Understanding Cryptology:
Cryptanalysis

Instructor name: Dr. Kerry A. McKay
Date of most recent change: 4/23/13

All materials is licensed under a Creative
Commons “Share Alike” license.

 http://creativecommons.org/licenses/by-sa/3.0/

You are free:

to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

®E

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

Share Alike — If you alter, transform, or build upon this work, you may

distribute the resulting work only under the same, similar or a compatible 2
license.

© ©

.

Outline

Intro to this course
Human-computable crypto

Number theory and abstract algebra primer
Factoring attacks

Attacks on RSA

Discrete logarithm attacks

Symmetric system constructions
Generic attacks

Linear cryptanalysis

Differential cryptanalysis

Integral cryptanalysis on reduced AES
Conclusions and closing remarks

e

Goals

Learn about different techniques that are used to attack modern
cryptosystems

e Focus on deterministic algorithms
e Implementation agnostic
At the end of this course, you will

e Understand foundational mathematics that drive crypto designs and
attacks, including topics in number theory, abstract algebra, linear
algebra, and probability

e Be able to identify appropriate methods of analysis based on algorithm
class and properties

This does not mean that you will be able to break everything at the
end of this course

e But you will have a better idea of what you can and cannot do
e You will have a better understanding what the bad guy can do
But if | won’t be able to break things, why am I here?

P —

The real story

“In theory, theory and practice are the same. In practice, they are
not.” (thank you Einstein)

Cryptologists work very hard to analyze systems in theoretical
frameworks

e Working under certain assumptions
Never underestimate people’s ability to do it wrong in practice
e Poor parameter choices
 Sacrifice something for better performance
e Dependency on biased random number generator
e Reuse of things that should never be reused

e In Eeneral, break the assumptions under which the system was shown
to be sufficiently secure

The “custom” crypto/obfuscation technique
e Often weaker than their well-studied counterparts

P — =

The bottom line

You may be able to find the key or message in some
scenarios

You will be able to better assess
* Your needs when considering algorithms

 Where a system’s security is lacking with respect to
crypto

.

What to expect

We'll start with a some human computable ciphers
Next we’ll jump into a brief math background
e Hours of undergrad math condensed into a few slides

e Ifyou need your coffee to jump start your brain in the
morning, you may want to fill that cup

We'll be focusing mainly on generic methods of analysis
e Widest application
There will be specific attacks as well

e RSA is widely used and will be for a long time
« Can keep increasing key length without changing algorithm design

e Attack on reduced AES

« This won’t work on the full version

P —

When in doubt

If you have a question, please ask ©

e [have a tendency to drive right on if I get no feedback

« Sometimes I forget that not everyone has the same set of
knowledge as myself, and what I say only makes sense to me

» Everyone knows Fermat'’s little theorem, right?
No?

Riiiight... [know that because I've been studying cryptology
for years

Discussion aids the learning process and is
encouraged

Textbook for this course

Modern Cryptanalysis:

Techniques for Advanced Code _ MODERN
Breaking CRYPTANALYSIS

e Swenson

Errata available at

—
—
=
-
-
-
-
——
-

This is a good book, and covers
most of the material

-

Further reference

* Cryptography: Theory and Practice
e Stinson

* Introduction to Modern Cryptography
e Katz, Lindell

* Handbook of Applied Cryptography

Menezes, van Oorschot, Vanstone
The latest and greatest (through 1996)

Download chapters free online at

http://cacr.uwaterloo.ca/hac/ (read the copyright
notice)

Can fill in gaps of Swenson’s book
We'll refer to it as “HAC” in this course

ROODUCTION
MODERN
CRYPTOGRAPHY

* Cryptanalysis of Number Theoretic
Ciphers

e Wagstaft

* Applied Cryptanalysis

e Stamp and Low

e Attacks on RSA

e Yan

APPLIED
CRYPTANALYSIS

Cryptana'_l‘ﬂ'y;ti'c
Attackson

11

/ e e A As s

Approximate Agenda

Day 1
e Human-computable crypto
e Number theory and abstract algebra primer

e Factoring attacks
e Attacks on RSA

Day 2
e Discrete logarithm attacks
e Symmetric system constructions

Subject to change based
on how quickly folks get
through the exercises

e Generic attacks
e Linear cryptanalysis
Day 3
 Differential cryptanalysis
e Integral cryptanalysis on reduced AES
e Conclusions and closing remarks

12

e

The math

In Core Concepts, we took out as much math as possible
to make it more accessible

We couldn’t do that here
Still tried to keep it accessible
e Not in theorem and proof format
e We will not go into excruciating detail*
Some of the math is essential to understanding

Some of the math is there to support that a technique has
a reason to work

e Technique can be used without full understanding of why it
works

* For some definition of “excruciating detail”

13

Human-computable
crypto

It is always good to start with the basics

py

Caesar cipher

Caesar cipher is a monoalphabetic cipher

e Replace each symbol of the plaintext with a symbol of ciphertext
using a single new alphabet

Suppose each letter is mapped to an integer index
e A=o, B=,, Z=25
e Encoding becomes a modular addition
e Rotate indices by a constant integer, x
e Example:D +Y =3 + 24 =27 = 1 (mod 26)
» Resultis B
Decoding is the inverse
e If encryption key is Y, decryption key is 26-Y
« Decryption key is 2, or C
e B+C=1+2=3
» Result is D, as expected

15

P —

/

An alternative encoding approach

Can also just line up a plaintext alphabet and ciphertext

alphabet

e Replace character of plaintext alphabet with ciphertext character at

the same position

Example
e Plaintext: ABCDE

M

H

[JH

L

M

|O

PORSTUVWXY Z

° Ciphertext: FGHIJKLMNOPQRSTUVWXY ZABCDE
e HELLO becomes MJQQT

Both methods are equivalent
e One takes more time

- Negligible

e The other takes more memory
» Need to store two alphabet strings

e This is going to be a running theme

16

/

P —

Cryptanalysis of Caesar cipher

Easily breakable by anyone who knows the cipher
algorithm

e Worked OK back in the day
- High illiteracy rate

 Lack of algorithm knowledge

Attacks

e Brute force

» Try every possible key
- Always an option

» For a 26-letter alphabet, only 26 possible values for x
That’s doable

e Frequency analysis

17

-

Frequency analysis

* In every language,
symbols occur with
different probabilities

* Frequency analysis looks
at how often each is seen
in a sample

* Match frequency in
ciphertext to frequency in
plaintext

e Gives a short list of
possible mappings

0.14

0.12

0.1

0.08

0.06

0.04

0.02

etaoinshrdlcumwfgypbvk jxgqz

Image from: http://upload.wikimedia.org/wikipedia/
commons/b/bo/English_letter_frequency_%28frequency
%29.svg

18

Example

* Suppose you have a
message encoded with
the Caesar cipher -

®* You count the number
of times each symbol

0.06

appears, and compute it
percentage

* What letter goes with 0
what? (FGHIJKLMNOPQRSTUVWXYZABGDE

Image from: http://upload.wikimedia.org/wikipedia/commons/d/d5/English_letter_frequency_%28alphabetic%29.svg

.

Exercise

Time to get down to some python

Partial code (and completed) code available in my
transfer folder

 Partial code has it started for you

e Provided code is not always efficient
 Goal was understanding, not efficient programming

Copy the folder “exercises” to your local machine

Right-click on caesar.py and select “Edit with IDLE” t

open

O

20

- Everything ymﬁk_now/

about python (for this course)

Right-click on pythonCrashCourse.py and select “Edit with IDLE”
e Opens file in a python editor
e Press F5 to run your code
Python structure is dictated by whitespace
e No braces
e Code with same indentation is at the same level
e Loop/conditional body needs to be indented

pythonCrashCourse.py contains examples of:
e For and while loops
o If statement
e Print statements
e List manipulation
e Random integers

21

e

IDLE

IDLE tips

» To indent (shift right) a block of code, highlight and
press ctrl+]

» To dedent (shift left) a block of code, highlight and
press ctrl+|

e To comment a block of code, highlight and press alt+3,
or got to format menu

e To uncomment a block of code, highlight and press alt
+4, or got to format menu

22

P — =

Lab 1: Caesar cipher

Objective: Attempt to find the plaintext by
e Frequency analysis
e Brute force

You'll need to fill in the following functions
 frequency
e relativeFrequency
e decrypt

Finished early?
e Write an encryption routine as well

e Encrypt different messages, and see how the frequency
analysis changes with the length of the message

. 5

Polyalphabetic ciphers

Monoalphabetic cipher applies the same key to every
symbol

Polyalphabetic cipher switches between a set of keys

e The next step up from monoalphabetic systems like
Caesar’s cipher

We'll look at the Vigenere Tableau
e Symbols are changed exact same way as Caesar’s cipher
e Difference is that there are multiple key symbols

24

. 5

Vigenere Tableau

There is a table on page 8 of the text

If symbols are represented numerically, can condense into a simple
expression

o P[i] + (k[i mod len(k)])
« The second part selects the correct key symbol to use

e Ifyou do this, watch out for the spaces
« Ifthey aren’t in the alphabet, they should be ignored

Example:

e Plaintext: “the quick brown roman fox jumped over the lazy ostrogoth
dog”

e Key: “caesar”
e Result: “vhi iuzek fjonp rseae hob budreh gvvt tlw Irby sktiqgslh uqg”

Spaces may preserve plaintext word length, or may occur at fixed
intervals to obscure word length

25

py

Attacking the Tableau

Step 1 is to figure out the key length, n
Look for patterns
Common words are likely to be encrypted multiple times
if the text is long enough
e “the” is very common in English

e If there are at least n occurrences of “the” in the plaintext, we
can expect at least 2 to have identical ciphertext

When you find two words of ciphertext that you believe to
encrypt the same ciphertext

 Find the difference in position, d
- n|d
e Repeat and narrow in on n by looking for common factors

26

P —

Example

KKA

LC

FBMAV
VOWXC
KA Al

KKA

JC

LGQLC
VEFQAS
ESIQI

EQXT

O

CREFC KVMPW BSURR ZUZMH PWZJO ZFHIF
COKSI IGOIB RBOMS EHSVI UUQFF

KWZCK YSD]

HI'DSA

VGMT

O

ZF

AJ

I~

\J

K(Q

DGF FGEHZ FJoVv

Q ZJUEP CCAHA RYQWIEE ZJUPI\/'

WCDXV ST RIS R SR Hea)

Spaces occur at fixed intervals

Look for any repeated groupings
KKA (0,160)

OZF (34,169)
TDSA (61,131)
QZJUP (99,114)
KVQ (140,155)
GKO (174,189)

G K(]WIH YSUVZ

27

P — =

Example (continued)

Find the differences between pairs and factor
® 160 -0=160=25"5
2169 34=3 5
®131-61=70=2%5%7
®114-99=155-140=189 -174=15=3 "5
Identify common factors
e They all have 5 as a factor

e Since 5 is a prime and the key has an integer length, we
know n=5
- If the only factor is composite, it may be the key length or a
multiple of the key length
Split the ciphertext by key character and perform
frequency analysis

et

Example (continued)

Let’s look at how to find the first letter of the key
e Conveniently, the groupings have the same length as the key
e Just take the first letter of each group
KLCKBZPZ FVCIVZREU VEKYZCRZ REEWKKZK KVZKFFKY
Find the frequencies and relative frequencies

o Sort letters by most likely
e Use a frequency table to create a short candidate list
« e is the most common letter in English, so we expect it near the
top
It might be mapped to k, z, e, v, ¢, f, orr

This would mean the first character of the key is g, v, a, 1, y, b, or n,
respectively

« Try the same with another top letter, such as t
Most likley key letters now arer, g, 1, c,j, m,y

. ?oth e and t show that g, r, and y as likely for the first key
etter

~

0.219512}

z 0.170732
e 0.097561
v 0.097561
c 0.073171
f 0.073171
r 0.073171
y 0.04878!
b 0.02439
i 0.02439
1 0.02439
D 0.02439
u 0.02439
W 0.02439
aQ o)
d 0

o
h o)
i 0
m o
n 0
o o
q o
S o
t O
X o

29

P —

Example (continued)

You can try this with a couple more common letters if you'd like, but
this is a good short list

Repeat this for the other four key characters and try to decrypt with
different combinations of your top characters for each key position

What you'll find is that when you decrypt with “romeo” you get the
following message

twoho useho ldsbo thali keind ignit yinfa irver
onawh erewe layou rscen efrom ancie ntgru dgebr
eakto newmu tinyw herec ivilb loodm akesc ivilh
andsu nclea nfrom forth thefa tallo insof these
twofo esapa irofs tarcr ossdl overs taket heirl

two households both alike in dignity in fair

verona where we lay our scene from ancient grudge
break to new mutiny where civil blood makes civil
hands unclean from forth the fatal loins of these
two foes a pair of starcrossd lovers take their 1

30

.

