of the plaintext

49

50

E——
P

One-time pad (continued)

OTP is also unconditionally secure

e [t cannot be broken even with infinite computational
resources

An attacker with infinite resources can break a 10,000-
bit key cipher in one time-step

e Have 21°°%° computers each try a key

e That’s more computers than atoms in the universe!

e System is computationally secure
« Adversary is computationally bounded

51

E——
P

One-time pad (continued)

How does this miraculous cryptosystem work?
e Plaintext m = x_X,...X, X, in binary

e Ciphertext ¢ =vy,y,...Y,.,Y,, in binary
e Key stream K = k k,...k, _k , in binary

Random
number
source

k.

1

L\
A7

S
i

52

P — =

Why doesn’t everyone use OTP?

The key bits need to be truly random

e Does your computer have true random number generator?
Mine doesn’t

The sender and receiver must have the same key stream
e How do you communicate the key stream securely?
A bit of the key stream can only be used once
e Key needs to be as long as the message
e That’s a lot of bits over time
« A lot to have to send securely

Bottom line: doable, but not practical for the vast majority
of applications

53

P — =

The good news

Fortunately, we can approximate a OTP with a stream
cipher

Main idea:
» Use a shorter key to generate a key stream in a
pseudorandom fashion
« Practical
« Does not achieve perfect secrecy

 Can achieve computational security

54

Stream cipher

Seed (key)

l

Key stream
generator

v i

X. ><

N
N A

 Jwp

Message m = X X,...X, ,X,, in binary

n-2°"n-1
Each x, is combined with a bit of the key stream via
exclusive-or (addition modulo 2)

55

Stream cipher

Decryption is the same as encryption
e Swap plaintext and ciphertext

Seed (key)

l

Key stream

generator
i
Yi o/ 0.

56

P —

| ==

Example

Suppose a stream cipher with the following

recurrence:

5 Xi+4

°eji>1

= X; + X;,, mod 2

Suppose that the initial values are (1,0,0,0)

P —

\\//

Example (continued)

10001

* X, =X, + X, mod 2
100010

® Xg =X, + X, mod 2
1000100

® X, =X, +X, mod 2
10001001

* Xg =X, + X, mod 2
100010011

[] 2
X, = X5 + Xg mod 2

1000100110

® X,, = Xg + X, mod 2
10001001101

® X, =X, + Xg mod 2
100010011010

® X, = Xg + X, mod 2
1000100110101

® Xj; = X, + X,, mod 2
10001001101011

® X,, = X, + X, mod 2

\\//

57

58

= e

Example (continued)

* So we have a stream that looks like 10001001101011...

* Suppose we want to encrypt 10101010

e Combine message and key stream with addition
modulo 2 (exclusive-or)

Message |1 o 11 Jo 11 Jo [+ o |
Key stream 1 (0] (6] (0] 1 (0] (0] 1

Ciphertext o o 1 0 0 o 1 1

59

= e

Security

* That example was not secure, because the key stream
was too predictable

60

——
P

Do you have to use xor?

Well... no. But it has nice properties and is most
common

e Fast
« No carries to deal with

e Same function for encryption and decryption
« Don’t need a separate stream or operation to decrypt

This is perhaps best shown by example

61

\\//
P
Addition mod m

Instead of using addition mod 2, let’s generalize to
addition mod m, m > 2

There will be lg(m)-1 carry values in the computation
Concrete example: m=27

111110 | Carries

101111
Vo By v

01110 —[sum)

Bitwise operations are convenient because we can skip a
register

62

P
Other benefits of XOR

Decryption performed by inverting combining
operation

The inverse operation of addition mod m is
subtraction mod m

The inverse operation of multiplication mod m is
multiplication mod m, but you would need a different
key stream
The inverse operation of XOR is XOR

*aXORb=c

e cXORb=a

63

, T N ; - ,./
So how can a stream cipher be

secure?

Like the OTP, the security lies in the randomness
properties of the key stream
e Don’t use the same bits of the key stream more than
once, or else
« aXORk=2a
« bXORk=V
« @ XORb'=a XORk XORb XORk=aXORb
Assume adversary knows a’ and b’
Now a much smaller plaintext space for a and b

Can use heuristics to determine a and b
Gives adversary an advantage

64

nonlinear

\\//V

Practical stream ciphers

Large state size, large input key (>112 bits)
Function that updates state is complicated and

State outputs few bits at each update (preferably one)

In use

e RC4

e Snow

e Salsa

e Trivium <—

Question

N
\

.
|66|

; b

N
L

N

- - 5

key stream

N

65

Does anyone happen to know what the US standard
stream cipher is?

66

Answer

That was a trick question
We don’t have one

We might in the not-too-distant future

67

~Why isn’t thm

stream cipher?

There hasn’t been an outcry for one

Block ciphers are more studied and better understood

NIST is currently looking into this, but it is a new
project

68

\\//
P
Block ciphers

Main idea: instead of encrypting one bit at a time,
encrypt several bits together

The grouping of bits is called a block

Block ciphers play a significant role in many
cryptographic systems

Let’s start by considering operations on a single block

69

E——
P

Block cipher encryption

Plaintext m = x x,...x, X, , in binary

Ciphertext ¢ =y y,...Y,..Y,, in binary
Key K

Block size =j

K EHCI’YPt YoYiYa oo Yj—l

70

———
e
Block cipher decryption

To decrypt, need to apply (possibly different)
decryption algorithm

YoYiYa - Yj-l

K Decrypt XXX, oo X5

71

\\//
/

Block vs. stream

Constrained devices
e Stream cipher

Real-time streaming data

e If packets are multiple of block length, block cipher won'’t
incur too high a penalty

o If packet size varies widely, stream cipher may be better bet

Everything else
* Block cipher is probably best bet

72

E——
P

An essential tool

Block ciphers are not only used for encryption
They are used to construct
e Stream ciphers

e Pseudorandom number generators
* Hash functions
» Message authentication codes

Bottom line: block ciphers are an essential tool in
symmetric cryptography

We'll get to these later

73

E——
P

More than a block

What happens when you need to encrypt more than
one block?

74

P
Mode of operation

Block ciphers are used in conjunction with a mode of
operation

Mode of operation determines how the blocks connect
Right cipher + wrong mode = wrong solution

We'll discuss
e Electronic Codebook mode (ECB)
e Cipher Block Chaining mode (CBC)
e Cipher Feedback mode (CFB)
e Output Feedback mode (OFB)
e Counter mode (CTR)

_
ECB

The most basic mode
Each block is encrypted independently

Let’s look at the pros and cons

’ plaintext block 1 ‘ ’ plaintext block 2 ‘ ’ plaintext block 3

'

K —> Encrypt K —> Encrypt K —> Encrypt

v \ v
ciphertext block 1 ‘ ‘ ciphertext block 2 ‘ ‘ ciphertext block 3

P
ECB: pros

* An error in one block will not affect others
e Transmission errors
» Missing blocks

* Easily parallelizable
e Efficient to compute

77

ECB: cons

* Leaks information about repeating blocks

* Repeating plaintext results in repeated ciphertext
* Adversary can rearrange message

e “attack don’t stop!” vs. “stop! don’t attack”
* Adversary can substitute blocks

CRYPTOGRAPHY
AND
DATA SECURITY

78

_ E€B exam pW

substitution

Suppose the following blocks are part of a banking protocol

Sending Sending Receiving Receiving Amount $
bank account # bank account #

Sending and receiving banks share a key
Adversary

e Opens accounts at each bank
* Sends money from one to the other, captures ciphertext
« Now can identify transfers between the two banks

* When other transfers go between those banks, replaces receiving
account # with his