Exercise

Open tableau.py in IDLE
There is a string in the variable ciphertext
e The spaces have been preserved
Tasks
e Implement Vigenere decryption in decrypt
e Perform the attack just described (you may do some of it by hand)
Goal: find the plaintext and key

Hints
e To handle the spaces, try creating a second string that is the
message without spaces
« Encrypt/decrypt using this list

« When you output your result, use the original list to put the spaces
back in

31

//
So I’m at Shmoocon and there’s

this puzzle...

Monoalphabetic and polyalphabetic ciphers are great for
conference challenges

e But how can you tell which one it is?

Index of coincidence

(length—1)
In English

e For each character in the alphabet

o Multiply the number of times the character appears times that
number minus one

 Divide by the product of ciphertext length and ciphertext length
minus 1

32

P — 5

Index of coincidence

Its all about frequencies

A larger index of coincidence indicates a
monoalphabetic cipher

e Characters are not evenly distributed

A smaller index of coincidence indicates a
polyalphabetic cipher

e Characters are evenly distributed
o /~26(1/26)12 =1,26 ~0.03846

33

And many more!

Although these are probably the
most likely to show up in a text
book, they are not the only ones

e There are a couple more in the
course text

If you are interested in learning
more about human-computable
ciphers and attacks, check out
“Cryptanalysis: a study of ciphers
and their solution”

Helen Fouché Gaines

CRYPTANALYSWS

a study of ciphers
and their solution

34

Attack Models and
Mletrics

P — =

Dimensions of attacks

[t can be difficult to compare attacks and definitively
say that one is better than another

e May be comparing apples to oranges
There are several dimensions to an attack

e Attack model

e Data complexity

e Time complexity

e Memory (space) complexity

36

.

Oracles

Oracle
e Something that you query, and it returns a response based
on your query
e Encryption oracle returns the ciphertext of the given
plaintext

e Decryption oracle returns the plaintext of a given ciphertext
(or an error)

e The oracle does not release the key, and the attacker need
not know the key to query the oracle

Examples
e Smartcards

e TPM

37

et

What is an adversarial model?

Puts bounds on what the adversary can and cannot do
e Can she query an encryption or decryption oracle, or only observe?
e Can she obtain plaintext?

Known plaintext attack (KPA)
e Know plaintext and corresponding ciphertext

Chosen plaintext attack (CPA)
e Access to encryption oracle

Chosen ciphertext attack (CCA)
e Access to decryption oracle

Ciphertext-only attack (COA)
e No access to oracle
e No corresponding plaintext

38

.

Ordering

Intuitively, it may seem that a stronger adversary should
be capable of the same attacks that a weaker adversary is

e Not necessarily true
Example: CCA

e Some systems do not return decryption results (plaintext) if
an error is detected

e Attacker can use error messages to find the key, but does not
have access to plaintext
« Cannot mount a known plaintext attack

“Stron%er adversary” means the adversary has more
contro

e CPA adversary is stronger than KPA

« (Can query oracle
Compare by attacker capability

39

/' e SeACAAA

How are attacks compared?

Adversarial model is only one part
Three other factors used to compare:
e Time
« Number of evaluations of the function required (e.g. # times encrypt(x) is called)

e Memory

- How many cipher states and/or candidate keys need to be stored?

e Data
- How many ciphertexts or plaintext-ciphertext pairs are needed?

In cryptanalysis research, may also be a parameter for rounds

e How much the cipher was reduced to perform analysis
« Start with significant reduction, progress to full cipher

e Useful in research, but not as important in practice
« When attacks get close to full cipher, then becomes important

40

Which is better?
_

Attacki

Attackz CPA 2315 275 250

Attacks KPA 285 2130 232

Attacky KPA 2120 DS e

* Attacks in one model are not always directly comparable to
those in another model

e Adversary has different abilities

* Between attacks in same model, different dimensions are
better than others

e The best attack in a particular situation depends on what you
have available to you

41

.

Choosing

You do not look for “the best” attack and try to meet its
requirements

You look at the best you can do given your limits

e What your capabilities are
» Choose corresponding model

e What data you have or can obtain
« Gives you max data complexity

e How much memory do you have available
« Gives you max memory complexity
This often not in bytes, but in keys or states (multiple bytes)
Be sure to adjust accordingly

e Then all that is left is time complexity

42

Number theory & abstract
Algebra

A brief introduction

py

The basics

Prime and composite
Divisibility

Greatest common divisor (GCD)
Congruence

Groups, rings, fields

Unless otherwise specified, we’ll be working with
integers

44

py

Terminology

Let’s begin by answering the following questions to
make sure that we're all speaking the same language

What is a prime?

What is a composite?
[s 1 prime, composite, or am I being tricky?

45

P —

Terminology answers

A prime is a natural number greater than one that
cannot be expressed as a product of any numbers
other than one and itself

A composite is a natural number that is a product of
primes, rather than being a prime

One is neither a prime nor a composite
e It is a special number called the unit

e In number theory, and therefore cryptology, it is not

46

Divisibility
A/B, B>o
A=qgqB+r

* Integer quotient q

e Integer remainderr (o < r < B)
e This is the division theorem

Ifr =0, then A = B

e B divides A
» Written B|A

47

P —

More properties
Divisibility is transitive
If a|b and b|c, then a|c
*b=ga,c=q,b

v s qqua
°c=qa (hereq=q,q,)

If a|bc, must it also be true that a|b or a|c?

48

P — =

Divisibility of products

If a|bc, must it also be true that a|b or a|c?
Let’s get a feel for this by examples
Example 1: a=2, b=2, and c=10
e [t is true that 2|20
e It is true that 2|2 and that 2|10
e So far, it looks good
Example 2: a=4, b=2, and c=10
e Itis true that 4|20
e [tis not true that 4|2 or 4|10
e OKk, so clearly it isn’t always true
As it turns out, a|bc implies that a|b or ajc only when ais a
prime
* We saw in example 2 that when a is composite, its primes may be
split between b and c

49

P —

GCD

Greatest common divisor, written gcd(a,b)
e Largest number g such that g|a and g|b
e Always positive
e May be any natural number

Trick questions
e gcd(-x, x) =X
oedl 5, 0] -5
e gcd(0,0) =7
 This one may vary by the rules you are following
Undefined or o

50

.

Congruence

Computers implement finite number systems
e A byte can only store {o,...,255}
A 32-bit word can only store {o,...,23*-1}
e BIGNUM is limited to available memory
What happens to numbers outside those ranges?
e Mapped to a congruent value
a and b are congruent mod n iff n|(a-b)

e The distance between a and b on the number line is a
multiple of n

e Writea = b (mod n)
e n is called the modulus
Ifa = b (mod n), then (a-b) = qn by division theorem

51

/

Congruence examples

Let n=3

Then:

e {..,-9,-6,-3,0,3,6,9,...}
° 3q+0

e {..,-8,-5,-2,1,4,7,10,...}
° 3(+1

e {..,-7,-4,-1,2,5,8 11,...}
° 3q+2

-9 = 6 (mod 3)

e They are in the same congruency class
e 6 - (-9) =15 is a multiple of 3

8 = 1 (mod 3)

Each class is represented by the remainder (or residue): o, 1, or 2
e 8mod3=2

52

PP

/

Congruence and operations

Can use congruent numbers interchangeably in calculations
Let n=25

94+20 mod 25 = 14
94 = 19 (mod 25), 19+20 mod 25 = 39 mod 25 = 14

04-20 mod 25 = 24
19-20 mod 25 = -1 mod 25 = 24

94*20 mod 25 =5
19*20 mod 25 = 380 mod 25 = 5

80/20 mod 25 = 4
80 = 5 (mod 25), 5/20 # 4
Huh. Why didn’t this work?

53

et

WARNING: Invalid operation

People sometimes make the mistake of thinking that if
multiplication is available, so is division

o After all, it is the inverse, right?
Integers (Z) are not closed under division

e 4/2=21sin7Z

® 2/4=0.51snotin Z
In Z , the set of integers mod n, results of division are
meaningless

e As we just saw, they are not necessarily correct

When working in Z or a finite subset of Z, division is not a valid

operation
Let’s abstract this a bit

54

P —

Groups

Set S with a binary operation ¢
(S, 0) is a group iff
e Sis closed under ¢
« Forallxandyin§, x0yisin S
e (is associative
o (x0y)0z = x0(y0z)
e S has an identity, e
o Forallxin§, x0e =edx =x

e All elements have inverses
o« Forallxin§, thereisa x’ x0x =x0x=e

If x0y = y0x (¢ is commutative) as well, then (S, ¢) is an
abelian group

55

P — 5

Bad math joke

What's purple and commutes?

An abelian
grape!

9.

A

56

/ e e A As s

Group examples

¢ = addition mod n, S=Z_ = {o,...,n-1}
e Addition is associative
e Sis closed under addition mod n
e 0 is the identity
* The inverse of x is n-x

¢ X+Nn-x=n = o (mod n)

57

_ .
Multiplicative groups

0 = multiplication mod n, S = Z*_ = {1,...,n-1}
e Multiplication is associative
e Sis closed under multiplication mod n

e ais the identity
e The inverse of x is x*
e x0x"modn=1
» Exists if and only if gcd(n,x)=1
For S =7* , if n is not prime, then there will be elements
with no inverse
If S only contains elements that are relatively prime to n,
maybe it is a group
e Check for closure and the rest

58

P —

Rings

A ring consists of
e A set G and two operations ¢ and ©
* (G, 0) is an abelian group
e (G, o) isn’t quite a group
» O is associative
 Closure is satisfied

« The identity property is satisfied
« All elements do not need inverses

e O distributes over ¢
« (@0b)oc=(aocc)d(boc)
e« co(adb) =(coa)d(cob)

Think of ¢ as addition and © as multiplication

29

e

Field

A field satisfies all the properties of a ring, plus more

e Only the identity under 9, e,, does not have an inverse
under O

e (G\{e,}, ©) is an abelian group
Z,, with operations modular addition and modular
multiplication is a field
* (Z,,+) is a group
e (Z,\{o}, x) is a group
» This is Z, without the o
« It is the set Z*,

60

Ready?

* Wasn't that fun?
* Now let’s put it to good use ©

61

FACTORING

Asymmetric systems

. 5

Asymmetric construction

Asymmetric algorithms use different keys for encryption and
decryption

e Algorithms are based on hard problems
Factoring is one such problem

e Given a very large integer n with large factors, it is difficult to find
the factors

The fundamental theorem of arithmetic states that all integers
can be written as a unique product of primes

e N =[[iT&EpliT Tk , where p</NV, pli is a distinct prime, and £#>0
e (thisis why 1 can’t be a prime in number theory)

Difficulty depends on what the factors are
e 2 is pretty easy to find
e S0is10

Naive method (brute force)

If N is composite, then it must be the product of at
least two primes

e If p is the smallest factor of N, then N > p2
Trial division by at most VA integers

Works great for small N, but what about N with 1024
bits?

P — =

Another approach

N is composite, let p be the smallest prime factor of N
If x # x’and x = x’(mod p), then p < gcd(x - x’, N) <N
Can find p by finding collision

e x = x’(mod N)

Why should this work?
* pIN
p|(x-x)
If x = x’(mod N), then (x - x)|N
gcd(x - x’, N) is a factor of N
« 1,N, and N’s prime factors
1S\]o if 1 < gcd(x - x’, N) < N, then ged(x — x’, N) is a prime factor of

/
Pollard’s Rho

* Algorithm for finding cycles in number patterns
* Two variables moving at different speeds

o A=1(A)

* B=1(f(B))
* Graph looks like the symbol rho

66

P —

Example

N =1517

Let f(x) = (x> + 1) mod N
Start at A=134

Sequence A = f(A) is

T

656 1026 1396

360 656 1020

1194 841 360
989 174 841

1396 989 1174

Sequence repeats at 841

Example

N = 1517
Let f(x) = (x> +1) mod N
Start at A=134

134 1270 330 1194 841 360
656 1026 1396 0989 174 841

360 656 1026 1396 989 1174

/

PP

Example

N = 1517
Let f(x) = (x> +1) mod N
Start at A=134

1 o 0 o

1174

9839

1396

Tail length: 4
Cycle length: 7

841
360

656

1026

/
Pollard’s Rho

Input: composite N,
external function f(x) = (x> + a) mod N, where a is a small integer
Output: prime factor of N, or fail

A =rand(o,N-1)

B=A
g=1
while g=1do
A=f(A)
B = f(f(B))
g=gcd(A-B,N)
ifg<N
return g
else

fail

Example

Suppose f(x) = (x> + 3) mod N

Step (A B________GCDABN)
Q) 2 2 | 1

1

2

O OO NN O Vi1 K~ W

7
52
1190

1413

561
705
969

1
1

1

37

71

py

Exercise

Open factoring.py
You'll see a stub for ‘pollardRho(N)’

* N is the number you are trying to factor

An f(x) function has already been created for you
e It takes two parameters, x and composite N

Obj ECtive Use ged function in the cryptoUtils module
ided in th folder.
e Implement Pollard’s Rho provided in fhe same Toicer
Toi t:
. FaCtOF 12‘34567 in(;;g;lt)(é;yptoUtils as cu
Finished early? o e
e Try factoring larger integers cugedX N)

e Don’t stop when you've got an answer. Let it run for a while
and observe the cycles

/

P —

Analysis of Pollard’s rho

O(nY4)
At most Vp iterations
sp< VN

What if it fails to find a prime?

Two options:
e Try a different initial value

e Try a different f(x)
« Can define as (x> + b) mod N, where b=rand(1,N-3)

73

R 5

Pollard’s p-1

Pollard has another solution to factoring
Fermat’s little theorem
e Given prime p and any integer b, bP* = 1 (mod p)
Let p be a prime factor of N
If x = q(p-1), then p|gcd(b* - 1, N)

Let integer B be an upper bound
Going to use (p-1)|B!
e May or may not work depending on values of N and B
Compute a such that a = 2% (mod n) and a = 28" (mod p)
* a = 1(mod p)
e a-1=kp
* pl(a-1)
p|n and p|gcd(a-1,n)

74

/ e e A As s

Pollard’s p-1

Input: composite N, upper bound B
Output: prime factor of N, or failure

a=2
for i=2 to B
a=amodN
d = gcd(a-1,N)
ifi<d<N
return d
else

fail

Note
The algorithm on page 75 of the text is
slightly different. It requires a list of
primes, whereas this version does not.

P — =

Exercise

Open factoring.py
You'll see a stub for ‘pollardP1(N,B)’

e N is the number you are trying to factor

* B is the threshold Use modExp function in the
Objective cryptoUtils module to compute a”i
dN.
e Implement Pollard’s p-1 method o
e Factor 15770708441, with bound 180 | To import:
Time estimate import cryptoUtils as cu
* 15-30 minutes To use:

1M1 .modExp(a, i, N
Finished early? cu.modExp(a, i, N)

e Try decreasing and increasing the bound. How large does B need
to be for this composite N?

e What about for N=123456789101112137

P —

Analysis of p-1

Complexity: O(B log B (log n)> + (log n)3)
e Great when B is very small compared to VA
o Not so great when B is near VA
« Approaches brute force
Only works when p-1 has “small” prime factors
e Easy to prevent attack
e Suppose N=pq

 Large primes p and x such that p = 2x+1
» Large primes q and y such that q = 2y+1
» Factors too large for p-1 to work

77

General number field sieve

The fastest known method factoring method
e Subexponential complexity
Very complicated
e There’s a good reason only half a page is devoted to it in the text

e Plenty of fun with polynomials, ring homomorphisms, and
modular roots

There are tools available that can handle smaller numbers
e GGNFS, Msieve
* 512 bits is doable
e Might help you out in a game of capture the flag

Record: 768-bit modulus
e Years of effort on distributed system
e GNFS experts

78

.

Prime selection

Techniques we discussed can find prime factors
e It is hard to find large primes

So the big question is: when the key was chosen,
where did the primes come from?

Options

e Have a list of large primes to use

Bad idea

» What could go wrong?

e Generate a random number of appropriate length and
Soodide I determine whether it is prime

» But if factoring is hard, how do we know it’s a prime?

79

.

Miller-Rabin

The standard method of finding large primes is to
1. Select a random number of appropriate size
>. Trial division of primes up to a threshold

» If division succeeds, go back to 1
3. Use Miller-Rabin primality test to decide if it is prime
» If composite, go back to 1
Miller-Rabin test finds probable primes
e Monte Carlo algorithm for identifying composites

e If it is not definitely a composite, then it is probably a
prime

8o

Miller-Rabin primality test

Input: odd integer n = 3, number of trials t > 1
Output: “prime” or “composite”

write n-1 = 25t, where r is odd
choose random a such that 2 <a < n-2
forifromotot

y =a' mod n

ify+1andy # n-1

=i

while j < s-1and y # n-1
y =y>mod n
if y = 1 return “composite”
] =J+1

if y# n-1 return “composite”
return “prime”

P —

Miller-Rabin test and t

The probability of an odd composite being labeled as
a prime is less than 0.257¢

If you need a n-bit prime with k bits of security

e Choose t

such that pdnt<(1/2)Tk

. 5

Exploiting prime selection

If a key distributor uses a prime list, then there’s an easy way to
factor
o [fthe list is short, just do trial divisions
e Collect many moduli, {n, n,, ..., n_}
» If n; and n; share a prime factor, p, then ged(n;, n;) = p
« For each modulus, try computing a pairwise GCD until a prime is found
Even without a use of prime list, this attack will work with some
probability on a large collection
e The GCD computation may be costly though

Miller-Rabin relies on random number generation

If the RNG is bad (i.e. predictable), then the adversary can use
that to narrow the possible inputs to the prime generation
algorithm

Recent findings regarding primes

There have been two recent studies that looked at RSA prime
selection in the wild

e They both found problems
e Here’s a few
Using /dev/urandom instead of /dev/random

e /dev/random should be used for long-lived key generation
« Blocks when entropy sources not available

Some interpreted this as a “usability issue”

Boot-time entropy hole causes prime to be generated from
predictable state

e Little entropy => the same primes for everyone!
IBM remote management cards that use a list of g primes
e Wow! g choose 2 = 36 different moduli!
e That’s right! You too can break RSA in at most 8 division operations

See:
“Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices”, Heninger et al.
“Ron was wrong, Whit is right”, Lenstra et al.

.

Factoring: summary

Factoring is a hard problem that is used as a foundation
for asymmetric cryptosystems

e The secret depends on prime factors
e If the modulus can be factored, the system can be broken

There are several algorithms for factoring, but they are too

computational complex to be used on large enoug
numbers

Prime selection is at least as important as the key length
e The key length is supposed to make the primes hard to find!

Now let’'s move on to specific attacks on a factoring-based
cryptosystem

RSA

Attacking the algorithm

P
RSA (Rivest, Shamir, Adleman)

Famous factoring-based cryptosystem
Large primes p and q

N =pq
O(N) = (p-1)(q-1)

e This function gives the number of elements o < x < N such that
gcd(N,x)=1

« Number of elements relatively prime to N

;IF)}(IISI)public (encryption) exponent e that is relatively prime to
e 65537 is a popular choice
The private (decryption) exponent is computed as follows
e de = 1 (mod ®(N))
e This means d is the multiplicative inverse of e in Z* 4y,
Z* 4 is the set {0,1,..., D(N)-1}

P —

RSA operations

Encryption
e MinZ,
o Zy=10,..,N-1}
e C=M*¢modN
Decryption
e M=CimodN
Why does this work?

e Euler’s theorem states that x®™ = 1 (mod N) if N and ®(N) are
relatively prime
e A corollary to Euler’s theorem allows us to show:
e Cdmod N = M¢ mod N = M*MN+mod N = M mod N
k is integer = o

« In other words, Mk*MN+1mod N = (M®*MNM)XM mod N = i*Mmod N = M
mod N

88

/ 7 \\ v

RSA example

Key generation

o Let p=11,q=13; e=17

* N=pq=143

e ®(N) = (p-1)(g-1) =10*12 = 120

e d=113

e 17°113 = 1921 = 16*120 + 1 = 1 (mod 120)

Encryption

e Let m=5

* 57 = 762939453125 = 135 (mod 143)
Decryption

* 135" = 5(mod 143)

R 5

RSA exercise

Open the file RSA.py
You'll see that all of the essentials are provided
e (Class privKey contains private key information
« Two functions, set and display

e (Class pubKey contains public key information
« Two functions, set and display

e Function genD
« Creates a private exponent
« Uses inverse function from cryptoUtils.py

e Encrypt and decrypt functions
« Use modExp function from cryptoUtils.py

To create a public key structure
e Pub = pubKey()
e Pub.set(p, q, e) #set the key information
e Pub.display() #print the key information

90

P — =

RSA exercise

Objective

e Create keys

e Encrypt a message

e Decrypt a message
Short list of primes

® 3137 4143 47 53 59 61 67 7173 79 83 89 97 101103 107 109 113
Try it with different parameters

e [s a sufficient d always found?
« What if e=2?
* When does private exponent generation fail?

o1

\ /

R 5

Attacking RSA

The private exponent can be found if N is factored

* p, q, and e are all that is needed to find d
There are other attacks as well that exploit parameter
properties

e Public exponent e

e Leaked exponents

e Known ®(N)

92

R 5

Using O(N)

Computing ®(N) is as hard as factoring
Some side channel may allow its discovery
* i.e. stored in memory
Can be recognized by similarity to N in most significant half

O(N) = (p-1)(q-1)

el i e
=N-p-q+1

e Since p and q are about half the length of N, the top half of bits of
®(N) will be very similar to those in N, especially as the length
increases

e Example:

Let p and q be 16 bits each, N is 32 bits
Max value (not necessarily prime) of p and q is 2'¢ -1
Min value (not necessarily prime) of p and q is 25

Value of p+q is at most 2(2'¢ -1) = 2'7 - 2 and at least 2'¢
N-27-1<®(N)<N-21 41

93

P —

‘,/

Using O(N) (continued)

®(N) can be used to solve for p and g
Write q=N/p

e Know this is an integer because q|N
Then substitute

N=pN/p=®N)+p+N/p-1

pN =p(®(N) +p-1) + N

o0=p(@®(N)+p-1)+N-pN
=p(®(N)+p-1-N)+N

This was a little tricky.
We moved into the reals
for division, but all of our
values are integers.

=p>-p(N-®(N) +1) + N
e Only one unknown
Solve equation for p

94

py

Leaked exponent

Suppose Bob accidentally leaks his private exponent,

d

Bob panics and changes his public exponent and
calculates a new private exponent

His new private exponent is safe from prying eyes

Is Bob’s key secure?
e Probably not

He changed the secret exponent, so why isn't it
secure?