* Gets lots of money
e Withdraws money and commences with getaway plan

79

——
P

CBC

Most common
Blocks dependent on previous blocks

Requires an initialization vector (IV)

’ plaintext block 1 ‘ ’ plaintext block 2 ‘ ’ plaintext block 3

v
) 4

) 4

IV

/ A /

K —>| Encrypt K —> Encrypt K —>| Encrypt

e e

‘ ciphertext block 1 ‘ ‘ ciphertext block 2 ‘ ‘ ciphertext block 3 ‘

8o

CBC: decryption

Encryption: XOR then encrypt
Decryption: decrypt then XOR

’ ciphertext block 1 ‘ ’ ciphertext block 2 ‘ ’ ciphertext block 3 ‘

{

K Decrypt K Decrypt K Decrypt

v }ﬁ%} > >
N A

4

‘ plaintext block 1 ‘ ‘ plaintext block 2 ‘ ‘ plaintext block 3

81

CBC: a few more words on IV

IV is same size as block
IV is not a secret
* Sent in the clear with ciphertext
» Necessary for decryption
Think twice about using predictable IV values
e Examples
« Counters
» Repeated values
« Using last ciphertext block of previous encrypted packet

e Advanced attacks exploit predictability
- E.g. BEAST

Use random IV for each encryption
 This is important
e Random IV is necessary for security properties to hold

82

P —

CBC: error tolerance
Encryption

* Encryption errors propagate forward
« Each block uses the result of the previous block

« If there was an error in encrypting block 1, that error affects block 2,

block 3, and so on

Decryption

* Wrong IV in decryption only corrupts first block
« Again, don’t consider IV secret

e Change to a block of ciphertext corrupts decryption of only
two blocks

e Adding blocks to the end of ciphertext won’t alter anything
before

« Probably decrypt to rubbish, but there’s a chance it won’t

P —

CBC: pros & cons

Pros

e IV makes encryption probabilistic

« Same message-key pair map to different values when IVs are different
e More difficult to attack through substitution

e Decryption can be parallelized

Cons

e Encryption sequential
« Cannot be parallelized
e Encryption errors propagate
« Bit flip early on messes up a lot

Ciphertext stealing may be pro or con
* Does not require message expansion (padding)

84

83

CFB

\\//

Stream cipher-like functionality from a block cipher
IV has to be unpredictable
Decryption is same operation as encryption

. |

plaintext block 1 H

v
‘ ciphertext block 1 ‘

OFB

Similar to CFB

K %‘ Encrypt

’ plaintext block 2 H

A

4

‘ ciphertext block 2 ‘

K Encrypt

’ plaintext block 3 %

'

D

‘ ciphertexi

t block 3 ‘

85

\\//

Turns block cipher into a stream cipher

IV has to be unique, but not necessarily random

. |

A

K EncrLTt_‘

plaintext block 1 }—>€9

‘ ciphertext block 1 ‘

K 9‘ Encrypt

’ plaintext block 2 }—>€

D

‘ ciphertext block 2 ‘

’ plaintext block 3 %
A

K 9{ Encrypt

D

‘ ciphertext block 3 ‘

86

P —

CTR

Different variants

e Talk about one in NIST SP 800-38a
Turns block cipher into stream cipher
Counter increases with each block

* Does not need to be secret

* Needs to be unique across blocks

’ Counter 1 ‘ ’ Counter 2 ‘ ’ Counter 3 ‘

/ '
K EncrE K EncrE K EncrE
plaintext block 1 }—>€9 ’ plaintext block 2 }—>€9 ’ plaintext block 3 }—>€9

v A4 A
‘ ciphertext block 1 ‘ ‘ ciphertext block 2 ‘ ‘ ciphertext block 3 ‘

87

P —

Choosing a mode

General knowledge
e CBC = good, ECB = bad
It isn’t this simple
e Everything depends on context

e There are more modes to consider
« Others we talked about and more that we didn’t

e What are your requirements?
« Parallelizable? Error tolerant? Synchronizing? Memory,
speed, energy requirements? Malleability?
It’s difficult to generalize

e What is right for one situation may be wrong for

another
88

Block cipher construction

89

Common StrUCtU re plaintext

* Product cipher

e Combines two or more
transformations Round 2

e Resulting cipher more secure than

components
¢ Round function o
e Provides confusion and diffusion
» Key combined with state (confusion)

e Data mixing/permutations (diffusion)

ciphertext

90

——

P
Round structure: SPN

Substitution Permutation

Network (SPN) LIl 11l 111
Substitution box (S-box) sub | sub | sub

e Invertible non-linear function

e Often implemented as look-up
tables

Permutation

e Change bit locations

——

=
Round structure: Feistel

Split state into left and
right

Encrypt and decrypt
functions use same logic

e Smaller footprint
f contains a non-linear
function

* S-boxes do not need to be
invertible in Feistel ciphers

g is operation to combine
the left and right

e Example: xor

Ri

92

P
ARX

Addition-Rotation-XOR
Two kinds of linear
operations

 Translating them into a
single linear form is
difficult over many
rounds

Acts as simple
substitution box

* No need for tables

e Easy to compute

~More rounds = more security,

right?

Not exactly

While this seems intuitive, there is a caveat
* Rounds cannot be exactly identical

* Tools for this
« Key schedule

« Round constants

E——

<<<

93

94

——
P

Concrete example: AES

Let’s look at the round components of a real cipher
Round consists of nonlinear step and linear mixing
e Which provides confusion, and which provide diffusion?

Round structure

e SubBytes
 nonlinearity

e ShiftRows, MixColumn
 Linear mixing

o AddKey

« Combine key with state via exclusive-or

\\//
=
AES: SubBytes

Byte substitution
* Replace a byte of data with another according to a function

e The function is invertible so that we can reverse the
substitution

o S’..=S-Box(S,)

S-Box

AES: ShiftRows and MixCqumns

e ShiftRows

e Circular shift on
each row of the [S0 |5 |5 55| [ELLLI* [sin | si2 | Sis | S0

state $20| 521|522 523 @I S22 | 523 | 520 | S21
« Shift amount S T T
S50 S31 |32 |33 | [HIEEL I 535|850 | 831 | 532

S0.0 | So1 | So2 | S03 S0.0 | So1 | So2 | So3

differs by row
* MixColumns MixColumns ()

e Multiply each 1 So. _ ~x] s, [T
column of the P02 | "o oo e
state by a fixed [s.o[% Jsio | sis o [0 fsio | s
matrix S0l 520 155, | 555 $2.0 S'l‘ 55 [523

¢ S..=S.. - matrix P . s BT

97

Asymmetric Cryptography

Cryptology
[
Cryptography J Cryptanalysis
e —

[|

J Protocols ’ J Mathematical Implementation J Social ’

J Symmetric JAsymmetric

98

et
Asymmetric Crypto

Asymmetric cryptography = public key cryptography
Different key used by different parties
» Key use is not symmetric

Mailbox analogy
* There is a locked mailbox with a slot
e Anyone can put a message in the box
e Only a person with the mailbox key can retrieve the

messages
_
The Basic Picture

Il
=

e (kpub ’ kpr)

¥ = et (3)

x=d, (¥)

Bob gives Alice his public key, k,,
Alice can send Bob x, encrypted with Bob’s public key

Only a person who knows Bob’s private key can
decrypt it and get x

100

Principles of asymmetric ciphers

Based on hard problems
* Not confusion and diffusion

As long as there is no polynomial-time algorithm to
solve underlying problem, algorithm secure