95

P — =

Leaked exponent

There is a Las Vegas algorithm that can factor N given

d

e He can change d, but if he doesn’t change N we can still
calculate p and q

« We can derive his new private exponent

e Unlike games in the real Las Vegas, the odds are very
good

o« More than

96

Factor with private exponent

Input: modulus N, private exponent d, public exponent e
Output: prime factor of N

Let ed-1 = 251, r is odd
w = rand(1,N-1)
x = gcd(w,N)
Ifi<x<N
return x
v=w'mod N
If v =1 (mod N)
fail
While v # 1 (mod N)
V,=V
v=v2mod N
if v, = -1 (mod N)
fail
Else
x = ged(v, + 1,N)
return x

Stinson, “Cryptography: Theory and Practice”, 374 Ed., page 204
97

. T ‘,/
Factor with private exponent

(continued)
If it fails, try again

e Different values of w yield different results

e The chance the algorithm succeeds with a selected w is
a little over 50%

The lesson?

e If your private exponent is compromised, change your
entire key

« This means the primes too!

98

P — =

Exercise

Open factoring.py
You'll see a stub for ‘VegasFactor(N, d, e)’
* N is the number you are trying to factor
e d is the private exponent
e e is the public exponent
Objective
e Implement factoring with private exponent
e Factor the moduli of the following (N, d, e) tuples

» (437,317, 5) Use modExp function in the
* (38419, 26269, 13) cryptoUtils module to compute
o (11021, 3130, 31) a**i mod N.

-1 = N-1 (mod N)
2¥¥x=1<<X = 2<<(X-1)

99

//
S 2

Low exponent attack

Suppose Alice sends a message, M, to Bob, Charley, and
Dana

e All of their keys have different moduli
« gcd(Ng, Ni) = ged(Ng, Np) = ged(Np, N¢) =1
e All of their keys have the same small public exponent, e=3
Eve knows the following congruence relations
e Czg = M3 (mod Ny)
e C. = M3 (mod N,)
e Cp = M3 (mod Np)

She can efficiently find M using the Chinese Remainder
Theorem

100

//

Chinese Remainder Theorem (CRT)

Another quick math lesson before we proceed

e This will play a role in how we think about operations
Zy 1s isomorphic to product group Z, x Z,

e Structurally the same
Z*\ is isomorphic to Z* , x Z*

Computing x> mod N is expensive

Computing x> mod p and x> mod q, where N=pq is
cheaper

e Often used to speed up exponentiation

P —

CRT example

15=3%5

Z*15 = {1)2‘)477;8;11)13)14}

1< (1,1)
e 1=1(mod 3)
e 1=1(mod 5)
2 (2,2)
e 2 =2 (mod 3)
e 2 =2 (mod 5)
4 < (1,4)
* 4=1(mod 3)
* 4=4(mod s5)
7 < (1,2)
e 7=1(mod 3)
e 7=2(mod 5)

8 < (2,3)
e 8 =2 (mod 3)
* 8=3(mod5)
11 <> (2,1)
e 11=2(mod 3)
e 11=1(mod 5)
13 < (1,3)
e 13=1(mod 3)
* 13 =3 (mod 5)
14 < (2,4)
* 14 =2 (mod 3)
* 14 = 4 (mod 5)

102

CRT example (continued)

Suppose we wanted to compute 14*13 mod 15
° 14— (2,4)
* 13— (1,3)
14 * 13
e 2*1=2 (mod 3)
* 43 =2 (mod 5)
(22)—>>

 Indeed, 14*13 = 182 = 2 (mod 15)

/' e SeACAAA

Conversion back

Use extended Euclidean algorithm to find s and t
* s*3 + t*5 =1 (mod 15)

eSO =
°X=38=6
ey=5t=10

(1,4) = 1"y + 4*X = 1*10 + 46 = 34 = 4 (mod 15)
(2,2) = 2*10 + 2*6 = 32 = 2 (mod 15)

And so on

104

Low exponent attack (continued)
M3 = Cg (mod Ny)
M3 = C. (mod N)
M3 = Cp (mod Np)
M3 = Cp*(Nc*Np)*((N*Np)* mod Np) +
C*(Ng*Np)*((Ng*Np)* mod N) +
Cp*(Ng*N)*((Ng*Ne)* mod Nj) mod (Ng * N * Np)

Let M’ = M3
Compute the cubic root of M’

e Normal cubic root over the integers
e Not the modular cubic root, which is difficult to compute

105

P —

Low exponent attack (continued)

The number of ciphertexts needed is equivalent to the
value of the public exponent

This does not mean that e=3 is necessarily insecure
e The same message is essential to this attack
e [f only one congruence is known, this attack will not work

If e = 65537, then Alice would have to send the same
message to 65537 parties with different moduli and same
exponent for attack to succeed
* When is the last time you sent the same message to 65537 of
your closest friends using RSA?
e Just another reason that this is a popular exponent choice
- Small enough to facilitate fast encryption
- Large enough to make small exponent attacks difficult

106

R 5

How is this useful?

Bad protocols

e Good protocols use nonces to prevent messages from being
predictably identical

Same message sent repeatedly
e Same every time

You need to capture e ciphertext-modulus pairs
o [fe=3, only need 3 pairs
e If e=65537, need 65537 pairs

« Also need to take the 65537™ root instead of cubic root

Take away
¢ When you design protocols, add random nonces

e When you select a public exponent, choose one greater than 3
- Still want to keep them small for efficiency

107

P —

Exercise

Suppose Alice sends M to three parties with the
following public keys

e N-—1q13. e =2
e N,=18511,e,=3
* N,=3799,e,=3
You capture the following ciphertexts
e C,=6249
e C,=6032
e C, =2260

Objective: find the plaintext, M

108

.

Exercise

Open RSA.py
Complete function lowExponent(C1,N1,C2,N2,C3,N3,e)

Verity that your solution for M is correct using the public
keys

e Make sure the encryption creates the correct ciphertext

Hints
e x**a is python for x2
* 1/3 =0, but 1.0/3 = 0.3333...
e int(x) casts a float to an int, but it might give an incorrect
answer
 Try int(math.ceil(x))
 Yay, rounding!

109

py

A note on RSA

We've only been talking about “plain” RSA
e Deterministic
e Same input and key always results in same output

RSA is more often used with padding
e Parts of the message are random
» This is a good thing!
e Makes it more difficult to get two of the same or known
plaintext-ciphertext pair

110

DISCRETE LOG

Asymmetric systems

py

Generators

We need a little bit more algebra for this section
Suppose ¢ = modular multiplication

The set generated by a (denoted <a>) is all elements that can be
written as a°,al,az,...
e In Z*, this would be all elements that can be written as a'mod N
The order of a set is the number of elements in the set
The order of <a> is the smallest positive x such that a* =1
e If 0 = addition, then x such thatax=o
Example
e Leta=2, N=7
« 2'mod7 =2
e 22mod7=4
e 22mod7=8mod7=1
« The set generated by 2 (in Z*) is <2> = {1,2,4}
 <2>hasorder3inZ*,

112

et

Generators (continued)

An element a generates a set S if all elements in S can be
expressed as a power of a

In previous example, 2 only generates a subset of 7*,
What about <3>?

*3’mod7=3
e 32mod 7=2
e 33mod7=6
* 3*mod 7 =4
*3mod7=5

* 3mod 7=1
e The set generated by 3 (in Z*7) is <3> = {1,2,3,4,5,6} = 7
3 generates Z*,

13

_
The discrete log problem

Given a, b, and p, what is the value of x if o mod p =
B?

This is hard (in terms of complexity) on classical
computers

* i.e. your computer

There may be multiple solutions for x
Why?

- Why are multiple solutions

possible?

Let n be the order of @ mod p

e Then o = 1(mod p)
Can expand this

e o = (a")> =12 =1 (mod p)

e More generally, o = (a”)k = 1k = 1 (mod p)
Can write x as a function of n

* i.e.x=kn+j

We saw that the order of <2> mod 7 is only 3 (as opposed to 6)
Suppose 2* mod 7 = 4
® X=0"3+2
e 22mod7=4mod7=4
e X=1"3+2=75
« 25>mod7=32mod7=4
 And that is all that are in Z*, but there are an infinite number of solutions in Z
There is only one solution in Z* if o generates Z*,

15

: T e ,,‘.w/
How do you find a generator of a

set?

Two options
e Randomized algorithm
e Choose a standard modulus and generator
The algorithm
¢ Choose random element o in Z*,
For all i, where p;, is a factor of (p-1)
Compute b = a1/,
If b =1, go back to step 1
Return o
Diffie-Hellman key exchange is a discrete log crypto algorithm
e Used in SSH and IKE

e Standardized groups ©

« There’s several
e Parties agree on modulus size and group before exchange

Let’s take a look at some, shall we?

116

et

Diffie-Hellman group 1

RFC 2409

Different modulus sizes specified
e 768-bit, 1024-bit

e Elliptic curve groups as well, but we haven’t done those yet

Not the most secure option these days

Example: 768-bit modulus
e Generator is 2
e 768-bit prime is (in hex)

R A S A I
C4Cb66028B
020BBEAG6
EF9519B3
4FE1356D
F44C42E9

YA A 04 A T
80DC1CD1
SBLIIBA2
CD3A431B
ARSIV
A63A3620

CO90FDAAZ
29024E08
514A0879
302BO0A6D
E485B576
Al o T T

2168C234
8A6/CC'74
8E3404DD
F25F1437
625E7EC6
I T T T A

17

P —

Diffie-Hellman group 14

RFC 3526

Different modulus sizes specified
* 1536-bit, 2048-bit, 3072-bit, 4096-bit, 6144-bit, and 8192-bit
Example: 1536-bit modulus
e Generator is 2

e 1536-bit prime is (in hex)

FFFFEFFFE
N NS E
020BBEA6
BRI L9B3
4FE1356D
FA44C42E9
EE386BFB
49286651
98DA4836
83655D23
9ED52907
F1746C08

FEFEFFFEFE:
SAIRR IR
3B139B22
CD3A431B
6D51C245
A637ED6B
5A899FA5
ECE45B3D
1C55D39A
DCA3AD96
7096966D
CRABAB

CO90FDAAZ
AN R RGRS)
514A0879
302BOA6D
E485B576
OBEFEF5CB6
AE9F2411
EPTIISERS
69163FAS8
LEO2E 56
670C354E
i 2 0 I

RN RN ZER
8A67CC74
8E3404DD
F25F1437
625E7TEC6
FA06B/7ED
7C4B1FE6
A163BF05
FD24CF5F
208552BB
4ABC9804
Ji M L LY

/

118

P — =

Standardized generators

These examples both have 2 o 1§
has the generator L e
This is not a coincidence 2 =4=1<<2
2 has good properties 23=8=1<<3

e Exponentiation is expensive
» Multiplication is expensive

o Left shifts are cheap

And so on

e >X can be written as 1<<x
e Efficient!

But as we saw with p=7, 2
won't generate every group

119

Baby-step giant-step method

* Use lookup tables to save time
e Tradeoff with space

* Precompute first L. powers of o

‘,/

/ e S

Baby-step giant-step algorithm

Input: «, B,p where o* = B (mod p)
Output:
L = floor(vp)
Compute lut[1]= a mod p, lut[2]= > mod p,..., lut|L]= amod p
h=(oc’) mod p
t = B #starting point
for j=o to L

if there is a value i such that lut[i]=t

return i+j”*L
t=t*hmodp

 — 5

BSGS Example

Given 3* mod 113 = 37, find [terate through j loop

X ® j:0, t:37 «<— t=8
L=floor(v113)=10 °j:1, t:110 R
Precompute table ° j:2, t: 43 \ found, set next t:
e Lut[o] = 3° mod 113 °j:3, t:24 t=t*h mod p
e Lut[1] = 3' mod 113 ° j: 4, t:108
o & jis i
e Lut[10] = 3'° mod 113 °j:6, t: 40
h=(37")*mod 113 = 61 Result: 106 + 7 = 67
e 37mod 113 =t = 40
°] -6

e 40 is at index 7, which is
why it is added to 106

122

BSGS analysis

» Memory: Vp
e For the powers of o

* Time: v log(p)

— e, S
Exercise
Open discreteLog.py

Complete babyStepGiantStep(a,b,p)
* ais generator, b is result, p is prime modulus
Objective: try to solve and verify the following
e 89* mod 809 = 618
e 16* mod 809 = 46
e 16* mod 809 = 324
e 2Xmod 2777 = 512

124

py

Adaptations

Factoring < discrete log
Algorithms can be adapted

Pollard’s rho

e Partition {o, ..., p-1} into three sets of approximately
equal size

« Many partitions possible

{0,..., (p-1)/3}, {(p-1)/3+1,..., 2(p-1)/3}, {2(p-1)/3,...,p-1}
X = o (mod 3), x = 1(mod 3), x = 2 (mod 3)

e Compare triples (x; a; b;) and (x b,)

e Look for collision x; = x;

217 2.1’

125

- Pollard’s rhoMWlogs/

(Swenson)

Igput: a,B,lla | d If x in partition 1
aouztll);jtz.soo ution to o mod p = 3 % f(X) = BX o D
. e g(x,n) = (n+1) mod (p-1)
i;hcile X, # X,; do v h.(X,I'l) = n mOd (p_l)
i = i1 If x in partition 2
X; = f((xi-l)) e f(x) =x>mod p
q; = 8\Xjp i,
bohG by e g(x,n) = 2n mod (p-1)
Xzi=f((ff((xzi-2))) ()) e h(x,n) = 2n mod (p-1)
A, = 8UX,i,)) B\X5i5 Ay e S
b2i= h(f(XZi-Z)’ h(XZi—27b2i—2)) IfX ln partltlon 3
Ifb, = b, e f(x) = ox mod p
fail
m = a, - a,; mod (p-1) : g(X,Il) =n mod (p_l)
n=b, - b mod (p-1) e h(x,n) = (n+1) mod (p-1)

Solve mx = n (mod p-1) for x

126

Solving for x

mx mod (p-1) = n

e x =n/m mod (p-1)

e Oh division, how you trip us up

e The inverse of multiplication is multiplication
x = m™n mod (p-1)

e Use inverse(m,p-1) in cryptoUtils

127

Caveats and fine print

This version is not the most general

e Assumes that o has order p-1
« May not be the case
« While o®* = 1 mod p, there may be an x < p-1 such that o* = 1 mod p

 We can say this for the version of BSGS we looked at as well, but it
doesn’t matter as much there

Produces multiple solutions

Let’s look at another version from Stinson’s book
e Less memory!
e Generalized!
e Assumes you know the order of o

128

,,,,,,,,,,

(Stinson)

Input: o, 3,p,n
Output: solution to o mod p = 3, where o has order n

(X)a)b) = f(l,0,0)
(¥,a’,b’) = f(x,a,b)

(X)a)b) o f(X’a’b)

(x,a,b) = f(x',a’,b’) 1 Bxmodp amodn (b+1) mod n
(x,a’,b’) = f(x',a’,b’)

2 x> mod p 2a mod n 2b mod n

If ged(b™-b, n) #1 3 oxmodp (a+1)modn bmodn
fail

Else
return ((a - a’)(b’ - b)*mod n)

129

L e S
Exercise
Open discreteLog.py

Complete findOrder(a, n),
pollardRho(alpha,beta,p,n), and
f(x,a,b,alpha,beta,p,n)

e Follow Stinson’s version
Objective: try to solve and verify the following

e 89* mod 809 = 618

* 16X mod 809 = 46

e 16X mod 809 = 324

e 2* mod 2777 = 512 This exercise is from Stinson, page 239

130

py

Exercise hints

Use remainder mod 3 for partitions

° 1:X = 1(mod 3)

e 2:X = o0 (mod 3)
¢ 3 x =5 (mod3)
You can set three variables at once
* [x,a,b] = f(x,a,b,alpha,beta,p,n)
» Just need to have f return a list
return [resulti, result2, result3]

e If you don't like this, you can break it into three
functions like in Swenson’s algorithm

131

py

Index calculus

Does not involve derivatives or integrals
e We're saving that for later ©

Most powerful discrete log attack
e Analog to GNFS

Not really described in the text

e Not in Stinson either
e If you want to read more, see the HAC

Here we go!

132

/ 7 \\ v

Index calculus algorithm

Choose a factor base (set of primes)

Obtain set of congruence relations mod p
e Represent with factor base

Create system of equations (mod order of o)
Solve the system
Profit

133

.

Example

From HAC, page 110

Problem: 6* = 13 (mod 229)
* 6 has order 228

Factor base = {2,3,5,7,11}

To obtain congruence relations, raise 6 to power mod
229

e If result can be represented as a product of factor base,
keep the relation

e Otherwise, discard it

134

Example (continued)

Relations:

6'°° mod 229 = 180 = 22¥3%*5

6'® mod 229 =176 = 24*11

6> mod 229 =165 = 3*5*11

6% mod 229 = 154 = 2*7*11

6'3 mod 229 =198 = 2*32*11

62°6 mod 229 = 210 = 2*3*5*7

Relations give the following log equations
100 = 2 log, 2 + 2 log, 3 + log, 5 (mod 228)
18 = 4 log, 2 + log, 11 (mod 228)
12 = log, 3 + log, 5 + log, 11 (mod 228) | Note that we're using p-1 here
62 = log, 2 + log, 7 + log, 11 (mod 228)

143 = log, 2 + 2 log, 3 + log, 11 (mod 228)

206 = log, 2 + log, 3 + log 5 + log, 7 (mod 228)

135

P —
Example (continued)
Equations (from previous slide)
* 100 = 2 log, 2 + 2 log, 3 + log, 5 (mod 228)
* 18 = 4log, 2 + log, 11 (mod 228)
e 12 = log, 3 + log, 5 + log, 11 (mod 228) Key:
e 62 = log, 2 + log 7 + log, 11 (mod 228) L= iog6 5
* 143 = log, 2 + 2 log, 3 + log, 11 (mod 228) b = log, 3
* 206 = log, 2 + log, 3 + log, 5 + log, 7 (mod 228) c =log, 5
Rewrite in a more familiar style d = logs 7
2a+2b+c =100 e = logs 11
4a +e =18
b+c +e=12 6 equations and 5
a+ d+e=062 unknowns? If there is a
a+2b +e=143 unique solution, we
Srbhaead S ob can solve that!

/, e s /

Solving the system of equations

Many options
e Take a trip down memory lane to high school algebra
e Use Gaussian elimination, if you know it

e Use tools such as Matlab, Mathematica, or Wolfram
Alpha

Least license-free effort: use Wolfram Alpha
 Let’s take a look at how to do this

137

/

Solving the system with Wolfram
Alpha

Go to www.wolframalpha.com

Enter the following in the equation line

e integer solutions ((2a+2b+c) mod 228) = 100, ((4a+x) mod 228) =18,
((b+c+x) mod 228) =12, ((a+d+x) mod 228) = 62, ((a+2b+x) mod

228) =143
Workarounds
e Notice that we took out ((a+b+c+d) mod 228) = 206
« Not sure why, but it did not work with all six equations
e “e” is interpretted as the transcendental number e, so we replace it

“_n

with some other character, like “x

Because we took one equation out, we couldn’t find a unique
solution

e Calculate again, replacing one of the equations with the one we
took out

138

olving the system wit

olfram

Alpha (continued)

Input interpretation:

(2a+2b+c)mod228 = 100
(4a +x)mod228 =18

solve

(b+c+x)mod228 =12 ywver the integer
(a+d+x)mod228 = 62
(@+2b+x)mod228 = 143
Results: Show s
a=228c;+21 and b=228c, +208 and ¢ = 228¢c4 + 98 and

d =228c4 + 107 and x =228c¢g + 162 and ¢y,¢5,¢3,¢4,C5 € Z

a=228cy +97 and b =228¢, +208 and ¢ =228c¢c3 + 174 and
d =228c4 + 107 and x =228¢5 + 86 and ¢y,¢5,¢3,¢4,C5 € Z

a=228¢cy+ 173 and b =228¢, +208 and ¢ = 228¢5 + 22 and
d =228c4 + 107 and x =228¢g + 10 and ¢y,¢5,¢3,¢4,C5 € Z

Z isthe set of integers

Input interpretation:

(2a+2b+c)mod228 = 100
(4a +x)mod 228 = 18

solve (b+c+x)mod228 =12 ver the integers
(a+d+x)mod228 = 62
(a+b+c+d)mod228 = 206
Results: Show steps
s a=228¢c; +21 and b=228c, +208 and ¢ = 228¢c; + 98 and

d =228¢4 + 107 and x =228cg + 162 and ¢y,¢y,¢3,¢4,¢c5 € Z

a=228c,+78 and b=228c, +94 and ¢ = 228¢c5 + 212 and
d=228c4 +50 and x =228c¢g + 162 and ¢y,¢,,C3,¢4,C5 € Z

a=228¢cy + 135 and b =228¢, + 208 and ¢ =228¢c4 + 98 and
d =228c4 +221 and x=228cg + 162 and ¢y,¢y,¢3,¢4,Cc5 € Z

a=228¢cy+192 and b=228¢cy +94 and ¢ =228¢5 + 212 and
d=228c4 + 164 and x =228cg + 162 and ¢y, ¢y, ¢3,¢4,C5 € Z

Z isthe set of integers

e Both solution sets contain one match
e a=21, b=208, c=98, d=107, x=162

e This is the solution

* log, 2 = 21, log, 3 = 208, log, 5 = 98, log, 7 = 107, and log, 11 = 162

139

‘,/

P —

We have a solution. Now what?

Recall we started with 6* = 13 (mod 229)
Pick a random k between o and N-1, inclusive

Calculate B*ak = 13 * 6% and represent with logs we just
found
Example:

e Suppose k=77

* 13 * 677 mod 229 =147

s =3 7

e log. 13 = (log, 3 + 2 log, 7 - 77) mod 228 = 117

e Sox =117

« 6"7 = 13 (mod 229)

140

.

Exercise

Suppose p = 10007, and o = 5
Let {2,3,5,7} be the factor base

Objective: find log, 9451 (mod 10007)

Hints

* log, 5 is an easy congruence

e Factoring will be trial and error, but the factor base is so
small that it will be easy

Adapted from Stinson example 6.5
141

/

P
Discrete log: summary

Solve for x if o« mod p = 3

Factoring techniques may be adapted
Pollard’s rho

Baby-Step Giant-Step

Index calculus

tmplementation notes for factoring

and discrete log

We've done small examples with python here

If you ever want to do this with realistic size moduli,
you'll need something that allows larger integers

e BIGNUM data structures
e Only limited by available memory

Luckily, there are handy libraries you can use
e OpenSSL BIGNUM library

e GNU MP

143

Symmetric Systems

An introduction

P — =

Symmetric cryptosystems

Saw that asymmetric algorithms based on hard problems
e Solving the problem finds the key

Symmetric systems are based on principles of confusion and diffusion
e Confusion: obscures the relationship between plaintext and ciphertext

e Diffusion: spreads plaintext statistics through the ciphertext
« A bit of the output is influenced by many bits of the input
Both forward and backward diffusion are important!

e Finding the key is... different

Niels Ferguson once told me that cryptanalysis was half mathematics
and half black magic

e Everyone here likes magic, right?
Let’s learn some tricks

145

/

_ p—
Little bit of math, little bit of magic

First, we'll look at a couple kinds of constructions
e Not an exhaustive list, but you're likely to see these in practice

Then we’ll move onto the math and “magic” we need to analyze
them

The math

e Probability
» A dash of statistics

e Linear algebra
The magic
e Slide attacks
e Linear cryptanalysis
e Differential cryptanalysis
e Integral cryptanalysis

Common Construction plaintex

* Product cipher Round 1

e Combines two or more transformations

e Resulting cipher more secure than components
8 ¢IP P Round 2

e Simple function f

* Algorithm=fofofofofo . ofof
e O is composition

o ff(f(£(£(... f((x))) ...)))))

e fis called a round function

Round n-1

Round n

ciphertext

147

. 5

Round function

Provides confusion and diffusion
Key combined with state (confusion)

e Often called “key mixing”
Non-linear transform

e Often implemented as a substitution
- S-box

Data mixing/permutations (diffusion)

e Each bit of output depends on many bits of input
« In the best case, all

One round doesn’t have to achieve high confusion and diffusion

High confusion and diffusion achieved by repeated application of
round function

e There may be multiple unique round functions

et

Round function (continued)