* *with reasonable key length

gt
Factoring

Given an integer n, find the prime factorization
D=0 tor=g gty
Now do it for a 2048-bit integer
* Yea... it is tough
Trapdoor function that requires knowledge of
factorization
e Primes are part of the private key
e Adversary only gets the product

« Has a lot of work ahead

102

| ==

Factoring: RSA

N=p*q, p and q are primes
Encryption: x¢ mod N
Decryption: x4 mod N

RSA public key has (e, N)
Decryption exponent d derived from e, p and g

103

| ==

Discrete logarithm

Given x? =y and x, what is a?
There are conditions

e Only certain set/operation combinations can be used
for crypto

e x must be a generator (x has to create all elements of set
when you keep multiplying it by itself)

104

Post-quantum

* Solve factoring and you also solve discrete log

* Shor’s algorithm does just that
* The catch is that you need a quantum computer to run
it
* Research in post-quantum asymmetric algorithms

e Multivariate public key
« The coefficients of polynomials are polynomials

e Lattice-based cryptography
* Code-based cryptography

« Error-correcting codes

105

Symmetric Vs. Asymmetric

Same key for encryption and Different keys for encryption and
decryption decryption
Based on confusion and diffusion Based on number theoretic problems

Repeated iterations of simple function Can be expressed as simple equation

106

| ==

When should | use what?

Symmetric algorithms

e More computationally efficient

 Key distribution is a problem
Asymmetric algorithms

e More computationally expensive

* Do not need to agree upon a key

* Need to establish authenticity of public key
Symmetric better for sending data
Asymmetric better for sending symmetric keys

e Wrap symmetric key

107

| ==

Key length
Key lengths for asymmetric algorithms are different

from symmetric

In general, it takes a longer key to have the same
protection against brute force attacks

Algorithm Family [Cryptosystems Security Level (bit)
80 128 192 256
Integer factorization|RSA 1024 bit|3072 bit| 7680 bit| 15360 bit
Discrete logarithm |DH, DSA, Elgamal| 1024 bit|3072 bit| 7680 bit| 15360 bit
Elliptic curves ECDH. ECDSA 160 bit| 256 bit| 384 bit| 512 bit
Symmetric-key AES. 3DES 80 bit| 128 bit[192 bit| 256 bit
ip

Note: This is no longer sufficient

108

Key length (continued)

* Why do you think that asymmetric algorithms require
longer keys?

109

More primitives

Now that we’ve looked at symmetric and asymmetric topics, we’ll
dive a little further into both areas

Cryptology
[
Cryptography J Cryptanalysis
_r——-/

| [

J Protocols ’ JMathematical Jlmplementation J Social J

10

J Symmetric J Asymmetric

Hash functions
Do not encrypt/decrypt

e Do not provide confidentiality
Do fall under symmetric cryptography

e Constructed with symmetric primitives

Provide means of integrity checking

What is a hash function?

Function that maps arbitrary-length input to fixed size
output

Output space is smaller
e Multiple inputs map to same output

———
e
Cryptographic hash functions

When we say “hash functions”, we often mean
“cryptographic hash functions”

Create a “digital fingerprint” of data

Three properties
* Collision resistance (strong collision resistance)
e Preimage resistance
 Second preimage resistance (weak collision resistance)

There are variants for each of these, but only main concept
covered here

\\//
/

Collision resistance
Infeasible to find x # y such that h(x) = h(y)

Resistance is upper-bounded by the birthday problem

Birthday problem

Deals with probability that two people have the same
birthday

We have n people in this room
There are 365 days in a year
* 366 if February 29 included

Probability of two of the same birthday is about 0.5
when n=23

P —

E——
Birthday problem (continued)

Assume only 365 days
Start with two people

* Pr(2 people no same birthday) =1 -1/365
Add a third person

* Pr(3 people no same birthday) = (1 - 1/365)(1 - 2/365)
Add t more people

 Pr(n people no same birthday) =

(1-1/365)(1 - 2/365)...(1 - (n-1)/365)

———
=
Birthday problem (continued)

Pr(at least one collision) =1 - Pr(no collision)
* 1-(1-1/365)(1-2/365)...(1 - (n-1)/365)

® Let n=23
® 1-(1-1/365)(1-2/365)...(1 - (23-1)/365) = 0.507 = 0.5

e Let’s try it with this group

When can we guarantee a collision?
e Pr(collision) =1

\\//
/

Pigeon hole principle

If n pigeons are put in m pigeon holes, n > m, then at
least one hole contains more than one pigeon
Note that some holes may be empty

P —

/

—

Pigeon hole and collisions

If the output space size is m, then m+1 inputs needed
to guarantee a collision

Assuming 365 days, need 366 people to guarantee at
least two share a birthday

* Need 367 people if assuming 366 days

For hash function with n-bit output (m=2"), then 2"+1
message blocks needed for collision

P —

Birthday bound

Output should be too large for m+1 blocks to be feasible
Birthday attack (based on birthday problem) bigger

concern

* Generic attack that works on any hash function
* Not guaranteed to be best attack on any specific hash

function

 Provides the birthday bound

A

Hash output length
128 bit 160 bit 256 bit 384 bit 512 bit

0.5
0.9

~65 ~81 ~129 ~193 ~257
~67 82 ~130 ~194 7258

Recall that 8o-bits is ok for now, but moving towards 12

19

/, R e e SNV —

Random oracle model

Captures the “ideal” hash function
* Give the oracle x
 Oracle responds with a seemingly random value
e Always responds in the same way for the same input

Think of as looking up h(x) in a massive book of truly
random numbers

There is no such thing as a true random oracle
e But we want our hash functions to act like one

Random oracle model (continued)

We were thinking in this model just now
“All birthdays not equally likely”

e Probably true, but when we think in the ROM, they are
Pr[h(x) =y] =1/M

* Where M is the size of the output

Knowing h(x) should give no insight about the result
of any other value

e Must query oracle to find h(x)

E——
P

Random oracle model (continued)

If a hash function can be reliably distinguished from a
random oracle, then there is trouble

In the ROM, interesting things can be proven

Collision resistance implies preimage resistance

123

E——
P

Exercise: random oracle

Break into pairs
¢ Decide who will be player 1 and who will be player 2
Player 1 acts as oracle
e Come up with a simple hash function (not cryptographic) on integers
« Example: h(x) = 2x+3 mod 5
» Make sure you have a modular operation to keep the output size fixed
e Don't tell player 2 your function
Player 2
e Query the oracle with integers

e Given the result of several queries, try to guess the results for other
values you haven’t queried with yet
« Tell player 1, and they will tell you if you are right or wrong

e Keep track of right and wrong
Switch roles

124

e

~ Exercise: random oracle

(continued)

e It is helpful to make a
table to capture what

you've learned so far
O (0]

* Based on this table, what
do you think h(20) is?

15

— o o —

lterated hash construction

* Fixed-size blocks as p— lM
IHPUt preprocessing
% Ho
* Compression 3
% m mo
function acts as a o mg/&
% Hi
random mappin v .
pp g message _\C(Hl'ml)z !
* Ingests a block of processing
the message el |

Hgs1

finalization

lh(M)

Preimage resistance

* Given z, infeasible to find x such that h(x) = z
¢ Infeasible to find a value that maps to h(x)

image

preimage

Second preimage resistance

 Given x, infeasible to find y # x such that h(x) = h(y)
e Infeasible to find second value that maps to h(x)

image

preimage

Message authentication codes

Authentication

e Someone who knows the key created this MAC
Integrity

o If the message is altered, the MAC will not match

Alice Bob

A

.

129

MAC integrity

Integrity + authentication
e Can detect accidental or nefarious modifications

Can have variable length MAC
Fixed length MAC nicer
e Sign a hash

» Hash function provides additional integrity check

130

Who created the message?

Alice, Bob, and Charlie share a key

Message: “Charlie is stupid”

Charlie is upset and wants to know who wrote it
Alice says Bob did

Bob says Alice did

Because they both know the key, it could have been
either of them

* No definitive proof which one created it

It may have even been Charlie, as far as Alice and Bob
are concerned

P —

Digital signatures

In the real world, contracts are finalized with
signatures

Signing indicates that you agree to terms

Signature assumed to be unique to individual
 Legal and social barriers to prevent forgeries

Only the person who knows a key can generate a valid
signature

* Only one person knows that key (supposedly)
e Authenticates signer

132

\\//
/

Digital signatures (continued)

Uses asymmetric encryption and hash functions

Sign with private key

e Anyone can verify signature using public key

But asymmetric operations expensive
e What if message is longer than allowed?

133

\\//
/

How RSA digital signatures work

Bob hashes plaintext
message

* Make fixed size input
Sign (encrypt) hash with
his private key

Alice

Alice decrypts signature
with Bob’s public key

Hashes message

Verifies that the two
match

Bob

/

—

134

E——
P

Nonrepudiation and confidentiality

Nonrepudiation
e Bob can’t deny creating the signature

If confidentiality needed on message
e Sign, then encrypt message (or message + signature)
Why not sign the encrypted data?

e May inadvertently sign wrong info
« Allows bait and switch by party sharing symmetric key

« Would you sign an envelope containing a contract, hoping the
contract is the one you think it is?

Signing message then encrypting both is analogous to
signing a contract, then putting it in an envelope

E——
P

Signatures and encryption

Sign and encrypt message
Sign and encrypt message + signature

Why might one be better than the other?

135

136

/

——

1M SURE YOUVE HEARD ALL ABOUT THIS

SORDID AFFAIR IN THOSE. GOsSIPY CRYPTOGRAPHIC
PROTOCOL. SPECS WITH THOSE BUSYBODIES
SCHNEIER AND RIVEST, ALWAYS TAKING ALES
SIDE, ALWAYS U»\BE!/JNG ME THE ATIACKER.

YES, IT'S TRUE. | BROKE. BOB'S
PRIVATE KEY AND EXTRACTED THE
TEXT OF HER MESSIGES. BUT DOES
ANYONE. REALIZE r/w MUCH T HURT ¢

HE SAID T WAS NOTHING, BUT”
EVERYTHING FRON THE PUBLIC-KEY'
AJTHENTICATED SIGNATURES ONTHE
FILES To THE LIPSTICK HEART SWEARED
ON THE DISK SCREAMED "AUICE.
’

] 01ON'T WANT BELEVE-
OF COURSE ON SOME LEVEL.
| REALIZED T WHS AKNOWN -
PLANTEXT ATACK. BUT |
COULDNT ADMIT IT UNTIL,
_ | SAW FOR MYSELY,

S0 BEFORE You S0 QUICKLY LABEL.
ME A THIRD PARTY 0 THE COMM-
UNICATION, JUST REMEMBER
| LOVED HIM FIRST. WE
HAD SOMETHING AND SHE
/ TORE |T AWAY. SHES
THE ATTACKER, NOT ME.
[

NOT EVE.

http://xked.com/177/

137

——

Protocols

Cryptology
Cryptography Cryptanalysis
D s
[[
Symmetric Asymmetric Protocols Mathematical Implementation Social

138

Kinds of crypto protocols

There are lots of crypto protocols
* Key distribution
e Multiparty computation
e Zero-knowledge
* Voting
e And many more
We'll focus on the most common: key distribution

139

Key distribution problem

Assume every user in a network must share a
symmetric key with every other user

e N users means on the order of N2 keys
 Imagine that this network is the Internet

- Management nightmare

140

_
Key Agreement

Key agreement is a very important concept in using
cryptography
Security of communications relies on secrecy of key
How can parties exchange keys without
compromising the key?

* Parties create key together

e One party creates key and sends to the other

» Key derived by trusted third party and sent to both

_
Key distribution center

Can use symmetric keys to create a session key
Requires a trusted third party, KDC
Alice and KDC share a key encrypting key (KEK)
e Same for Bob
Alice establishes key with Bob
* Requests a key from KDC
e KDC generates a short-term key

e Distributes key to Alice and Bob, encrypted by
respective KEKs

e Alice and Bob now share a key

142

P

KDC example

Key Establishment Using a Key Distribution Center

Alice KDC Bob
KEK: k4 KEK: k4, kg KEK: kg

RQST(ID4.IDg)

generate random Kges
Va = ek, (Kses)
VB = €k (Kses)
a8
kees = €' (y4)
ses ky VA
V= €, (X)

v

. -1y
kses = ‘]’klx (v8)
x=¢' ()

143

P

KDC pros and cons

* Pros
e KDC stores N KEKs
e Each user only needs KEK
» Key establishment once for each new user
« This secure channel outside scope of discussion
* Cons
e If KEK compromised, adversary can masquerade as Alice
e Replay
+ Adversary can impersonate KDC and send Alice and Bob old keys
+ No way to ensure freshness
 Trusts that session key is with Bob, but may not be able to verify
» Adversary can change request
e Single point of failure
« KDC compromise brings system to a halt

144

Kerberos

* Well-known KDC protocol
* Time matters

* Session keys have lifetime
« Lifetime encrypted

* Prevents replay

* Challenge to KDC

* Alice knows she’s talking to KDC, not adversary

145

Simplified Kerberos

Key Establishment Using a Simplified Version of Kerberos

Alice KDC Bob
KEK: k4 KEK: k. kg KEK: kg
gcncmlc nonce ry

RQST(iDy.1Dg.r4)

generate random Kgey

generate lifeti

ya = €y (Kses. 74 .T.1Dg)

vB = €kp (Kses. IDp, T)
YAYB

kses, r'a. T.1Dp = e} (v4)
verify ry = ry

verify IDg

verify lifetime T
generate time stamp Ty
VAB = €ees (1D, Ts)

N,

>
kses,IDA.T = € ! (v8)
1Dy Ts = "k;i;‘-"-“”
verify IDy* = IDy
verify lifetime T
verify time stamp Ty

v

V= ey (X) X =,)

146

P

Cons

Fixed some of the cons of first KDC protocol
Remaining

* Single point of failure

e Lack of forward secrecy

« If adversary compromises session key, all communications
under that key are at risk

+ Only for duration of key lifetime
e Setting up KEK for new user

147

P

Key establishment models

148

Point-to-point centralized

* One party gives the key to the other party
* Direct communication

K
Alice g Bob

149

Centralized key management

¢ A single party generates and manages keys
e May distribute to both parties
* One party may be responsible for passing it on
* Each party shares a distinct key with the KDC, but not
each other

¢ Centralized key generation

Bob

150

Key translation center

* Like centralized key management, but key generated
by a party

* Distributed key generation

151

Diffie-Hellman key agreement

* Asymmetric method

* Both parties agree on parameters o and p
* Each party chooses a secret exponent

Diffie-Hellman Key Exchange
Alice Bob
choose random @ = kpra choose random b = kp.p
compute A = kpur 4 = & mod compute B = Kkpup s = o’ mod
P P
A
B
kap = B* mod p kap = AP mod p

152

\\//
e

DH pros and cons

Pros
* Does not require a trusted third party
* Does not require any other keys
Cons
e Does not authenticate either party (may not be a con)
e Allows man-in-the-middle (MITM) attack

Man-in-the-Middle Attack Against the DHKE

Alice Oscar Bob

choose a = kpra choose b = kpr.p
A = kpupa = 0" mod B = kpup,p = a” mod
P P

A A

4 substitute A = a?