Composition of simple function has benefits over single
complicated function

e Several optimization options available
 Pick the best implementation strategy for the target
32-bit architecture
8-bit architecture
Limited memory
» Loop unrolling
« Smialler circuit size

We'll talk about two round function constructions
e Substitution permutation network
e Feistel

149

/

P
Substitution permutation network

Substitution layer comprised of plaintext
S ool (o] =] []]

e Takes in a small number of bits 1 -1 [T T[]
(i.e. a byte) P

e Outputs a small number of bits : : : :
e Relation between input and 1 S 1 X | EEEY N |)

output is complex S S S S
: . [T [T M-T -]
« High-degree polynomial P
« Not linear ”| ”| ”| ”“‘lciphertext
Permutation laYeF Figure 7.7: Substitution-permutation (SP) network.
e May also be called a P-box
o Shuffles all the bits of the state I inbon fhe HAG

« May do so in chunks

150

/—\ /

A closer look at permutations

* Let’s look at three different permutations

* Suppose each “chunk” is the input/output of an S-box on
previous slide

* Which provides most diffusion? The least?
e Draw it out to see

151

7 at per e /
closer look at permutations

(continued)

Ok, that was a trick
e They were all equally terrible

Since the same groupings fust
go from S-box to S-box, all of
them have a simple form

To provide diffusion, the
ermutation has to mix data
etween S-boxes

A cipher with a permutation
layer like this is just begging to

be attacked
e More on this later

152

R 5

Feistel

Main features
e State is split in two parts

» Non-linear transform performed on one
part

« Result combined with other part
« Parts swap

e Encryption and decryption use the
same round function logic

» Less code
- Fewer gates

Each part is usually half Li Ri
e (Called a balanced Feistel function

153

.

Key schedule

We've talked about types of round functions, but
need one more piece

Key isn’t usually applied as-is each round
It goes through a function to produce a key schedule
e Set of keys

» Can be generated as needed, or before first round is applied,
depending on algorithm

e Each round uses one of these keys

e When decrypting, they are applied in reverse order
from encryption

» True in Feistel ciphers as well

154

.

EASY1

Toy cipher in the textbook

e Diagram on page 101
Features

e SPN construction

e 36-bit blocks

e 18-bit key

 Creates 36-bit key where upper and lower 18-bits are identical

Most of the Python code is on pages 103-106

e Missing from this section: apbox and asbox (part of
decryption)

« They show up in later pages
e EASY1.py has all the code you need to run EASY1

« Object-oriented version of what is in the book

155

. 5

FASY1.py

To use:

1. Create an EASY1 object
« cipher = EASY1 ()

2. Encrypt

« Arguments are plaintext, key, and number of rounds
« C=cipher.encrypt(123L, 456, 1)

3. Decrypt

« Arguments are ciphertext, key, and number of rounds
« Mp = cipher.decrypt(C, 456, 1)
Mp should give you 123 back
In this implementation, you can give encrypt/decrypt either an 18-bit
key or 36-bit key
e Will create 36-bit key from 18-bit
e Checks form of 36-bit key

Alright - let’s try it!

.

Exercise
Objective: use the EASY1 cipher in EASY1.py

Open a new file and write a script that does the
following

e Encrypts the message 123456 with key 9876
e Decrypts the message

e Reports an error if the decrypted message does not
match the original

157

P
Ready?

Now that we've got that down, let’s get down to some
analysis!

©

158

Generic attacks

For symmetric systems

py

The extremes

Assume Eve discovers a plaintext-ciphertext pair
Two extreme methods for finding the key

Brute force
e Exhaustive key search

e Try each possible key on single plaintext/ciphertext
» Message not known ahead of time

e Takes O(1) memory and O(2¥) operations, where the key has k bits
Massive pre-computation

e Pre-compute all possible ciphertexts for P
e Takes O(2*) memory

o After pair observed, perform a lookup
 Assuming lookup is constant, takes O(1) operations

160

P —

Hellman’s time-memory trade-off

Also called time-space trade-oft
e Memory is what is meant by space

Middle ground between brute force and massive
pre-computation

Main idea: create chains of encryptions, and only
store the start and end of each chain

This is best described visually

T lVI T O If C has more bits than
the key, then a reduction
Choose a starting point, S has to be performed
Choose a plaintext, P before the next

C=F (P S) encryption
e The result becomes the key for the next encryption in the chain
Repeat until endpoint, EP, reached

Go back to step 1

N S T v

m <

e o o P PN N > E > —> EP
v by vy
SZ_>E_>E_> > E > -> —>E—>EP2
s v U v
D P P e PN N A S PlLE > £p
3 3

162

py

TMTO (continued)

The attacker stores each (S, EP) pair

e May do this for several different plaintexts, but need to keep track
of which chains associated with which P

e Let’s say there are t pairs
Now we move from the pre-computation to the attack

Obtain a plaintext-ciphertext pair, where the plaintext is P
Compute an encryption chain starting with the ciphertext

e Keep track of the number of encryptions performed, i

When an endpoint is reached, know which chain you're on
Calculate forward from the starting point until C_, , reached

t-1-1

163

py

Convergence, cycles, etc.

Chains do not always run in parallel
Sometimes they converge

e Multiple starting points terminate in the same endpoint
Sometimes they form cycles

In both cases, work is performed that does not
provide any new information

e Waste of time

Workaround: add some randomness
e Choose a permutation function, F, for each chain

e Calculate C, = F(E(P, C._))

P
The effect of F

Without F functions

e From here, the second chain duplicates the first

With F functions

e

e Because F is different in each chain, they diverge again

.

F and reality

Using a different F for each chain brings up a problem
e Have to now store each of these functions

Alternative: choose r different functions

For each function, construct m chains
e Each chain should start at a random point

This produces r tables with m chains of length t

166

P
FindChains algorithm

for i=o to r-1
choose random function F,
for j=o to m-1
SP; = rand(2)

L = SPij
for L =1to t-1

CL - FI(E(P, CL—I))
EPij — e

These algorithms adapted from “Applied Cryptanalysis” by Stamp and Low

167

findEP algorithm

Input: C and (SP,EP) pairs
Output: corresponding EP or failure

findEP(C)
for i=o to r-1
Y=F1(C)
forj=1tot
for L=0 to m-1
if Y == EP,
found = findKey(i,j,L)
if found
return found
Y=F.(E(P,Y))

return failure

168

y

findKey

Inputs: i (table number) ,L (chain number), j (position in
chain), ciphertext C

Output: key or failure

findKey(i,L,j)

¥ SB

for q=1 to t-j-1
Y=F.(E(P,Y))

K=Y

it € — E(R.K}
return K

else fail

169

P — =

How many chains?

That depends on how certain you want to be that you'll get the result
Longer chains and more chains will cover more of the key space
e More chains means more memory

e Longer chains means more computation in both pre-computation and
attack phases

Hellman suggested the following for a k-bit key
o 2k3 tables
e 2ki3 chains
e 2k3jterations per chain
Probability of success = 1 — e-mtr/2k
e With above, this is 0.63

e Assumes not cyclical and not converging
« Bad chains reduce success probability

170

py

Exercise

Implement TMTO on EASY1
Open TMTO.py

e Finish the following functions
e F
» findChains
- findKey
« findEP

Objectives
e Analyze the chains of EASY1

 Derive the chains, but also print out some of the intermediate
points

 This will help you debug your code!
e Use TMTO to find the key

171

. 5

Exercise: tips and tricks

You can create a “random” function like this
e Fi="(({o}*3+{1}*{2}) % 2**25) & ox3FFFFL".format(x,i,r)
e res = eval(Fi)
e This is an example, feel free to use your own!

You may want to try some things to ensure your code is
functioning properly

Some suggestions:
e Make sure the key is inside a chain by fixing SP[i][j] to the
key
» Tests when the key is an SP
e Print out where in a chain it is

« Tests when the key is inside a chain
i.e. not an SP

172

- Myth: moreW

secure

* Fact: adding more rounds can increase security, but it
is not inherently given

* Let’s see why

173

py

Slide attacks

Suppose all round functions are completely identical

 All have same round key as well (key schedule is just
repeated applications of the key)

Then m round functions can be reduced to one in analysis
e Need to find slid pairs

e Plaintexts P and P’ that produce ciphertexts C and
C’ (respectively) such that P’ = f(P) and C’ = f(C)

e

PI

—>

f

—

> C

n

_>Cl

174

_ .
Slide attacks (continued)

The trick here is realizing when you have a slid pair
May be difficult with an SPN

Feistel constructions are simpler
e Suppose right side is transformed during round
e Then left side is unchanged, and swapped with the right
e Old left side is new right side

e Aren’t there false positives?

« Of course
 The probability that this happens in both the (P,P’) pair and (C,C’)
pair is low

Much higher if you are only considering one

175

e

| get it now!

The purpose of the key schedule is to ensure that each
round is not 100% identical

The round transformation might be the same, but
applying a different key will yield different results
The round key should be unique for each round

e If there are two round keys alternate, then the slide
attack can be done by looking at two rounds instead of
one

e It is the repetition that causes vulnerability

176

Exercise (part 1)

All rounds of EASY1 are identical
e Let’s try a slide!
 We'll do this in two parts

Open slide.py

e Assume you're in a chosen plaintext model
e Complete Slide.CreateSlidPair()
Objectives

e Identify how to determine when you have found a slid pair
e Write code that finds the key, given a slid pair
Tips

e You can request a single round encryption using self.key as key
argument

e The key will change each time you run the code, so look at what is
always the same

177

P —

Exercise (part 2)

Let’s change models

Now assume that you are collecting plaintext-ciphertext pairs,
but cannot make requests

e i.e. you have to generate both plaintexts randomly

Complete Slide.findSlidPair()

e Now you need to recognize a pair instead of creating one
e Generate random plaintext and compute ciphertext

Objective
e Reduce a 20-round cipher to one round and find the key
« This means no more 1-round requests with the key - 20 rounds only!

Tips
e You can still make one round requests with a fixed key of your
choosing, just not the randomly selected one

More math

Just a little

P —

Product groups

We've talked about groups
e [fthey commute, they are abelian groups

A product group is constructed from several groups
e Suppose (G,+) is an abelian group
e ("=GxGx-xG
e Recall when we did this with CRT
Example:
e Consider G = {o,1}
e G2=Gx G (two bits)
e Each element of'is a G 2d vector

» (0,0), (0,1), (1,0), (1,1)

e U+V=wmeans u; + VvV, =W,

1
(1,0) + (0,1) = (1,1)
Exclusive-or, in this case

180

Linearization

Attacks often reason in a linearized version of a cipher
An n-bit integer — Z."

Working with vectors of bits

P — =

R A B C
Probability . 1
3 3 3

Random variables take on values according to a probability
distribution

e Probability that a letter in English is “e”
e Probability that a letter in English is “z”
e [f X is the random variable, write Pr(X=e) and Pr(X=z)
In image above, what is Pr(C=2) if we know that A=1?
 Pr(B=1|A=1) = p,, Pr(B=2|A=1) = p,, Pr(B=3|A=1) = p,
e Pr(C=2|B=1) = p,, Pr(C=2|B=2) = p,, Pr(C=2|B=3) = p
e Pr(C=2|A=1) = Pr(C=2|B=1) Pr(B=1|A=1) + Pr(C=2|B=2) Pr(B=2|A=1) +
Pr(C=2|B=3) Pr(B=3|A=1) = p,p, + p,Ps + P;Ps

182

.

Statistics

The only distribution we care about right now is the
uniform distribution

e Distribution of a perfect cipher
Histograms are the only tool we need
e No Z-tables or t-tables for us!