B B

4 substitute B= o

ka0 = (B)? mod p kio =A? mod p kso = (A)” mod p
kgo = B’ mod p

153

\\//
P
Certificates

Provide binding between public key and party
e Public key bound to Alice
 Public key bound to Bob

Alice and Bob can verify that they are talking to each
other, not someone in the middle

Generated by certificate authority (CA)
 Trusted third party

154

Key transport with CAs

Trusted authority issues certificates
e Signed by trusted authority
Key exchange with certificates
* Alice gets Bob’s certificate from Bob
e Verify that Bob’s certificate is valid using CA public key
 Create session key

 Encrypt session key with Bob’s public key (in
certificate)

e Send to Bob
* Bob decrypts with private key
e Session key established

Obtaining keys

Certificate Generation with User-Provided Keys

Alice €A
generate Kp.a,Kpub
RQST(kpyp 4. 1D4)

verify IDy

sa =sigg, ca(kpub.a,IDa)

Certy = [(kpuba,1D4),54]
Cert,

Certificate Generation with CA-Generated Keys

Alice CA
. RQST(/D,)
request certificate @ d
verify 1Dy
generate Kpra,Kpup
sa =sigg, ca(Kpup.a,1Da)
Certg = [(kpuba-IDa), 4]
Certy.kpra

DH with certificates

* Certificates for authentication
* Requires trusted certificate authority

Diffie-Hellman Key Exchange with Certificates
Alice Bob
a=kpra b=kprp
A =kpups =0 mod p B=kpupp = mod p
Certy = [(A,IDy).54] Certg = [(B,1Dg),5p]
Certy
Certp
verify certificate: verify certificate:
verk,,, oy (Certg) verk,,, o (Certy)
compute session key: compute session key:
kap = B* mod p kap =A” mod p

157

CAs and PKI

e Public-key infrastructure (PKI)
e CAs + support

« Key storage, distribution, etc.

¢ CA1signs CA2, CA2 signs CA1

« Parties with CA1 certificates can now talk to parties with CA2
certificates

* Ability to revoke certificates

* Certificate Revocation List (CRL)
« Blacklist

e Alice checks CRL to verify that Bob’s certificate is not on the
list

o If it is on the list, reject it

158

\\//
/

X.509

Minimum certificate contains key and Centifcate Algorthar
ldentlty - Algorithm

% - Parameters
X.509 contains a lot more

Serial Number

Issuer

In IE, go to Tools > Internet Options > Period of Validity:
- Not Before Date

Content > Certificates Not After Date
e Browse certificates
Go to your favorite login page (e.g.
. Subject’s Public Key:
gmall) - Algorithm
e Right-click on the page - Parameters
; ; - Public Key
e Properties > certificates

Subject

Signature

159

\\//
/

Exercise: certificates and RSA

Most (if not all) the certificates just seen were RSA

What might an RSA key exchange with certificates
look like?

160

CA trust models

Trust with separate domains

* Two CA’s have no trust
relationship

* Each CA is part of its own
domain CA1 CA 2

* Users in one domain unable / \ ,/ \

to Verify authentiCity of { User1, }{ Usert, } { User2,][UserzzJ
certificates originating from
other domain

Strict hierarchical trust model

* Interoperability between
domains

* Rooted tree
* Verify certificates all the CA3

way up to the root / \

CA1 CAz
User1, User1, User2, || Userz,

163

Multiple rooted tree

* Cross-certificate between two CAs
* Certificate for X signed by Y
* Certificate for Y signed by X

CA3 CAG6

CA1 CAz2 CA4 CAs
Userr, User, @é User2, User4, User4, User4, || Users,
16.

4

P

Reverse certificates

CAs lower in the hierarchy
also sign for CAs that are
higher

Forward certificate

e Child certificate signed by
immediate parent

Reverse certificate

 Parent certificate signed
by immediate child

165

P

Reverse certificates (continued)

Verification different than strict hierarchical model
Start with public key of CA that created certificate
Find least common ancestor

* Do not need to go up to the root

166

Directed graph trust model

Distributed trust model cAs
e Web of Trust

No root or tree / \‘

mandated CA1 CA2

An CA may cross-certify /

any other ” .

Each user entity start * CAs

with its local CA /
CA6

167

Food for thought

Symmetric exchange
e Keys have lifetime
e Limit damage by adversary

Asymmetric
e CA revokes compromised certificates

If you use biometric data as keys, what happens if you're
compromised?
e Gummy bears foil fingerprint readers

e I'd like a new set of fingerprints, please

168

=
Cryptanalysis

Cryptology
[

]
Cryptography Cryptanalysis
| |
J Social ’

169

J Symmetric Asymmetric J Protocols J Mathematical

J Implementation

Adversaries

® There are two kinds of adversaries to consider
e Computationally unbounded

 There is no limit to their computing power
« Only OTP can beat them

e Computationally bounded
 Real world

170

P —

Asking the Right Questions

People sometimes ask me for crypto help

Question: How do I break <insert current strong
algorithm here>?

My answer: wait 10 years

Surprisingly, people don’t like this

Ok, I only give these kinds of answers to people I know
pretty well

* The reason I say this is because that is what they asked
e But it is not what they meant

171

P —

Attack models

The adversary (who is sometimes you!) doesn’t always
have access to the same information

Different levels of access enable different types of
attacks

» Each of these levels of access is captured by a model

Knowing what model you're working with will help
you assess your options

172

P
Brute force

The most naive approach
Will always work

Should take a long, long time

* The message should no longer be sensitive by the time
the attack succeeds

173

P
Ciphertext-only

Goal: find key or plaintext
Access to a set ciphertexts

This applies whenever access to encrypted data is
available

e Confiscated computer with FDE

e Capturing encrypted network traffic

174

P —

Known plaintext

Goal: find key

Access to a set of plaintext-ciphertext pairs, created
with the same encryption key

This applies when there is knowledge of the plaintext
the corresponds to captured ciphertext

» Bad implementation leaves plaintext data structure
e Data structure or packet payload always the same
* Obtained plaintext through another channel

175

p —

Chosen ciphertext

Goal: find key or plaintext
Access to decryption function, possibly resulting
plaintexts

e If errors occur, such as incorrect plaintext format, plaintexts
may not be released to adversary

Attack may be adaptive
 Create ciphertext based on what you've learned

Applicable when decryption requests can be made

e Trusted computing
e Anything that doesn’t ask for the key for decryption

176

_
Chosen plaintext

Goal: find key

Access to encryption function and resulting
ciphertexts
e May be adaptive

Applicable when encryption key not in adversary’s
control

» Service offered by entity or device

e Smart cards

e Crypto chips

177

_
Other information

Access to implementation
e Binary data
e Hardware module

May be able to get data from the implementation
without going after the crypto itself

178

Good bets

Sl Ty 1
procedure procedure

S —
Implementation
attack Chosen Chosen] Ciphertext onl
+Get the info from plaintext ciphertext P Y
the binary or device

T

— Known plaintext

ARV GG ARV CRARICERAID,

179

And more

* Sometimes there is more info to leverage
* Use in conjunction with one of these models

* Example
* Related-key
« Known-plaintext
« Chosen ciphertext
e Use multiple keys instead of single key

« Know something about the relationship between them

180

Mathematical (analytical) attacks

Cryptology

[|

Cryptography Cryptanalysis

[[

J Implementation J Social ’

Asymmetric J Protocols J Mathematical

J Symmetric

=
Of more theoretical interest

* There are several analytical attacks out there
e Lots of beautiful math
* Symmetric cornerstones
e Linear cryptanalysis
* Differential cryptanalysis
° Asymmetric
e Factoring
e Discrete log
 Tricks when bad parameters used to make key

182

~—General principles for analytic

attacks

Reduce your work
* Isolate parts of the state/key as much as g

possible
e 273 4 203 4 20/3 g a lot smaller than 2"
« Example: n=9
8+8+8 = 24 vs. 512
« This is why diffusion is important
Prevents adversary from isolating sections

~Symmetric analytical attacks in

brief

Linear cryptanalysis

e Find linear relationships between plaintext, ciphertext,
and key

e Allows adversary to find parity of the key
e Reduces key space search considerably
Differential cryptanalysis

e Known difference between plaintexts results in certain
ciphertext difference with some probability

» Difference could be introduced into ciphertext instead
of plaintext

e Difference could be in related keys

183

184

/, R e e SNV —

Linear vs. differential

Which one requires a stronger adversary?
What models might each use?

185

gt
Factoring

Suppose you don’t have a quantum computer

You can factor 512-bits on your own with publicly
available tools

e Msieve, GGNFS
Currently, record is 768-bit integer

Took 3+ years by experts

General number field sieve (GNFS)

* Relies on heuristics and a lot of memory and computing
power

186

* Here’s a high level view of two methods

Discrete log

* Index calculus method
 Probabilistic algorithm
 Linear algebra
e Group theory

* Pollard’s rho algorithm

* Generator generates all values of the finite set
« There must be a cycle

e Find a cycle
X, congruent x,, modulo m

« Gives equation that can be used solve discrete log directly

* Has analog for factoring

187

Implementation attacks

Cryptology

Cryptography

——

|

1

Cryptanalysis

|

‘ Symmetric

Asymmetric

1 Protocols

Mathematical

J Implementation

1 Social ’

188

\\//
/

Implementation Matters

A mathematical specification is one thing, but an
implementation is a whole new beast

Implementations leak information

e Vulnerable to side channel cryptanalysis
Examples

e Time to compute

« Different inputs to an operation may cause subtle timing
differences

Older OpenSSL implementation was subject to this
Cache attacks on AES cloud computing environment

189

\\//
/

Power and EM attacks

Different operations take different amounts of power
 Simple power analysis (SPA)
* Differential power analysis (DPA)

Operations alter electromagnetic field differently

—~4.25]
IS 40
= a7 H
o }V ﬂ)
o
S .25 i I (
O ;0

2.75]

] 08 16 24 3z 40 48 55 54 72 80
Time (mS)
Figure 1: SPA trace showing an entire DES operation.

Image from “Differential Power Analysis” by Kocher et al.

190

P

Power and EM fields (continued)

Can perform adaptive chosen ciphertext attacks to
obtain plaintext and key, a small amount at a time

Can perform adaptive chosen plaintext to find key

191

P

Power and EM: an example

Suppose guessing bit correctly
makes a spike in a particular

location B
Start with key all zeros, key is n bits EWWWWWW\MWM%WW
For i=o to n-1 mewwtw
« Decrypt or encrypt with £ A
- S R
« kli]=0
e Keep the value that causes a bigger WWWMMWWW%WMWWWW
spike R R

W % % 100 70 7
Time (uS)
Figure 4: DPA traces, one correct and two incorrect, with power reference,

O(n) encryption/decryption

192

Grabbing the key

The key has to be exposed somewhere
Software implementation

e In memory
Hardware

¢ In flash memory or hard coded

Physically extracting key from hardware is tricky

* Need to shave off chip to get at gates or memory
e May destroy chip
« May accidentally destroy key

193

//fiéﬁﬁﬂe:quEﬁ?EﬁaFﬁﬂﬂﬁﬁﬁfag;

channel

An efficient way of computing x¢ mod n is using an algorithm
called square-and-multiply

Starts with a=1
Work from most significant bit of e down

e If current key bit is 1, multiply follows square (SM)
e a=a’
+ a=ax

e If current key bit is o, square alone (S)
e a=a’

What is the value of e based on this string?

194

- Exercise: securely computing
square-and-multiply

* Break into groups and answer the following

e What is it that makes the attack on the previous slide
possible?

e How can you prevent this attack on square-and-
multiply?

195

P

Demo

* What do square and multiply operations look like?
* JCrypTool demo

196

Attacks: further reading

* “Remote timing attacks are practical” by Boneh and
Brumley

* “Differential Power Analysis” by Kocher et al.

197

Social Attacks

Cryptology

[|

Cryptography Cryptanalysis

[[

J Symmetric } J Asymmetric J Protocols } JMathematical J Implementation J Social

198

\\//
/

A CRYPTO NERD'S WHAT WOULD
1 I MAGINATION 1 ACTUALLY HAPPEN:

HIS LAPTOPS ENCRYPTED. HIS LAPTOP'S ENCRYPTED.

LETS BUILD A MILLION-DOLLAR DRUG HIM AND HIT HIM WITH

cwsmz To CRACK I\ T- THIS $5 WRENCH UNTIL
NO GooD! 1T’ HETBJS%THEPASSUORD.
U096 -BIT RSA‘ GOT T,

BLPST'

EVIL PLAN

15 FOILED! ™~ %/

http://xked.com/538/

199

\\//
/

Social attacks

Attacking the crypto is usually pretty hard and requires
skill (unless an attack has been included in a tool)

e Why not just go around the crypto?
Humans are generally the weakest link in a system
People can be coerced

* Someone holds a gun to your head and says “your secret key
or your life”

« What would you do?
e What if they threatened someone you love?
Espionage
Blackmail
Bribery

200

e

P —

Phishing and impersonation

Your account has been suspended due to suspicious
activity. Please follow the link and enter your
username and password to verify your identity and
reactivate your account.

e Completely bypasses the cryptography

201

/, R e e SNV —

Policy attacks

In addition to social attacks on people, can attack
policies
Policies force certain behavior
e Passwords
- Common to derive secret key from password

e Backward compatibility

Policy knowledge can give the adversary an advantage
e Password rules

 Force use of deprecated cipher

202

\\//

The human brain & passwords

People can remember 5-9 chunks of information

e Unfamiliar things make smaller chunks
- E.g. “Rksg%3”
- Each character a chunk

e Familiar things enable larger chunks
« E.g. “four score and seven years ago”

+ The entire phrase one chunk (or 6 chunks)

“four” comes from a much larger set than “R”
e Words in phrase related, so phrase not high entropy

“four pig ninja gumby minitrue fire” less predictable

203

\\//

Password rules

http://xked.com/936/

oo ooo o ~28 BITS OF ENTROPY WAS IT TROMBONE? NG,
(N\g”“‘cglggg:ﬁ) ORDER gog TROUBADOR, AND ONE OF
- THE Os WRS A ZERQ?
BAE Lorp . UNKNOWN s WASA
_ P 3 o A AND THERE' WAS
07 = 3 DAYS AT SOME SYMIBOL... >
TrQub4ddor &3 1000 GUESSES e
T o Loy T ey
CAPS? COMMON ~ INUMERAL | | posiss prsrzm, s vor v v
SUBSTITUTIONS | e)
DIFFicOLTY T0 GUESS: | | DIFFICOLTY TO REMEMBER:

HARD

correct horse battery staple

N

 FoUR RaDOM
COMMON WORDS

~ 44 BITS OF ENTROPY

oo

2"'=550 YEARS AT
1000 GUESSES/SEC

DIFFiIcOLTY T0 GUESS:

HARD

DIFFICULTY TO REMEMBER:

YOUVE ALREADY
MEMORIZED T

THROUGH 20 YEARS OF EFFORT, WEVE SUCCESSFULLY TRAINED

EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

204

——
P

Exercise: identifying attack vectors

Imagine a protocol where a button is pressed on a remote,
and a light turns on or off

Remote is physical device, i.e. dongle

The transmitter and receiver each have a shared fixed
value, v, and a counter, ctr

e Counters increment and are synched
Transmitter and receiver share a symmetric key, K

Transmitter sends encrypted message E(v||ctr, K) to
receiver

Receiver decrypts message

e Ifvis correct and ctr is in acceptable range, turn on/off light
and increment counter

¢ Else, do nothing

205

~ Exercise: identifying attack vectors

(continued)
Your goal: turn the light on/off

What are possible attack vectors?