We will only be concerned with

e Values that occur far from expected in a uniform
distribution

e Values that occur an expected number of times

183

P —

Matrix addition

Two matrices, A and B, with same dimensions
C = A + B is computed by component-wise addition
o Clij=Alij+ Blij
o [M1&2@38&4 [+ [W58&6@7 &8 |=
[W1+582+6@3+7&4+8 = [M6&8@10&12 |

In Wolfram Alpha () the
syntax to compute this is

e {{1,2},{3,4}}+1{5,6},{7,8}}

P — =

Matrix multiplication

A has dimension m x n and B has dimension n x p

e The number of columns in the left matrix must match the number
of rows in the right matrix

e Note that this operation does not commute, so you can’t just swap
left and right

« May need to transpose

AxB=C
o [M1&2@3&4 [[M5@6 |= [M1+5+2x6@3+5+4+6 |= [M17 @39]

In Wolfram Alpha, the syntax to compute this is
* {{1,2},33,4}1*i5},16}}

.

Caveats

It is pretty straightforward with regular addition and
multiplication
Remember that in our abstract algebra world, + and x
might mean something else

e + might be exclusive-or or modular addition

e x might be a different kind of multiplication
» In AES, it is multiplication in a Galois Field

Polynomial fun

186

Some xkcd math humor

http://xkcd.com/184/

Linear & differential
cryptanalysis

Symmetric systems

Attacking symmetric systems

Find a simple way to express a relationship between
input bits and output bits

Use math-fu to find key data
Profit

/, S . s /

Partitioning is the key concept

When you're targeting a particular algorithm, you
can do more than in generic attacks
A significant difference between asymmetric and

symmetric systems is the ability to partition the
state and still retain information

Reduce your work H

e [solate parts of the state/key as much as possible

o Ifthe part you're interested doesn’t use a set of key |
bits, tll;i)en they can be ignored
e 2734 203 4 203 jg a lot smaller than 2"
- Example: n=9
8+8+8 = 24 Vs. 512
- This is why diffusion is important
Prevents adversary from isolating sections

190

R 5

Linear cryptanalysis

Working with vectors of bits
e 1011 — (1,0,1,1)
Operation is exclusive-or
Suppose cipher has n-bit input and output, m-bit key
e Write the plaintext as P = (p,, ..., Pjs - Pnt)
e Write ciphertext as C = (co, ey
e Write key as K = (k,, ... e
Main idea: approx1mate part of a non-linear function using a
linear expression
* Po®PPy @@, D, DKk, Dk Dk, =0
e Tells us the parity of 3 bits of key
* Po®DP,, @, @, @, =k, @k Dk,
Note that if 1 appears in the equation, it is affine
e Won’t work here

191

" How do you approximate a
function?

e Start with the non-linear elements

e Linear elements are easy to write as linear expressions
« No approximation needed

* In an SPN, this will be the S-boxes
* Try to approximate the output in terms of the input
* Let’s consider the following 3-bit S-box
e 3-bits in L vy
 3-bits out S-box

v vy
Hﬂ!HIIIIIIIIIIIIIIIIIEIIIII

output 3

192

Linear S-box approximation

----_-

output 3

* First, note that there are 23 * 23 = 23*3 = 26 64 different
expressions

* You can see how this grows with larger S-boxes
* Use a mask to determine if a bit is part of the expression

e A mask of 101 means that the most significant and least significant
bits are part of the expression

e [nput: 101, output 110 translates tox, ®x, =y, @y,
« Equivalently, x, ®x, @y, ®y,=0
* Need to try all possible input output pairs
e 26* 23 =512 operations
¢ Count how many times the equation is true

193

. 5

Linear expression bias

The usefulness of a linear approximation is based on its bias
e The expectation is that the probability an approximation holds is

0.5
 [f an approximation holds significantly more or less often than this,

it can be used to find the key

Let T be the number of times an expression holds (is true)
Let N be the number of trials (distinct plaintext-ciphertext
pairs)

Let e represent bias

Then: 7/N =1/2+ ¢

Which means: 7/¥N —1/2=¢

104

P — 5

Two notations for bias

Bias should range between -0.5 and 0.5
* 0.5 - 0.5 = 0 (approximation never holds)
* 0.5+ 0.5 =1 (expression always holds)

People often don't like dealing fractions
e Easier to write code for integers
Alternate definition
e Bias=N(Z/N¥N —1/2=¢)=T-N/2

e This one is not normalized, but can be useful, as we’ll
see

195

P — 5

Linear round approximation

Once the non-linear components are approximated,
the rest is usually much simpler

Trace the bits of your approximations through the
rest of the round

e Input and output masks for the round

Once you have input and output masks for one round,
extend to another
e And so on, as far as you can go with a reasonable bias

196

P —

What really happens

Don’t usually use ciphertext bits in approximation
If you're looking to break R rounds, you need an
expression for R-1 rounds

e The “ciphertext” of the approximation is the output of
round R-1

e The ciphertext is the output of R rounds
From the ciphertext, backup to the output of round
R-1

e This requires guessing some bits of the last round key

* These guesses are going to be where you get your power

» Otherwise, you'd just get o or 1 9
197

.

Matsui’s algorithm 1

Given an expression with probability p of the form

P, ®P, ®..@C ®C. ®..=K _®..®K_
Collect N plaintext-ciphertext pairs where encryption
was performed under the same key

For each pair, calculate the left side of the equation
e Let T be the number of times the left side is zero

IfT>N/2 andp >1/2 , guess that the right side is zero

e This means that the parity (or exclusive-or sum) of the
selected key bits is zero

IfT<WN/2 and p <1/2 , guess that the right side is zero
Otherwise, guess that the right side is one

/

P
Matsui’s algorithm 1 (continued)

Pros

e Low implementation cost
» Nothing but xor operations

Cons

e Must know probability, p
e This algorithm gives only the parity

He gave a second, more useful algorithm

199

P — 5

Matsui’s algorithm 2

Given an expression of the form
P.OP ®.0COHC ®..=K ®.0K_
Collect N plaintext-ciphertext pairs

For each candidate set of key bits, calculate

e T = # times true

s\ N7 |

Select key candidates that have the highest bias,

e These are more likely to be correct, by principle of
maximum likelihood

200

P —

Matsui’s algorithm 2 (continued)

Pros
 Gives [partial] key candidate rankings in addition to parity
e Don’t need to know the probability

Cons
e Requires N calls to the cipher for each candidate key

Comparison
e 1takes less work, but yields less information
» You'll have to make up the work later if you want to find the key

e It is assumed that the attacker knows everything but the key, so
access to the encryption function is assumed

e Key bits with the same parit?; may not be equally good. Algorithm
2 will rank these, but algorithm 1 will not

201

What does bias look like?

* 2-dimensional table
e Row: input mask
e Column: output mask
* Bias and masks often written in hex
* (0,0) is always equal to N/2, so ignore it
e Involves not input or output bits
e More for completeness than anything else
* Example
e A 2-bit S-box may have the following table

I PR PO P PO
o (0] (0)

2

© O O
-
O
O

202

Exercise in three parts

We're going to try linear cryptanalysis on two rounds
of the EASY1 cipher

Break this down into three parts
 Find biases of linear expressions for the s-box

e Extend approximation to two full rounds
e Use expressions to find key bits

203

P — =

Exercise: part 1

In this part, we only care about the S-box
We're going to use the bias notation T-N/2, since it is easier to code

Objectives:
e (alculate S-box bias for all possible expressions
« Fill in function findBias

e (reate a frequency table for each bias, and display
« Fill in function findFrequency

e Identify high-bias expressions
« At least the top 4
« Use findMasks

Hints

e Setting a bit to zero has the same effect as not including it in the expression, so
use AND operations to zero out any unneeded bits

* You can use decimal or hex, just be consistent
e Don'’t look at next slide yet

204

Exercise: part 1 discussion

* The highest bias is 16
e Remember, the bias in cell (0,0) doesn’t count!
® 14,12, and -12 are next highest
e 12 and -12 are equally strong
* Frequency isn’t actually part of the attack
e (Observe how rare high-bias expressions are compared to low-bias
What matters is strong biases involving a small number of bits

frequency

1000

900

800

700

600

500

400

300

200

100

-2 -10 -8 -6 -4 -2 o0 2 6 8 10 12 1 16 32
4 4 4 3 205

. 5

Exercise: part 2

Look at table 6-4 of the text (page 177)
* You see some expressions have smaller bias, but also fewer addends
Choose 2 of these expressions to try in this part
Objectives:
e Extend these expressions to find input/output masks for one full round
e Extend one round to two rounds
Hints
* When extending to one round, follow bits of S-box output mask forward

e When going from one round to two, follow the first round input bits back (find
dependencies)

e This is a pen & paper exercise
e You can use the image in the book to trace the paths

o It mag take you a couple tries and different S-box approximations for each
roun

e Don’t worry about the key yet — we’ll get there

206

/, S . s /

Exercise: part 2 (more hints)

There are really three masks here
e [nput to two rounds
e Output of two rounds
* Between rounds
A lot of bits in the middle may mean more in the input or T 3
output

e Set the middle to either the left or right half of each
equation Round 1

e Look carefully equations and how they trace in both

directions s
[Intermediate]

Minimizing bits in key bits used will save time in key s s
recovery step

* You don’t need to find the minimum, but try your best
Mind the permutations! .,

e Bit x of the output in one S-box in not necessarily bit x of [outputmask | I}
input to the next

This may take a while, so don’t get discouraged if it takes a
few tries

Round 2

207

/

. 5

Sidebar: what is the bias now?

We still have one more part to the exercise, but now we
have new expressions

e What is the bias?
Let’s first go back to the normalized notation of bias
e Divide each of the biases we were just using by 64
e 32— ', -12 — - 01875, etc.

Let €1 be the bias of the first round expression, let €2 be
the bias of the second round expression, and let r be the
number of expressions

The new combined bias is 277—1 (€lx€2)
e This is due to Matsui’s piling-up lemma

208

P —

Exercise: part 3

Now it is time to find those key bits!

Use the two-round approximation from part 2 to perform
a 3-round attack

Backup from ciphertext to third round input using
guessed key bits
* You only need to guess the key bits that are in the expression
and required to backup
Objectives

e Fill in attack()
 Create equations in format for Matsui’s algorithm 2
» Implement algorithm 2
» Find bias for each candidate, and sort
» Which key bits are most likely?

209

/

/ ey 0 OLaLa g

Exercise: part 3 (continued)

Hints

e If you need an expression, try using the S-box
expressions on page 179

e Use grab(x, y) to select bit y from state x

e If you get stuck, complete code starts on page 189
« Please try to do as much as you can on your own

210

py

Differential cryptanalysis

Linear cryptanalysis deals with approximating values

Differential cryptanalysis deals with differences
It doesn’t matter what the values are, as long as the correct
difference is present
« Now need pairs of plaintexts and pairs of ciphertexts
Instead of looking at (p,c), looking at (p,p’) and (c,c’)
Requires a stronger adversary
e Need input, output, and ability to request encryption/
decryption operations
» Chosen plaintext attack (if encryption access)
» Chosen ciphertext attack (if decryption access)

e Ifa protocol is really poor, adversary may be able to perform
attack without requests

 Shouldn’t happen

211

.

Differences

Suppose we’re using an encryption oracle

e This means that we ask something for the encryption of a
message, and it gives us the result

e We don’t know the key, the oracle does
Have two plaintexts, p and p’, such thatp® p’ = A
e A, is input difference
Encrypt plaintexts under unknown key by asking oracle
* ¢ = encrypt(p)
* ¢’ = encrypt(p’)
Calculate output difference
e N —cB¢

212

P —

Differences (continued)

A particular input difference leads to particular
output difference with some probability

 Written Pr[A; — A]
* A, — A_is called a characteristic

e The probability of a characteristic is determined
through analysis

 Unlike linear approximations, these differences are exact

The key that produces the expected output difference
with closest to the expected probability wins

Like linear cryptanalysis, we begin with the non-linear
components

213

. 5

S-box characteristics

Try all possible input difference and output difference
pairs

Count how many times each pair occurs

e The probability of the pair (characteristic) is the count
divided by the number of combinations

e For EASY1, divide by 64

Influence of the key needs to be addressed

e In EASY1, key addition step is
c XK oXdK)=XeXdKeK=XaX
« Key does not change analysis
Not necessarily true in all ciphers!