206

How to attack a protocol

/\/

Man-in-the-middle

» Saw this with Diffie-Hellman
* Convince A and B that they are talking to each other
¢ In reality,

e A is talking to E (who claims to be B)

* B is talking to E (who claims to be A)

e E is transparent to both A and B

208

Reflection

* Suppose A and B share a key, k

* Suppose they authenticate each other with the
following protocol

209

Reflection (continued)

* E can impersonate B by reflecting messages back to A
* Two protocols running at once
* Intercept messages

* A believes it has authenticated B, but B was not
involved at all

N

LY

A

A E(rar’s)

Bltos =)

I'y

Mitigating reflection
* Different keys for different communication directions

* Include identifier of originating party in messages

o If A gets an encrypted message from A, then reflection
can be detected

Interleaving attack

* Assume all public keys authentic
* A and B choose random values and sign them

I',Sp (I‘B,I‘A,A)

T’A;SA (T’A,I‘B;B)

Interleaving attack (continued)

¢ Authenticate with B as A
* E initiates with Bas A
e E initiates as A with B
* Use messages from one exchange to finish the other

1p,8p (1p,14,A)
sl B)
10,84 ('5,15,B)

Misplaced trust

* A trusted third party is inherently trusted
* What could happen if the TTP is not trustworthy?

214

When is an algorithm
broken?

Is it broken?

* Think of your data (plaintext or keys) as delicious candy
and an encryption algorithm as a pifiata

* That makes cryptanalysts kids with bats
* They keep hitting the pifiata, making dents
¢ Eventually a seam splits
* Then it cracks open and the candy falls out
e It is clearly broken at this point
* The dents don’t mean its broken, but they start to add up

* You may even be able to get a couple pieces of candy out of a
split seam

216

P —

s it broken? (continued)

Attacks accumulate

An “academic” attack hits the scene
e Improved over many iterations
e Eventually becomes practical

If best practical attack has complexity below security threshold,
the algorithm is broken

If there’s not much left, it is close enough and you should
already be transitioning

If a property you were counting on is compromised, transition
now

Example: new attack on AES shaves off almost 2 bits
e Even with that, 126 > 112, so it is ok for now

217

Maybe its broken, maybe its not

All algorithms will eventually be broken
e It is a matter of when
You should start to worry when the attacks look like they might
become practical soon
Example: SHA1
* 2004: Attacks in SHA-o
« Plans to attack SHA-1
* 2005: Attack on SHA-1
« Collisions, not preimages
« Not recommended in new applications
« Ok in legacy applications, where collision less important
e Today: SHA-1 still in use (have > 25° complexity for collision)
» SHA-2 family preferred
« SHA-3 standard in progress

218

It will all break eventually

* There is often a significant cost to changing
algorithms

 Especially in hardware
* Backward compatibility is always an issue
* Cryptology is dynamic, not static

e Attacks take a long time to mature, but break could be
tomorrow

e When algorithm crippled, need to act quickly
e Plan for change in any design

219

Case Studies

When good crypto goes bad

P —

Important

There is crypto, and there’s the system it is part of

As soon as you look at crypto as part of a system
rather than a stand-alone object, things change

You need to be mindful of the attack vectors that you
introduce

221

p —

WEP

Wired Equivalent Privacy
e Secure wireless network communications

WEP is a good example of doing it wrong
But why?

| ==

WEP (continued)

Uses RC4 stream cipher
Seed has two parts

 [V: 24 bits (public)

* Key: 40 bits (secret)
CRC32 for integrity

Let’s take a look at each of these

223

| ==

WEP: key and IV

Export restrictions limited key size

* 64-bit WEP is 40-bit secret plus 24-bit IV
There is a 128-bit version

* 104-bit secret plus 24-bit [V
Cipher key = IV||secret

First rule of stream ciphers

e Don’t reuse the same key stream
2%4is not large

» Especially on a high-volume network

Small IV space causes high probability of using same key stream
more than once

e BAD!

224

P —

WEP: RC4

Bias in key stream
 Bytes do not occur with equal probability
e First couple bytes have strong bias

e For each packet, you're at the beginning of the key stream
« Bias in every packet

Attacker can collect several messages
e Already knows Vs
e Can get info on XOR of two messages

e The secret is revealed with an obtainable amount of data and
some analysis

Note this is all possible from nothing but ciphertexts

225

P —

WEP: integrity check

CRC32
* Cyclic redundancy check, 32-bits
Linear and predictable
Good for detecting random transmission errors

Not cryptographically secure
e Adversary can make changes such that
CRC32(modified) = CRC32(original)
- i.e. bit flipping
Terrible integrity check
e It wasn’t designed for this purpose

226

P —

WEP is good for something

In all fairness, all ciphers broken eventually
e WEP fails even if RC4 still worked well

It is important because it does contribute to our
knowledge of what not to do

It also gives support to an attack model

Related-key attack model
» Some people say that it is unrealistic
e People who defend it just need to point to WEP

395

/ e LYY —=

EMV Payment

“Chip and PIN is Broken” by Murdoch et al.

Europay, MasterCard, Visa
e Prominent payment protocol

Known as “chip and PIN”
e Payer uses smartcard and PIN

Goal: minimize cost of disputes from issuing bank

228

=
EMV Payment (continued)

* Two places for burden
 Payer used chip and PIN
» Verified, so user must be authentic
« Burden on account holder
* Payer signed
« Merchant verified signature

« Burden on merchant

229

e
EMV: protocol

issuer terminal card EMV command protocol phase
select file 1PAY.SYS.DDFOL
available applications (e.g Credit/Debit/ ATM) } SELECT/READ RECORD

select applicatior/start transaction SELECT/
GET PROCESSING OPTIONS

Card authentication

signed records, Sig(signed records)
unsigned records

} READ RECORD...

PIN retry counter } GET DATA

PIN: XXXX

Cardholder verification
PIN OK/Not OK VERIFY

T = (amount, currency. date. TVR. nonce. ...)
ARQC = (ATC, IAD, MAC(T, ATC, IAD))

e !
}

GENERATE AC

ARPC, ARC Transaction authorization
ARPC,_auth code

TC = (ATC, IAD, MAC(ARC, T, ATC, IAD))

EXTERNAL AUTHENTICATE/
GENERATE AC

TC

¢ TVR: terminal verification results, ARQC: authorization request Cr%ptogram, ATC:
application transaction counter, IAD: issuer application data, ARPC: authorization
response cryptogram, ARC: authorization response code, TC: transaction certificate

230

P —

EMV: what went wrong

[t is possible to enter an unintended state
Three parts of protocol are separated

e Card authentication

e Cardholder verification

e Transaction authorization
Partial views paint different views of the world

e TVR doesn’t specify what verification method used on
success

« Mainly lists failures

Compartmentalizing lets adversary build their own
verification process

231

P —

EMV: attack

Use FPGA, software, and dummy card to intercept
communications with stolen card

Alter cardholder verification

Trick terminal into thinking PIN verification succeeded
* Real card believes terminal does not support PIN verification

« Thinks merchant verified signature
e Merchant thinks PIN was verified

Protocol records don’t indicate how cardholder
verification performed
* No record to identify inconsistency

232

P

EMV: attack (continued)

stolen T — c) ‘)
) Tl
== = :) :)
reader ~PC(Python) FPGA fake card terminal acquirer issuer
terminal MITM card
card authentication
PIN retry counter
PIN: 0000
PIN OK
transaction authorization
233

EMV: attack (continued)

Caveats

e Requires hardware for man-in-the-middle

e That wiring up your sleeve might raise suspicion on a hot summer
day

Authors of this paper have assisted in dispute cases where card
stolen

e Lucky customers have the encoded cardholder verification on
receipts

« Decoding shows that signature was used, not PIN
« Were able to get money back

e Unlucky customers (most of them) didn’t have this record
« No way to show signature use

System does not provide adequate evidence

234

/— e S

VOIP

Phoneme - basic building block of speech

Some VOIP protocols compress phonemes, then
encrypt with stream cipher

e Stream cipher encryption preserves length of message
e Phonemes compress to different sizes

What does this mean for the adversary?

235

/— e S

VOIP: problems

Correlation between packet length and phoneme

Packet length gives information to attacker

 Attacker can learn something about encrypted VOIP
conversations
« Who is talking
« What language
« What they are saying
See “Uncovering Spoken Phrases in Encrypted Voice
over IP Conversations” by Wright et al.

236

/ e LYY —=

Keeloq

Remember the exercise where the remote turns on
the light?

e That was a simplification of KeeL.oq code hopping
scheme

e Counter prevents replays

Instead of turning on a light, it opens your car or
garage door

Attacker’s goal: open the door

. —

Keeloq: attacks

Social attacks

e May gain physical access
« Clone dongle

* Noticeable
Can watch signals via side channel
* No access to plaintext

237

238

\\//
e

KeelLoq: device key

Device key is secret shared between receiver and
transmitter
Derived using a manufacturer key

* Honda, Toyota, etc.

* Once you know the manufacturer key, you can spoof
anything you have the serial number for

Discrimination [Serial Number/SEED] [Senial Number/SEED

Value

Synchronization Counter Func.

2
M AN 32 32
Secret 64 KEELOQ ‘ =
Key +@Czy’ftﬂ‘l/ Manufacturer 64
32 Key 7‘;&?
| Hopping Code [Device Key] [Device Key
(a) (b)

239

\\//
e

KeelLoq: power analysis

Differential power analysis used to find keys
Cloning transmitter
e With physical access to remote
 10-30 traces
e Without physical access
» Cloned by eavesdropping, if manufacturer key known
» With device key, decrypt message to obtain fixed values
and counter
Denial of service

e Increment counter so that “real” remote counter is
outside acceptable window

240

KeelLogq: final notes

* Details in “On the Power of Power Analysis in the Real
World: A Complete Break of the KeeLoq Code Hopping
Scheme”

e Defend against attacks with sufficiently random longer seeds
* The authors found manufacturer keys

e To my knowledge, have only released them to the
manufacturers as proof

e Only need to eavesdrop at most two message to clone a
transmitter

e It takes skill to pull off key extraction
e Only need to use skill once to find manufacturer key
 Rest can be performed by unskilled adversary

241

Standards

/ o v s A

Standards

Several international standards

Some countries have their own standards
e Some design internally
e Some use designs from other countries

e US has mix of NSA and internationally-designed crypto
standards

« DES, SHA-1 examples of NSA
« AES, SHA-3 examples of international

e Anyone who wants to do business with the US government
needs to implement our standards

¢ China likes algorithms designed in China
+ Needed their own stream cipher for 3G LTE (long term evolution)

243

P —

Organizations

This is not an exhaustive list

Government organizations

* i.e. National Institute of Standards and Technology (NIST),
NSA

e CRYPTREC (Japan)
RSA Labs
Internet Engineer Task Force (IETF)
Institute of Electrical and Electronic Engineers (IEEE)

American National Standards Institute (ANSI)
ECRYPT II

244

/ e LYY —=

NIST

Computer security division provides a suite of approved
cryptographic algorithms
Block ciphers
» AES (advanced encryption standard)
e Triple DES (also called 3DES, TDEA)
» DES (flawed, deprecated)
Hash functions
» SHA (flawed, deprecated)
e SHA-1 (phase-out)
e SHA-2 family
e SHA-3 family

P —

PKCS

Public key cryptography standards
RSA labs RSA, part of EMC corp.

RSA standards (PKCS #1) < RSA, the algorithm

e Encryption and signatures
Diffie-Hellman key agreement (PKCS #3)
Password-based cryptography (PKCS #5)

Elliptic curve cryptography (PKCS #13)
And more

246

/ ———— —

IETF

Protocol standards
e Transport Layer Security (RFC 5246)
e Kerberos (RFC 4120)
e Secure Shell Transport Layer Protocol (RFC 4253)
* Extensions to protocols

Crypto algorithm standards
e Camellia (RFC 3713)

Also a good source of April fools jokes

P — =

Selection by competition

Trend towards competition-based standards selection
e Selection committee puts out a call for submissions

e All submissions meeting requirements are available for
public scrutiny

e Submitter’s attack each other’s proposals
Benefits
e Access to best cryptographers and cryptanalysts in the world
 Free labor for selection committee
 Papers and dissertations for academics

e Fame and glory
« With a very select crowd

248

NIST competition-based projects

Advanced Encryption Standard
e FIPS standard published 11/26/2001
* Rijndael

« Vincent Rijmen and Joan Daemen

SHA-3
e Competition winner announced 10/2/2012
e Keccak
« Guido Bertoni, Joan Daemen, Michaél Peeters and Gilles Van
Assche.
249
/ =

Other projects

NESSIE (New European Schemes for Signatures, Integrity
and Encryption)

* Selected symmetric and asymmetric primitives
 All stream cipher submissions were defeated

eSTREAM
e Stream cipher competition organized by ECRYPT
e Inspired by results of NESSIE

CRYPTREC (Cryptography Research and Evaluation
Committees)

 Japanese Government

250

Closing Remarks

Summary

* Cryptology is the study of codes
e Cryptography is the study of designing codes
 Cryptanalysis is the study of breaking codes
* The only thing that should be considered secret is the key
* Encryption algorithms generally fall into two categories
e Symmetric
e Asymmetric
* Ciphers provide confidentiality
* Hash functions provide integrity

* MACs and digital signatures provide integrity and
authentication

252

P —

Summary (continued)

There are several types of attacks possible
e Each have different restrictions and relative difficulty

An algorithm is broken when it no longer provides
the security properties that it should

“Encrypted” is not synonymous with “secure”
There are several bodies that dictate standards

253

/ o v s A

Key lessons

“the whole is greater than the sum of the parts”

You cannot just look for the best crypto

* You need the right crypto for the right application, used
in the right way

The entire system has properties

» Some properties of the system may negate the
properties provided by the crypto

There are many factors that come into play when
choosing a cryptographic algorithm or protocol

254

/— o v e A —

More resources

More suggested reading
e Handbook of Applied Cryptography

« An excellent reference for state of the art in 1997

» Available in text or digital format (

)

255

/— o v e A —

More resources
NIST cryptographic technology group

NIST cryptographic toolkit

* Publications of standards and recommendations
IACR eprint archive

» New papers in cryptology (not peer reviewed)

eSTREAM project

256