It depends how the key is mixed in
214

Extending difference
characteristics

Chain characteristics together

e Particularly easy if input difference equals output difference

e [fyou want to add a round and have output difference x, choose a high

probability with input characteristic x

As in linear cryptanalysis, we want a differential that does not go to all R
rounds

¢ We want to make key guesses and backup, then check difference
Probabilities multiply

e Probability of a = b — cis Pr[a = b]*Pr[b — (]

. {)ftfhere are multiple ways to get to c from a, chain the probabilities like we did

efore

Food for thought

. Hi%lher probability characteristics require fewer requests for attack to work
we
e Need high overall probability for multiple rounds
« A high probability followed by a low one may be worse than two weaker ones
* 0.9%0.1=0.09

[} & —
0.5%0.5 = 0.25 iy

Exercise (part 1)

Open differential.py
e Complete genMatrix()

Objectives:

e Find probability for all possible characteristics over S-
box

e Identify high-probability characteristics
At least the top 2
« More if you're up to it

216

/’ e SeACAAA

Exercise (part 2)

Implement the attack we described
e createPairs()
e differentialAnalysis(...)

Tips
e Try duplicating the example in the book

* Key 0x555555555
« Random number generator is already seeded for you

217

~Summary of linear and differential

cryptanalysis

Linear
e Collect plaintext-ciphertext pairs
e Approximate cipher using linear equations

Differential

e Make encryption/decryption requests
e Calculate difference probabilities

218

Integral cryptanalysis

Symmetric systems

.

Integral

We've looked at linear equations

We wouldn’t want calculus to feel left out, now would
we?

Relax, you don’t need to remember how to find the
integral of a continuous function

e We're all about discrete math here

220

py

AES

We will look at this attack in terms of 4-round AES-128
e The full cipher is 10 rounds

Anatomy of the Advanced Encryption Standard
e Round consists of nonlinear step and linear mixing

e Round structure has 4 parts
» SubBytes
S-box
» ShiftRows, MixColumns
Linear mixing
« AddRoundKey
Combine key with state via exclusive-or
e 16-byte state is represented as a 2d array

4 by 4 bytes

For full spec, AES-192, and
AES-256, see FIPS 197

221

e
AES: SubBytes

* Byte substitution

e Usually a 16 by 16 table
- Split byte value into high and low nibble
- Byte xy replaced by column x, row y
- For example, the value “ao” is replaced by the value in row “a” column “0”
- Efficient in software
e Can also be calculated on the fly
« Good for low-memory hardware

Yy
ol 1| 2| 3] 4] 5] 6| 7| 8] 9| a[b|[e[| d| e| £
0] 63| 7c | 77| Tb | £2 [6b | 6£| 5| 30| 01 | 67| 2b| fe [d7 | ab | 76
1|l ca| 82| c9| 7d| fa | 59| 47| f0| ad | d4 | a2 | af | 9c | a4 | 72 | <O
S-Box 2| b7 | £d| 93| 26| 36 | 3f | £f7 | cc [34| a5 [e5| £1| 71| d8 | 31| 15
So.0 | So1 | So2 j}/ —~ Soo0 | So1 | So2 | So3 3| 04[] 7| 23] 3] 18] 96[05[9a[07[12[80| e2| eb| 27| b2] 75
P 4/ 09|83]| 2c|1a|1b| 6e|[5a| a0|52|3b|d6| b3 | 29| e3| 2£| 84
~) 5/ 53]|dl|00]|ed| 20 fc|bl | 5b| 6a|cb|be| 39| 4a| 4c| 58| cf
S10 12 | S13 S0 v b | Sis 6/ d0 | ef | aa| fb| 43| 4d| 33| 85| 45| £9 | 02| 7£| 50| 3c | 9£f | a8
S, . S, . |7l 511 =a3]40|8F] 92| 9d| 38| £5 | be|b6|da| 21| 10| £F| £3 | d2
d i 8l cd| O0c| 13| ec | 5£] 97| 44| 17 | c4| a7 | Te| 3d| 64| 5d| 19| 73
Sr0] 521522523 Sr0 | S21 | S22 | Sa3 9| 60| 81| 4f | de| 22| 2a| 90| 88| 46 [ee [b8 | 14| de | 5| 0b | db
ale0| 32| 3a|0a| 49| 06[24| 5c|c2[d3|ac| 62| 91| 95| 4| 79
bl e7| 8| 37| 6d| 8d| d5| 4e | a9 | 6c | 56 | f4 | ea | 65| 7a | ae | 08
S30 | 531 532|533 S30 | S31 | S32 | S33 clba[78[25[2| 1c| a6 | b4 | c6|eB|dd| 74] 1£| 4b | bd | 8b | 8a
d| 70 | 3¢ | b5 | 66 | 48 | 03 | £6 | 0e | 61 | 35| 57| b9 | 86 | c1 | 1d | 9e
ele1 | £8| 98|11 69 d9[8e[94| 9b[1e[87| e9]| ce | 55] 28| df
f[8c|al | 89| 0d|[bf|[e6[42 68 41 [99 [2d]| 0Of| b0 | 54| bb | 16

222

/
AES: ShiftRows

» ShiftRows is about diffusion moving bytes
horizontally

* Each column is broken up

223

_
AES: MixColumns

MixColumns is about column diffusion
e This is why columns broken up in ShiftRows
- Can't isolate a single column throughout the round

e Spread the influence of the bytes
e (Can be expressed as matrix multiplication

MixColumns is present in all rounds except the last one

MixColumns ()

S L~ i) S -, -
y 0.c . 0.c > 3
0.0 S0.2 | 503 500 So» | So3 Soc [[02 03 01
' 1 ~
5, — s S| |01 02 03
; . Re . =
10 12 | 13 510 12 | 513 s,.| |01 01 02
' ' s 03 01 01
S50 52[Sy5 |S535 S50 S5 ¢ S35 | 54 [S30.] L
S30] S3c I532 (533 S50 | S3 f53a | S35

01
01

02

224

PP

AES: AddRoundKey

Byte by byte xor of key and state

Key is stored in a 2d array as well

Simply treat each column as a matrix, and add the

appropriate column from the key schedule

'S'O.c
S0.0 2| %03
S
l.c
S10 - ’3{
530 526 533
S30 (| S5, S33

Ww;

Wi+c

| =round * Nb

So.c .
s s
0.0 ' 0.3
[r— v
\\ K ‘Sl.c X
s
, I 13
22 | Wiss : S" -
|
S0 < Sa3
S30(| 3¢ 3,

225

py

Integral attack on 4 rounds of AES

Set all but 1 byte of the plaintext to an identical fixed value

Create a set of 256 plaintexts such that the variable byte
takes on all 256 values

Request the encryptions of all 256 plaintexts, and obtain a
set of 256 ciphertexts

Guess one byte of the last round key, and set all other bits
too

Decrypt the last round of all ciphertexts using the
candidate round key

For each byte of state, calculate the xor sum of each byte
across the 256 states

e [f the sum is not o, discard it
e Otherwise, it is a still a candidate

226

et

Visual description

Round 1

e Suppose we try all possible values for the first byte, and

leave all others constant

B Ccic|c B Ccic|c Alc|c|c
C|C|C|CisubBytes |C|C|C|CshiftRows|C|C|C|C| mixColumns
CleiC it olo oo eloicle
clere e cleielc clelcic
Alclc|c Alc|cl|c
Bl cc|c| addkey [lcC|C|C|
B ciclc B Ccicl|c
B ciclc B Ccic|c

227

P —

‘,/

Visual description (continued)

Round 2
* At the end, all bytes take on all values

subBytes

shiftRows

mixColumns

> | > | >
N|NIN|IN
ailial @ e
N|NIN|N

> | > | > >
N|NIN|N
N|NINN
N|NINN

aolifleliel

- feollelle

AR [(N|N

NN |>|N

_ addKey

> > > | P>
> > > | >
> > > | P>
> > > | >

> (> > >

> (> > >

> (> > >

> (> > >
A

228

/

. 5

Visual description (continued)

Round 3 isn’t very interesting to draw, since all bytes will
remain all A’s

What is important is that at the end of round 3, all
positions have the same sum
* S5=0
e Sum the same position over multiple single-round
decryptions

« Note that the sum is computed with exclusive-or, since that is the
addition operation for this field!

The last round has no MixColumns operation

e Only need to guess one byte of the last round key
« The one that lines up with the sum you’'re computing

N nH n n
N TN N Wn
N nH n n
N TN N Wn

229

/

P —

Only partial decryption necessary

You don’t even need to do a full decrypt of the last
round

ShiftRows changes byte positions
* You're only concerned with one byte anyway
e You can ignore this

Only two parts are necessary to reverse

e Addition of the guessed key byte
e Its value through inverse S-box

230

py

Finishing the attack

Repeat this process for all 16 bytes of the last round key
Each byte will have approximately two candidates
e One of them is the correct byte
2'° = 65536 full key candidates
e So much better than 228
e We can iterate through all these quickly
For each full key candidate
e (Calculate the master key from the last round key
e Choose a plaintext-ciphertext pair
e Calculate ciphertext’ = encrypt(plaintext, master)
e If ciphertext’ == ciphertext, then master is the secret key

231

.

Exercise

Open up “integral.py”
All the AES code you need is there
e encrypt(.) encrypts four rounds

e backup(.) does a one-round decryption using your guess at the last

round key
e round2master(.) derives the master key from the last round key

e Plaintext and key inputs are 16-element lists
» Read into the state column-wise

» slo][o] = plo], s|o][1] = pl4], s[o][2] = p[8], so][3
3

p[] S10 | S11 [S12 | S
3],

]=
s[1][o] = p[1], sl1][1] = p[5], s[1l[2] = pl9], sla][3] = pa

]
s|2][o] = p[2], s[2][1] = p[6], s[2][2] = p[10], s[2][3] = p[14],
s[3]lo] = p[3], s[3][1] = p[7], s[3l[2] = p[u], s[3][3

] [] S3_0 S3_1 ‘5'3.2 .

There is a set of plaintexts and ciphertexts in the code
Objective: find the key that they were encrypted under

232

P —

Exercise (continued)

You'll need to fill in the following functions:

e Integrate
 Given an index (0-15), find the integral for that byte

e Integral
» (all integrate to find plausible round key bytes
« Loop over all plausible round key byte combinations
Derive master key from round key (use round2master())

Tips
e Remember, this is an integral where addition means
exclusive-or

e Pay attention to rows vs. columns

233

P —

An attack by any other name...

The square attack on AES is very similar

e By similar, | mean that it is the exact same thing we just did, but with
a different name

The saturation attack on AES is also very similar
e Hang on, this is the same attack again!

People sometimes rename things

Here’s why this attack has (at least) three names

e AES is based on Square block cipher, which has this attack
« Hence “square attack”

* A plaintext byte takes on all values
« That byte is “saturated”
« Hence “saturation attack”

e The ciphertext bytes are summed, which is a discrete integration
« Hence “integral attack”

They are all the same in this case, but not in general

234

/

/ et —

Summary: symmetric attacks

Generic attacks that can be applied to any block cipher
e Time-memory trade-off

e Slide attacks
» Only works if transforms repeat

Targeted attacks
e Specific to a cryptosystem

e Linear
» Approximate function with linear expressions

 Differential
» Use expected difference characteristics

e Integral
« Correct key results in expected sum

235

Closing remarks

Over so soon?

.

Summary

Cryptanalysis is the art and science of code breaking
Modern ciphers are either symmetric or asymmetric
e Require different attack strategies

Covered asymmetric attacks

e Generic attacks on asymmetric systems built on factoring
 Pollard’s rho
» Pollard’s p-1

e Specific attacks on RSA

e Generic attacks on asymmetric systems built on the discrete
log problem

« Pollard’s rho
» Index calculus

237

P —

Summary (continued)

Covered symmetric attacks
e Hellman’s time-memory trade-off
e Slide attacks
e Linear cryptanalysis
e Differential cryptanalysis
e Integral cryptanalysis on four-round AES

[hope everyone had a good time and comes back for
more! ©

238

